(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2025-01-20
(45)【発行日】2025-01-28
(54)【発明の名称】ラジカル発生膜形成組成物、ラジカル発生膜、及び横電界液晶セルの製造方法
(51)【国際特許分類】
G02F 1/1337 20060101AFI20250121BHJP
C08G 73/10 20060101ALI20250121BHJP
【FI】
G02F1/1337 525
C08G73/10
(21)【出願番号】P 2021565682
(86)(22)【出願日】2020-12-18
(86)【国際出願番号】 JP2020047459
(87)【国際公開番号】W WO2021125329
(87)【国際公開日】2021-06-24
【審査請求日】2023-12-04
(31)【優先権主張番号】P 2019227975
(32)【優先日】2019-12-18
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000003986
【氏名又は名称】日産化学株式会社
(74)【代理人】
【識別番号】100114775
【氏名又は名称】高岡 亮一
(74)【代理人】
【識別番号】100121511
【氏名又は名称】小田 直
(74)【代理人】
【識別番号】100163038
【氏名又は名称】山下 武志
(74)【代理人】
【識別番号】100193725
【氏名又は名称】小森 幸子
(72)【発明者】
【氏名】野田 尚宏
【審査官】磯崎 忠昭
(56)【参考文献】
【文献】国際公開第2019/131810(WO,A1)
【文献】特開2019-211777(JP,A)
【文献】特表2014-532104(JP,A)
【文献】国際公開第2018/047872(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G02F 1/1337
C08G 73/10
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
(A)成分である下記式(1)で表される構造単位を主鎖に有する重合体、及び、
(B)成分である、横電界駆動用液晶配向剤の配向成分として用いられる重合体、
を含有し、
前記(B)成分は、下記式(7)で表される構造単位を含むポリイミド前駆体、及びそのイミド化物であるポリイミドから選ばれる少なくとも1種であり、
前記(A)成分、及び前記(B)成分は、それぞれ液晶を垂直に配向させるための垂直配向性基を含有しない、ラジカル発生膜形成組成物。
【化1】
(式(1)中、Aはラジカル重合を誘発する有機基であって、下記式(3)で表される基を表す。)
【化2】
(式(3)中、破線はベンゼン環との結合を表し、R
6は単結合、-CH
2-、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CH
2O-、-N(CH
3)-、-CON(CH
3)-、又は-N(CH
3)CO-を表し、
R
7は単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1~20のアルキレン基を表し、当該アルキレン基の任意の-CH
2-又は-CF
2-の1以上は、それぞれ独立に-CH=CH-、二価の炭素環、および二価の複素環から選ばれる基で置き換えられていてもよく、さらに、次に挙げるいずれかの基、すなわち、-O-、-COO-、-OCO-、-NHCO-、-CONH-、又は-NH-が互いに隣り合わないことを条件に、これらの基で置き換えられていてもよい。
R
8は、式[X-1]~[X-18]、[W]、[Y]及び[Z]から選択される式で表されるラジカル重合を誘発する有機基を表し、
【化3】
式[X-1]~[X-18]中、*はR
7との結合箇所を示し、S
1及びS
2はそれぞれ独立して-O-、-NR-、又は-S-を表し、Rは水素原子、ハロゲン原子、炭素数1~10のアルキル基、又は炭素数1~10のアルコキシ基を表し、R
1及びR
2はそれぞれ独立して水素原子、ハロゲン原子、又は炭素数1~4のアルキル基を表し、
【化4】
式[W]、[Y]、[Z]中、*はR
7との結合箇所を表し、S
3は単結合、-O-、-S-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CH
2O-、-N(CH
3)-、-CON(CH
3)-、又は-N(CH
3)CO-であり、Arは有機基及び/又はハロゲン原子を置換基として有しても良いフェニレン、ナフチレン、及びビフェニリレンからなる群より選ばれる芳香族炭化水素基を示し、R
9及びR
10は、それぞれ独立に、炭素数1~10のアルキル基、アルコキシ基、ベンジル基、又はフェネチル基であり、アルキル基やアルコキシ基の場合、R
9及びR
10で環を形成していても良く、
Qは下記のいずれかの構造を表し、
【化5】
式中、R
11は-CH
2-、-NR-、-O-、又は-S-を表し、Rは水素原子又は炭素数1~4のアルキル基を表し、*は結合手を表し、
R
12は水素原子、ハロゲン原子、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表す。)
【化6】
(式(7)中、X
2
はテトラカルボン酸誘導体に由来する4価の有機基であり、Y
2
は前記式(1)の構造を含まないジアミンに由来する2価の有機基であり、R
5
は、水素原子又は炭素数1~5のアルキル基を表し、R
6
は、水素原子又は炭素数1~4のアルキル基を表す。)
【請求項2】
前記(A)成分である重合体が、ラジカル重合を誘発する有機基を含有するジアミンを含むジアミン成分を用いて得られるポリイミド前駆体、ポリイミド、ポリウレアおよびポリアミドから選ばれる少なくとも一種の重合体である請求項1に記載のラジカル発生膜形成組成物。
【請求項3】
前記ラジカル重合を誘発する有機基を含有するジアミンが、下記式(2)で表されるジアミンである請求項2に記載のラジカル発生膜形成組成物。
【化7】
(式(2)中、A
1及びA
2はそれぞれ水素原子又はラジカル重合を誘発する有機基を表し、但し、A
1及びA
2のうち少なくとも1つはラジカル重合を誘発する有機基を表し、
Eは、単結合、-O-、-C(CH
3)
2-、-NH-、-CO-、-NHCO-、-COO-、-(CH
2)
m-、-SO
2-、又はそれらの任意の組み合わせからなる2価の有機基を表し、mは1~8の整数を表す。
pは0~2の整数を表す。pが2の場合、複数のA
2はそれぞれ独立して前記定義を有する。また、pが0の場合、A
1はラジカル重合を誘発する有機基からなる。)
【請求項4】
請求項1
~3のいずれか一項に記載のラジカル発生膜形成組成物を用いて得られるラジカル発生膜。
【請求項5】
液晶配向膜を有する第一基板と、
請求項4に記載のラジカル発生膜を有する第二基板とを用意するステップ、
前記第二基板上のラジカル発生膜が前記第一基板に対向するようにセルを作製するステップ、および、
前記第一基板と前記第二基板との間に、液晶及びラジカル重合性化合物を含有する液晶組成物を充填するステップを含み、前記第一基板と前記第二基板のいずれか一方が櫛歯電極基板であり、他方が対向基板である横電界液晶セルの製造方法。
【請求項6】
前記第一基板が、一軸配向性を有する液晶配向膜がコーティングされた基板である
請求項5に記載の横電界液晶セルの製造方法。
【請求項7】
前記一軸配向性を有する液晶配向膜が水平配向用の液晶配向膜である
請求項6に記載の横電界液晶セルの製造方法。
【請求項8】
前記櫛歯電極基板がIPS基板又はFFS基板である
請求項5~7のいずれか一項に記載の横電界液晶セルの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、弱アンカリング液晶表示素子等に好適に使用し得るラジカル発生膜形成組成物、及びラジカル発生膜に関する。
また、本発明は、該ラジカル発生膜形成組成物やラジカル発生膜を用いた横電界液晶セルの製造方法に関する。
【背景技術】
【0002】
近年、携帯電話、コンピュータ及びテレビのディスプレイなどには液晶表示素子が広く用いられている。液晶表示素子は薄型、軽量、低消費電力などの特性を有しており、今後はVR(Virtual Reality)や超高精細のディスプレイ等、更なるコンテンツへの応用が期待されている。液晶ディスプレイの表示方式には、TN(Twisted Nematic)、IPS(In-Plane Switching)、VA(Vertical Alignment)など様々な表示モードが提案されているが、すべてのモードには液晶を所望の配向状態に誘導する膜(液晶配向膜)が使用されている。
【0003】
特にタブレットPCやスマートフォン、スマートTV等のタッチパネルを具備した製品には、タッチしても表示が乱れにくいIPSモードが好まれており、近年ではコントラスト向上や視野角特性の向上の点でFFS(Frindge Field Switching)を用いた液晶表示素子や、光配向を用いた非接触技術を用いた技術が用いられるようになってきた。
【0004】
近年、4Kや8K等の更なる高精細化や高コントラスト化などが目指されており、バックライトの高輝度化も進んでいる。それに伴い、液晶表示素子も透過率の向上、低駆動電圧化等が目指されており、特にFFSモードはTV用途だけでなくタブレットやスマートフォン等にも使用されているため、透過率向上や駆動電圧の低減は非常に大きな課題となっている。
【0005】
液晶表示素子の透過率改善に関しては、FFSモードについてはネガ液晶を用いる方法が提唱され、実際実用化が進んでいる。一方で、ネガ液晶を用いる場合、透過率の改善においては効果が大きいが応答時間の悪化や駆動電圧の増大も伴うため、消費電力の低下の効果は低く、ネガ液晶自体がコンタミを溶解しやすく、ムラや焼き付き等の不具合を生じやすいという問題点も挙げられる。
【0006】
最近、液晶表示素子の透過率向上と駆動電圧の低下が可能になる技術として、アンカリングエネルギーが非常に低い膜を液晶配向膜として用いる弱アンカリングIPSという技術が注目されている。弱アンカリングIPS技術は基板として櫛歯電極幅がある程度広いIPS基板を使用しても透過率を大きく改善でき駆動電圧も下げることができるため、実用化ができれば基板コストメリットも大きくなり、FFSモード特有の問題であるフリッカーの発生等も抑制できるメリットがある。(特許文献1参照)。
【0007】
近年では、濃厚ポリマーブラシ等を用いてゼロ面アンカリング状態を作り出し、ゼロ面アンカリングIPSモード(弱アンカリングIPSモードともいう)の技術提案がなされている(参考文献2参照)。この技術によりコントラスト比の大幅な向上や駆動電圧の大幅な低下を実現している。
【先行技術文献】
【特許文献】
【0008】
【文献】特許第4053530号公報
【文献】特開2013-231757号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
一方でこの技術には原理的に発生する課題があり、第1はポリマーブラシを基板上に安定的に発生させるためには非常に繊細な条件で行う必要があり、量産を考えると現実的ではないことが挙げられる。第2は、配向膜は焼き付き抑制などの重要な働きを担っているが、ポリマーブラシ等を用いる場合は必要となる電気物性などの制御が困難であることが挙げられる。第3は駆動原理上電圧Offにした際の応答速度が非常に遅くなることが挙げられる。配向規制力をゼロにすることで液晶にかかる駆動時の抵抗を無くすことで閾値電圧の大幅な低下と、駆動時の配向不良領域が減少することによる輝度向上が期待されるが、液晶の戻りに関しては、液晶の戻る際の動力は液晶の弾性力に依存するため、配向膜があるときに比べて大きく速度が低下することが考えられる。
【0010】
このような技術的課題を解決できればパネルメーカーとしても大きなコストメリットとなり、バッテリーの消費抑制や画質の向上等にもメリットとなることが考えられる。
【0011】
本発明は、上記のような課題を解決するためになされたものであり、弱アンカリング膜を製造することが可能なポリマー安定化技術を応用し常温において、簡便且つ安価な方法で非接触配向と低駆動電圧化と電圧Off時の応答速度を速くすることが同時に実現できる横電界液晶表示素子を提供することを目的とする。
特に、良好な黒表示が可能であり、高いバックライト透過率、速い応答速度を実現できる横電界液晶表示素子を提供することを目的とする。
そして、本発明は、そのように優れた横電界液晶表示素子を得るため、該横電界液晶表示素子に使用するラジカル発生膜形成組成物を提供することを目的とする。
【課題を解決するための手段】
【0012】
本発明者らは、上記の課題を解決する為、鋭意検討を行った結果、上記の課題を解決出来ることを見出し、以下の要旨を有する本発明を完成させた。
【0013】
すなわち、本発明は以下を包含する。
[1](A)成分である下記式(1)で表される構造単位を主鎖に有する重合体、及び、
(B)成分である、横電界駆動用液晶配向剤の配向成分として用いられる重合体、
を含有するラジカル発生膜形成組成物。
【化1】
(式(1)中、Aはラジカル重合を誘発する有機基を表す。)
[2]前記(A)成分である重合体が、ラジカル重合を誘発する有機基を含有するジアミンを含むジアミン成分を用いて得られるポリイミド前駆体、ポリイミド、ポリウレアおよびポリアミドから選ばれる少なくとも一種の重合体である[1]に記載のラジカル発生膜形成組成物。
【0014】
[3]前記ラジカル重合を誘発する有機基を含有するジアミンが、下記式(2)で表されるジアミンである[2]に記載のラジカル発生膜形成組成物。
【化2】
(式(2)中、A
1及びA
2はそれぞれ水素原子又はラジカル重合を誘発する有機基を表し、但し、A
1及びA
2のうち少なくとも1つはラジカル重合を誘発する有機基を表し、
Eは、単結合、-O-、-C(CH
3)
2-、-NH-、-CO-、-NHCO-、-COO-、-(CH
2)
m-、-SO
2-、又はそれらの任意の組み合わせからなる2価の有機基を表し、mは1~8の整数を表す。)
【0015】
pは0~2の整数を表す。pが2の場合、複数のA
2はそれぞれ独立して前記定義を有する。また、pが0の場合、A
1はラジカル重合を誘発する有機基からなる。)
[4]前記ラジカル重合を誘発する有機基が、下記式(3)で表される基である、[1]~[3]のいずれかに記載のラジカル発生膜形成組成物。
【化3】
(式(3)中、破線はベンゼン環との結合を表し、R
6は単結合、-CH
2-、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CH
2O-、-N(CH
3)-、-CON(CH
3)-、又は-N(CH
3)CO-を表し、
R
7は単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1~20のアルキレン基を表し、当該アルキレン基の任意の-CH
2-又は-CF
2-の1以上は、それぞれ独立に-CH=CH-、二価の炭素環、および二価の複素環から選ばれる基で置き換えられていてもよく、さらに、次に挙げるいずれかの基、すなわち、-O-、-COO-、-OCO-、-NHCO-、-CONH-、又は-NH-が互いに隣り合わないことを条件に、これらの基で置き換えられていてもよい。
【0016】
R
8は、式[X-1]~[X-18]、[W]、[Y]及び[Z]から選択される式で表されるラジカル重合を誘発する有機基を表し、
【化4】
式[X-1]~[X-18]中、*はR
7との結合箇所を示し、S
1及びS
2はそれぞれ独立して-O-、-NR-、又は-S-を表し、Rは水素原子、ハロゲン原子、炭素数1~10のアルキル基、又は炭素数1~10のアルコキシ基を表し、R
1及びR
2はそれぞれ独立して水素原子、ハロゲン原子、又は炭素数1~4のアルキル基を表し、
【0017】
【化5】
式[W]、[Y]、[Z]中、*はR
7との結合箇所を表し、S
3は単結合、-O-、-S-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CH
2O-、-N(CH
3)-、-CON(CH
3)-、又は-N(CH
3)CO-であり、Arは有機基及び/又はハロゲン原子を置換基として有しても良いフェニレン、ナフチレン、及びビフェニリレンからなる群より選ばれる芳香族炭化水素基を示し、R
9及びR
10は、それぞれ独立に、炭素数1~10のアルキル基、アルコキシ基、ベンジル基、又はフェネチル基であり、アルキル基やアルコキシ基の場合、R
9及びR
10で環を形成していても良く、
【0018】
Qは下記のいずれかの構造を表し、
【化6】
式中、R
11は-CH
2-、-NR-、-O-、又は-S-を表し、Rは水素原子又は炭素数1~4のアルキル基を表し、*は結合手を表し、
R
12は水素原子、ハロゲン原子、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表す。)
【0019】
[5][1]~[4]のいずれかに記載のラジカル発生膜形成組成物を用いて得られるラジカル発生膜。
[6]液晶配向膜を有する第一基板と、[5]に記載のラジカル発生膜を有する第二基板とを用意するステップ、
前記第二基板上のラジカル発生膜が前記第一基板に対向するようにセルを作成するステップ、および、
前記第一基板と前記第二基板との間に、液晶及びラジカル重合性化合物を含有する液晶組成物を充填するステップを含み、前記第一基板と前記第二基板のいずれか一方が櫛歯電極基板であり、他方が対向基板である横電界液晶セルの製造方法。
[7]前記第一基板が、一軸配向性を有する液晶配向膜がコーティングされた基板である[6]に記載の横電界液晶セルの製造方法。
[8]前記一軸配向性を有する液晶配向膜が水平配向用の液晶配向膜である[7]に記載の横電界液晶セルの製造方法。
[9]前記櫛歯電極基板がIPS基板又はFFS基板である[6]~[8]のいずれかに記載の横電界液晶セルの製造方法。
【発明の効果】
【0020】
本発明によれば、良好な黒表示が可能であり、高いバックライト透過率、速い応答速度を実現できる横電界液晶表示素子を得るために、該横電界液晶表示素子に有効に使用し得るラジカル発生膜形成組成物を提供することができる。
【図面の簡単な説明】
【0021】
【
図1】本発明に係る液晶表示素子の一例を示す概略断面図である。
【
図2】本発明に係る液晶表示素子の他の例を示す概略断面図である。
【発明を実施するための形態】
【0022】
(ラジカル発生膜形成組成物)
本発明のラジカル発生膜形成組成物は、(A)成分と(B)成分とを含有する。
【0023】
<(A)成分>
本発明は、(A)成分として、上記式(1)で表される構造単位を主鎖に有する重合体を含有する。その結果、本発明のラジカル発生膜形成組成物は、ラジカル重合を誘発する有機基を含有する。このような組成物を塗布、硬化して膜を形成することにより、ラジカルを発生しうる基が膜中に固定化され、種々の機能を有する液晶配向膜を得ることができる。
【0024】
そのような、ラジカル重合を誘発する有機基としては上記式(3)で表される基が挙げられる。
【0025】
上記[W]、[Y]及び[Z]から選ばれる式で表される有機基としては、具体的には、以下が好ましい。特に、得られる液晶表示素子の信頼性の点から、(b)及び(c)が好ましい。
【化7】
【0026】
本発明に用いる、(A)成分であるラジカル重合を誘発する有機基を有する重合体を用いる場合、ラジカルを発生しうる基を有する重合体を得るには、モノマー成分として、メタクリル基、アクリル基、ビニル基、アリル基、クマリン基、スチリル基及びシンナモイル基から選択される少なくとも一種を含む光反応性の側鎖を有するモノマーや、紫外線照射により分解し、ラジカルを発生する部位を側鎖に有するモノマーを用いて製造することが好ましい。一方で、ラジカルを発生するモノマーはそれ自体が自発的に重合をしてしまうなどの問題点が考えられ、不安定化合物となってしまうため、合成のしやすさの点ではラジカル発生部位を有するジアミンから誘導される重合体が好ましく、ポリアミック酸やポリアミック酸エステル等のポリイミド前駆体、ポリイミド、ポリウレア、ポリアミドなどがより好ましい。
【0027】
そのようなラジカル発生部位含有ジアミンは、具体的には、例えば、ラジカルを発生し重合可能な側鎖を有するジアミンであり、上記式(2)で表されるジアミンを挙げることができるが、これに限定されるものではない。
上記式(2)中、Eは、単結合、-O-、-C(CH3)2-、-NH-、-CO-、-NHCO-、-COO-、-(CH2)m-、-SO2-、又はそれらの任意の組み合わせからなる2価の有機基を表すが、ここで、「それらの任意の組み合わせ」としては、-O-(CH2)m-O-、-O-C(CH3)2-、-CO-(CH2)m-、-NH-(CH2)m-、-SO2-(CH2)m-、-CONH-(CH2)m-、-CONH-(CH2)m-NHCO-、-COO-(CH2)m-OCO-などを挙げることができるがこれらに限定されない。
【0028】
上記ラジカル発生部位含有ジアミン(具体的には、例えば、式(2))における二つのアミノ基(-NH2)の結合位置は限定されない。具体的には、側鎖の結合基に対して、ベンゼン環上の2,3の位置、2,4の位置、2,5の位置、2,6の位置、3,4の位置、3,5の位置が挙げられる。なかでも、ポリアミック酸を合成する際の反応性の観点から、2,4の位置、2,5の位置、又は3,5の位置が好ましい。ジアミンを合成する際の容易性も加味すると、2,4の位置、又は3,5の位置がより好ましい。
【0029】
メタクリル基、アクリル基、ビニル基、アリル基、クマリン基、スチリル基及びシンナモイル基からなる群から選ばれる少なくとも1種を含む光反応性基を有するジアミンとしては、具体的には、以下のような化合物が挙げられるが、これらに限定されるものではない。
【化8】
【0030】
【化9】
(式中、J
1は単結合、-O-、-COO-、-NHCO-、又は-NH-を表し、J
2は単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1~20のアルキレン基を表す。)
【0031】
上記[W]、[Y]及び[Z]から選ばれる式で表される有機基を有するジアミンとしては、合成の容易さ、汎用性の高さ、特性などの点を鑑みて、下記式で表される構造が最も好ましいが、これらに限定されない。
【化10】
(式中、nは2~8の整数であり、Eは、単結合、-O-、-C(CH
3)
2-、-NH-、-CO-、-NHCO-、-COO-、-(CH
2)
m-、-SO
2-、-O-(CH
2)
m-O-、-O-C(CH
3)
2-、-CO-(CH
2)
m-、-NH-(CH
2)
m-、-SO
2-(CH
2)
m-、-CONH-(CH
2)
m-、-CONH-(CH
2)
m-NHCO-又は-COO-(CH
2)
m-OCO-であり、mは1~8の整数である。)
【0032】
【0033】
上記のジアミンは、ラジカル発生膜とした際の液晶配向性、重合反応における感度、電圧保持特性、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。
【0034】
このようなラジカル重合が発生する部位を有するジアミンは、ラジカル発生膜形成組成物に含有させる(A)成分である重合体の合成に用いるジアミン成分全体の5~100モル%となる量を用いることが好ましく、より好ましくは10~80モル%であり、特に好ましくは30~50モル%である。
【0035】
なお、本発明のラジカル発生膜形成組成物に用いる(A)成分である重合体をジアミンから得る場合、上記ラジカルが発生する部位を有するジアミン以外の、その他のジアミンをジアミン成分として併用することができる。具体的には、p-フェニレンジアミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、2,5-ジアミノフェノール、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、3,3’-ジカルボキシ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ジアミノビフェニル、3,3’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2’-ジアミノジフェニルメタン、2,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、2,2’-ジアミノジフェニルエーテル、2,3’-ジアミノジフェニルエーテル、4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4’-チオジアニリン、3,3’-チオジアニリン、4,4’-ジアミノジフェニルアミン、3,3’-ジアミノジフェニルアミン、3,4’-ジアミノジフェニルアミン、2,2’-ジアミノジフェニルアミン、2,3’-ジアミノジフェニルアミン、N-メチル(4,4’-ジアミノジフェニル)アミン、N-メチル(3,3’-ジアミノジフェニル)アミン、N-メチル(3,4’-ジアミノジフェニル)アミン、N-メチル(2,2’-ジアミノジフェニル)アミン、N-メチル(2,3’-ジアミノジフェニル)アミン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、2,2’-ジアミノベンゾフェノン、2,3’-ジアミノベンゾフェノン、1,4-ジアミノナフタレン、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、1,8-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,7-ジアミノナフタレン、1,2-ビス(4-アミノフェニル)エタン、1,2-ビス(3-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェニル)プロパン、1,4-ビス(4-アミノフェニル)ブタン、1,4-ビス(3-アミノフェニル)ブタン、ビス(3,5-ジエチル-4-アミノフェニル)メタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、4,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,3-フェニレンビス(メチレン)]ジアニリン、1,4-フェニレンビス[(4-アミノフェニル)メタノン]、1,4-フェニレンビス[(3-アミノフェニル)メタノン]、1,3-フェニレンビス[(4-アミノフェニル)メタノン]、1,3-フェニレンビス[(3-アミノフェニル)メタノン]、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート、N,N’-(1,4-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,4-フェニレン)ビス(3-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(3-アミノベンズアミド)、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-ビス(3-アミノフェニル)テレフタルアミド、N,N’-ビス(4-アミノフェニル)イソフタルアミド、N,N’-ビス(3-アミノフェニル)イソフタルアミド、9,10-ビス(4-アミノフェニル)アントラセン、4,4’-ビス(4-アミノフェノキシ)ジフェニルスルホン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(3-アミノフェニル)プロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)プロパン、トランス-1,4-ビス(4-アミノフェニル)シクロヘキサン、3,5-ジアミノ安息香酸、2,5-ジアミノ安息香酸、ビス(4-アミノフェノキシ)メタン、1,2-ビス(4-アミノフェノキシ)エタン、1,3-ビス(4-アミノフェノキシ)プロパン、1,3-ビス(3-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,4-ビス(3-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,5-ビス(3-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,6-ビス(3-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-ビス(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-ビス(4-アミノフェノキシ)デカン、1,10-ビス(3-アミノフェノキシ)デカン、1,11-ビス(4-アミノフェノキシ)ウンデカン、1,11-ビス(3-アミノフェノキシ)ウンデカン、1,12-ビス(4-アミノフェノキシ)ドデカン、1,12-ビス(3-アミノフェノキシ)ドデカンなどの芳香族ジアミン;ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタンなどの脂環式ジアミン;1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノへキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカンなどの脂肪族ジアミン;1,3-ビス[2-(p-アミノフェニル)エチル]ウレア、1,3-ビス[2-(p-アミノフェニル)エチル]-1-tert-ブトキシカルボニルウレア等のウレア構造を有するジアミン;N-p-アミノフェニル-4-p-アミノフェニル(tert-ブトキシカルボニル)アミノメチルピペリジン等の含窒素不飽和複素環構造を有するジアミン;N-tert-ブトキシカルボニル-N-(2-(4-アミノフェニル)エチル)-N-(4-アミノベンジル)アミン等のN-Boc基(Bocはtert-ブトキシカルボニル基を表す)を有するジアミン等が挙げられる。
【0036】
上記その他のジアミンは、ラジカル発生膜とした際の液晶配向性、重合反応における感度、電圧保持特性、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。
【0037】
重合体がポリアミック酸である場合の合成で、上記のジアミン成分と反応させるテトラカルボン酸二無水物は特に限定されない。具体的には、ピロメリット酸、2,3,6,7-ナフタレンテトラカルボン酸、1,2,5,6-ナフタレンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸、2,3,6,7-アントラセンテトラカルボン酸、1,2,5,6-アントラセンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)エーテル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)メタン、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン、ビス(3,4-ジカルボキシフェニル)ジメチルシラン、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン、2,3,4,5-ピリジンテトラカルボン酸、2,6-ビス(3,4-ジカルボキシフェニル)ピリジン、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸、1,3-ジフェニル-1,2,3,4-シクロブタンテトラカルボン酸、オキシジフタルテトラカルボン酸、1,2,3,4-シクロブタンテトラカルボン酸、1,2,3,4-シクロペンタンテトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸、1,2,3,4-シクロヘプタンテトラカルボン酸、2,3,4,5-テトラヒドロフランテトラカルボン酸、3,4-ジカルボキシ-1-シクロへキシルコハク酸、2,3,5-トリカルボキシシクロペンチル酢酸、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸、ビシクロ[3.3.0]オクタン-2,4,6,8-テトラカルボン酸、ビシクロ[4.3.0]ノナン-2,4,7,9-テトラカルボン酸、ビシクロ[4.4.0]デカン-2,4,7,9-テトラカルボン酸、ビシクロ[4.4.0]デカン-2,4,8,10-テトラカルボン酸、トリシクロ[6.3.0.0<2,6>]ウンデカン-3,5,9,11-テトラカルボン酸、1,2,3,4-ブタンテトラカルボン酸、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドリナフタレン-1,2-ジカルボン酸、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロへキサン-1,2-ジカルボン酸、テトラシクロ[6.2.1.1<3,6>.0<2,7>]ドデカ-4,5,9,10-テトラカルボン酸、3,5,6-トリカルボキシノルボルナン-2:3,5:6ジカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸等のテトラカルボン酸の二無水物が挙げられる。
【0038】
勿論、テトラカルボン酸二無水物も、ラジカル発生膜とした際の液晶配向性、重合反応における感度、電圧保持特性、蓄積電荷などの特性に応じて、1種類又は2種類以上併用してもよい。
【0039】
重合体がポリアミック酸エステルである場合の合成で、上記のジアミン成分と反応させるテトラカルボン酸ジアルキルエステルの構造は特に限定されないが、その具体例を以下に挙げる。
【0040】
脂肪族テトラカルボン酸ジエステルの具体的な例としては1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,2,3,4-シクロペンタンテトラカルボン酸ジアルキルエステル、2,3,4,5-テトラヒドロフランテトラカルボン酸ジアルキルエステル、1,2,4,5-シクロヘキサンテトラカルボン酸ジアルキルエステル、3,4-ジカルボキシ-1-シクロヘキシルコハク酸ジアルキルエステル、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸ジアルキルエステル、1,2,3,4-ブタンテトラカルボン酸ジアルキルエステル、ビシクロ[3.3.0]オクタン-2,4,6,8-テトラカルボン酸ジアルキルエステル、3,3’,4,4’-ジシクロヘキシルテトラカルボン酸ジアルキルエステル、2,3,5-トリカルボキシシクロペンチル酢酸ジアルキルエステル、シス-3,7-ジブチルシクロオクタ-1,5-ジエン-1,2,5,6-テトラカルボン酸ジアルキルエステル、トリシクロ[4.2.1.0<2,5>]ノナン-3,4,7,8-テトラカルボン酸-3,4:7,8-ジアルキルエステル、ヘキサシクロ[6.6.0.1<2,7>.0<3,6>.1<9,14>.0<10,13>]ヘキサデカン-4,5,11,12-テトラカルボン酸-4,5:11,12-ジアルキルエステル、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレンー1,2-ジカルボン酸ジアルキルエステルなどが挙げられる。
【0041】
芳香族テトラカルボン酸ジアルキルエステルとしては、ピロメリット酸ジアルキルエステル、3,3’,4,4’-ビフェニルテトラカルボン酸ジアルキルエステル、2,2’,3,3’-ビフェニルテトラカルボン酸ジアルキルエステル、2,3,3’,4-ビフェニルテトラカルボン酸ジアルキルエステル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸ジアルキルエステル、2,3,3’,4’-ベンゾフェノンテトラカルボン酸ジアルキルエステル、ビス(3,4-ジカルボキシフェニル)エーテルジアルキルエステル、ビス(3,4-ジカルボキシフェニル)スルホンジアルキルエステル、1,2,5,6-ナフタレンテトラカルボン酸ジアルキルエステル、2,3,6,7-ナフタレンテトラカルボン酸ジアルキルエステルなどが挙げられる。
【0042】
重合体がポリウレアである場合の合成で、上記のジアミン成分と反応させるジイソシアネートに関しては、特に限定はせず、入手性等に応じて使用することができる。ジイソシアネートの具体的構造を以下に示す。
【化12】
式中R
22及びR
23は炭素数1~10の脂肪族炭化水素基を表す。
【0043】
K-1~K-5に示す脂肪族ジイソシアネートは、反応性は劣るが溶媒溶解性を向上させるメリットがあり、K-6~K-7に示すような芳香族ジイソシアネートは反応性に富み耐熱性を向上させる効果があるが、溶媒溶解性を低下させる欠点が挙げられる。汎用性や特性面においてK-1、K-7、K-8、K-9、K-10が好ましく、電気特性の観点ではK-12、液晶配向性の観点ではK-13が好ましい。ジイソシアネートは1種以上を併用して使用することもでき、得たい特性に応じて種々適用するのが好ましい。
【0044】
また、一部のジイソシアネートを上記で説明したテトラカルボン酸二無水物に置き換えることもでき、ポリアミック酸とポリウレアの共重合体のような形で使用しても良く、化学イミド化によってポリイミドとポリウレアの共重合体のような形で使用しても良い。
【0045】
重合体がポリアミドである場合の合成で、反応させるジカルボン酸の構造は特に限定されないが、あえて具体例を以下に挙げれば以下のとおりである。脂肪族ジカルボン酸の具体例として、マロン酸、蓚酸、ジメチルマロン酸、コハク酸、フマル酸、グルタル酸、アジピン酸、ムコン酸、2-メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、2,2-ジメチルグルタル酸、3,3-ジエチルコハク酸、アゼライイン酸、セバシン酸およびスベリン酸等のジカルボン酸を挙げることができる。
【0046】
脂環式系のジカルボン酸としては、1,1-シクロプロパンジカルボン酸、1,2-シクロプロパンジカルボン酸、1,1-シクロブタンジカルボン酸、1,2-シクロブタンジカルボン酸、1,3-シクロブタンジカルボン酸、3,4-ジフェニル-1,2-シクロブタンジカルボン酸、2,4-ジフェニル-1,3-シクロブタンジカルボン酸、1-シクロブテン-1,2-ジカルボン酸、1-シクロブテン-3,4-ジカルボン酸、1,1-シクロペンタンジカルボン酸、1,2-シクロペンタンジカルボン酸、1,3-シクロペンタンジカルボン酸、1,1-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,4-(2-ノルボルネン)ジカルボン酸、5-ノルボルネン-2,3-ジカルボン酸、ビシクロ[2.2.2]オクタン-1,4-ジカルボン酸、ビシクロ[2.2.2]オクタン-2,3-ジカルボン酸、2,5-ジオキソ-1,4-ビシクロ[2.2.2]オクタンジカルボン酸、1,3-アダマンタンジカルボン酸、4,8-ジオキソ-1,3-アダマンタンジカルボン酸、2,6-スピロ[3.3]ヘプタンジカルボン酸、1,3-アダマンタン二酢酸、カンファー酸等を挙げることができる。
【0047】
芳香族ジカルボン酸としては、o-フタル酸、イソフタル酸、テレフタル酸、5-メチルイソフタル酸、5-tert-ブチルイソフタル酸、5-アミノイソフタル酸、5-ヒドロキシイソフタル酸、2,5-ジメチルテレフタル酸、テトラメチルテレフタル酸、1,4-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,4-アントラセンジカルボン酸、1,4-アントラキノンジカルボン酸、2,5-ビフェニルジカルボン酸、4,4’-ビフェニルジカルボン酸、1,5-ビフェニレンジカルボン酸、4,4”-ターフェニルジカルボン酸、4,4’-ジフェニルメタンジカルボン酸、4,4’-ジフェニルエタンジカルボン酸、4,4’-ジフェニルプロパンジカルボン酸、4,4’-ジフェニルヘキサフルオロプロパンジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、4,4’-ビベンジルジカルボン酸、4,4’-スチルベンジカルボン酸、4,4’-トランジカルボン酸、4,4’-カルボニル二安息香酸、4,4’-スルホニル二安息香酸、4,4’-ジチオ二安息香酸、p-フェニレン二酢酸、3,3’-p-フェニレンジプロピオン酸、4-カルボキシ桂皮酸、p-フェニレンジアクリル酸、3,3’-[4,4’-(メチレンジ-p-フェニレン)]ジプロピオン酸、4,4’-[4,4’-(オキシジ-p-フェニレン)]ジプロピオン酸、4,4’-[4,4’-(オキシジ-p-フェニレン)]二酪酸、(イソプロピリデンジ-p-フェニレンジオキシ)二酪酸、ビス(p-カルボキシフェニル)ジメチルシラン等のジカルボン酸を挙げることができる。
【0048】
複素環を含むジカルボン酸としては、1,5-(9-オキソフルオレン)ジカルボン酸、3,4-フランジカルボン酸、4,5-チアゾールジカルボン酸、2-フェニル-4,5-チアゾールジカルボン酸、1,2,5-チアジアゾール-3,4-ジカルボン酸、1,2,5-オキサジアゾール-3,4-ジカルボン酸、2,3-ピリジンジカルボン酸、2,4-ピリジンジカルボン酸、2,5-ピリジンジカルボン酸、2,6-ピリジンジカルボン酸、3,4-ピリジンジカルボン酸、3,5-ピリジンジカルボン酸等を挙げることができる。
【0049】
上記の各種ジカルボン酸は酸ジハライドあるいは無水物の構造のものであってもよい。これらのジカルボン酸類は、特に直線的な構造のポリアミドを与えることが可能なジカルボン酸類であることが液晶分子の配向性を保つ上から好ましい。これらの中でも、テレフタル酸、イソテレフタル酸、1,4-シクロヘキサンジカルボン酸、4,4’-ビフェニルジカルボン酸、4,4’-ジフェニルメタンジカルボン酸、4,4’-ジフェニルエタンジカルボン酸、4,4’-ジフェニルプロパンジカルボン酸、4,4’-ジフェニルヘキサフルオロプロパンジカルボン酸、2,2-ビス(フェニル)プロパンジカルボン酸、4,4”-ターフェニルジカルボン酸、2,6-ナフタレンジカルボン酸、2,5-ピリジンジカルボン酸またはこれらの酸ジハライド等が好ましく用いられる。これらの化合物には異性体が存在するものもあるが、それらを含む混合物であってもよい。また、2種以上の化合物を併用してもよい。なお、本発明に使用するジカルボン酸類は、上記の例示化合物に限定されるものではない。
【0050】
式(1)で表される2価の基を主鎖に有するポリイミドとしては、上記のポリイミド前駆体を閉環させて得られるポリイミドが挙げられる。このポリイミドにおいては、アミック酸基の閉環率(イミド化率ともいう)は必ずしも100%である必要はなく、用途や目的に応じて任意に調整できる。
ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化、又はポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。
【0051】
原料であるジアミン(「ジアミン成分」とも記載する)と原料であるテトラカルボン酸二無水物(「テトラカルボン酸二無水物成分」とも記載する)、テトラカルボン酸ジエステル、ジイソシアネート及びジカルボン酸から選ばれる成分との反応により、ポリアミック酸、ポリアミック酸エステル、ポリウレア、ポリアミドを得るにあたっては、公知の合成手法を用いることができる。一般的には、ジアミン成分とテトラカルボン酸二無水物成分、テトラカルボン酸ジエステル、ジイソシアネート及びジカルボン酸から選ばれる一種以上の成分とを、有機溶媒中で反応させる方法である。
【0052】
ジアミン成分とテトラカルボン酸二無水物成分との反応は、有機溶媒中で比較的容易に進行し、かつ副生成物が発生しない点で有利である。
【0053】
上記反応に用いる有機溶媒としては、生成した重合体が溶解するものであれば特に限定されない。さらに、重合体が溶解しない有機溶媒であっても、生成した重合体が析出しない範囲で、上記溶媒に混合して使用してもよい。なお、有機溶媒中の水分は、重合反応を阻害し、さらには生成した重合体を加水分解させる原因となるので、有機溶媒は脱水乾燥させたものを用いることが好ましい。
【0054】
有機溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルホルムアミド、N-メチルホルムアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルリン酸トリアミド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、ブチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、2-エチル-1-ヘキサノール等が挙げられる。これらの有機溶媒は単独で使用しても、混合して使用してもよい。
【0055】
ジアミン成分とテトラカルボン酸二無水物成分とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を撹拌し、テトラカルボン酸二無水物成分をそのまま、又は有機溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸二無水物成分を有機溶媒に分散あるいは溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸二無水物成分とジアミン成分とを交互に添加する方法などが挙げられ、これらのいずれの方法を用いてもよい。また、ジアミン成分又はテトラカルボン酸二無水物成分が複数種の化合物からなる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、さらに個別に反応させた低分子量体を混合反応させ高分子量体としてもよい。
【0056】
ジアミン成分とテトラカルボン酸二無水物成分とを反応させる際の温度は、任意の温度を選択することができ、例えば、-20~100℃、好ましくは-5~80℃の範囲である。また、反応は任意の濃度で行うことができ、例えば、反応液に対してジアミン成分とテトラカルボン酸二無水物成分との合計量が1~50質量%、好ましくは5~30質量%である。
【0057】
上記の重合反応における、ジアミン成分の合計モル数に対するテトラカルボン酸二無水物成分の合計モル数の比率は、得ようとするポリアミック酸の分子量に応じて任意の値を選択することができる。通常の重縮合反応と同様に、このモル比が1.0に近いほど生成するポリアミック酸の分子量は大きくなる。好ましい範囲としては、0.8~1.2である。
【0058】
本発明に用いられる重合体を合成する方法は、上記の手法に限定されず、ポリアミック酸を合成する場合は、一般的なポリアミック酸の合成方法と同様に、上記のテトラカルボン酸二無水物に代えて、対応する構造のテトラカルボン酸又はテトラカルボン酸ジハライドなどのテトラカルボン酸誘導体を用い、公知の方法で反応させることでも対応するポリアミック酸を得ることができる。また、ポリウレアを合成する場合は、ジアミンとジイソシアネートとを反応させればよい。ポリアミック酸エステルまたはポリアミドを製造する際には、ジアミンと、テトラカルボン酸ジエステル及びジカルボン酸から選ばれる成分を、公知の縮合剤の存在下で、又は、公知の方法で酸ハライドに誘導したのちに、ジアミンと反応させればよい。
【0059】
上記したポリアミック酸をイミド化させてポリイミドとする方法としては、ポリアミック酸の溶液をそのまま加熱する熱イミド化、ポリアミック酸の溶液に触媒を添加する触媒イミド化が挙げられる。なお、ポリアミック酸からポリイミドへのイミド化率は、電圧保持率を高くできることから、30%以上であることが好ましく、30~99%であることがより好ましい。一方、白化特性の、すなわち、ワニス中での重合体の析出を抑制する観点から、70%以下が好ましい。両方の特性を加味すると、40~80%がより好ましい。
【0060】
ポリアミック酸を溶液中で熱イミド化させる場合の温度は、通常100~400℃、好ましくは120~250℃であり、イミド化反応により生成する水を系外に除きながら行うことが好ましい。
【0061】
ポリアミック酸の触媒イミド化は、ポリアミック酸の溶液に、塩基性触媒と酸無水物とを添加し、通常-20~250℃、好ましくは0~180℃で撹拌することにより行うことができる。塩基性触媒の量は、アミック酸基の通常0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量は、アミック酸基の通常1~50モル倍、好ましくは3~30モル倍である。塩基性触媒としては、ピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミンなどを挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができるが、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間などを調節することにより制御することができる。
【0062】
重合体の反応溶液から、生成した重合体を回収する場合には、反応溶液を貧溶媒に投入して沈殿させればよい。沈殿生成に用いる貧溶媒としては、メタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、水などを挙げることができる。貧溶媒に投入して沈殿させたポリマーは、濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素などが挙げられ、これらの内から選ばれる3種類以上の貧溶媒を用いると、より一層精製の効率が上がるので好ましい。
【0063】
本発明の(A)成分である重合体としては、液晶配向剤としての使用の観点から、下記式(6)で表される構造単位を含むポリイミド前駆体、及びそのイミド化物であるポリイミドから選ばれる少なくとも1種であるとより好ましい。
【化13】
上記式(6)において、X
1はテトラカルボン酸誘導体に由来する4価の有機基であり、Y
1は式(2)のジアミンに由来する2価の有機基であり、R
4は水素原子又は炭素数1~5のアルキル基である。R
4は、加熱によるイミド化のしやすさの点から、水素原子、メチル基又はエチル基が好ましい。
【0064】
<テトラカルボン酸二無水物>
X1はテトラカルボン酸誘導体に由来する4価の有機基であり、その構造は特に限定されるものではない。また、ポリイミド前駆体中のX1は、重合体の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷など、必要とされる特性の程度に応じて適宜選択され、同一重合体中に1種類であってもよく、2種類以上が混在していても良い。
X1の具体例をあえて示すならば、国際公開公報2015/119168の13項~14項に掲載される、式(X-1)~(X-46)の構造などが挙げられる。
【0065】
以下に、好ましいX
1の構造を示すが、本発明はこれらに限定されるものではない。
【化14】
【0066】
【化15】
上記の構造のうち、(A-1)、(A-2)は光配向性という観点から特に好ましく、(A-4)は蓄積電荷の緩和速度の更なる向上という観点から特に好ましく、(A-15)~(A-17)などは、液晶配向性と蓄積電荷の緩和速度の更なる向上という観点から特に好ましい。
【0067】
<重合体(その他の構造単位)>
式(6)で表される構造単位を含むポリイミド前駆体は、本発明の効果を損なわない範囲において、下記式(7)で表される構造単位、及びそのイミド化物であるポリイミドから選ばれる少なくとも1種を含んでいても良い。
【化16】
式(7)において、X
2はテトラカルボン酸誘導体に由来する4価の有機基であり、Y
2は式(1)の構造を含まないジアミンに由来する2価の有機基であり、R
5は、上記式(6)のR
4の定義と同じであり、水素原子又は炭素数1~5のアルキル基を表し、R
6は水素原子又は炭素数1~4のアルキル基を表す。また、2つあるR
6の少なくとも一方は水素原子であることが好ましい。
【0068】
X2の具体例としては、好ましい例も含めて式(6)のX1で例示したものと同じ構造を挙げることができる。また、ポリイミド前駆体中のY2は式(1)の構造を含まないジアミンに由来する二価の有機基であり、その構造は特に限定されない。また、Y2は重合体の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷など、必要とされる特性の程度に応じて適宜選択され、同一重合体中に1種類であってもよく、2種類以上が混在していても良い。
【0069】
Y2の具体例をあえて示すならば、国際公開公報2015/119168の4項に掲載される式(2)の構造、及び、8項~12項に掲載される、式(Y-1)~(Y-97)、(Y-101)~(Y-118)の構造;国際公開公報2013/008906の6項に掲載される、式(2)からアミノ基を2つ除いた二価の有機基;国際公開公報2015/122413の8項に掲載される式(1)からアミノ基を2つ除いた二価の有機基;国際公開公報2015/060360の8項に掲載される式(3)の構造;日本国公開特許公報2012-173514の8項に記載される式(1)からアミノ基を2つ除いた二価の有機基;国際公開公報2010-050523の9項に掲載される式(A)~(F)からアミノ基を2つ除いた二価の有機基、などが挙げられる。
【0070】
以下に、好ましいY
2の構造を示すが、本発明はこれらに限定されるものではない。
【化17】
【0071】
【0072】
【0073】
【0074】
上記の構造のうち、(B-28)、(B-29)などは、膜硬度の更なる向上という観点から特に好ましく、(B-1)~(B-3)などは、液晶配向性の更なる向上という観点から特に好ましく、(B-14)~(B-18)および(B-27)などは、蓄積電荷の緩和速度の更なる向上という観点から特に好まく、(B-26)などは、電圧保持率の更なる向上という観点から好ましい。
【0075】
式(6)で表される構造単位を含むポリイミド前駆体が、式(7)で表される構造単位を同時に含む場合、式(6)で表される構造単位は、式(6)と式(7)の合計に対して5モル%~80モル%であることが好ましく、より好ましくは10モル%~50モル%である。
【0076】
式(1)で表される2価の基を主鎖に有するポリイミドとしては、上記のポリイミド前駆体を閉環させて得られるポリイミドが挙げられる。このポリイミドにおいては、アミック酸基の閉環率(イミド化率ともいう)は必ずしも100%である必要はなく、用途や目的に応じて任意に調整できる。
ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化、又はポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。
【0077】
<(B)成分>
本発明のラジカル発生膜形成組成物剤に含有させる(B)成分である重合体としては、ジアミンを用いて得られる重合体が好ましい。具体的には、ポリアミック酸、ポリアミック酸エステル、ポリイミド、ポリウレア、ポリアミドなどが挙げられるが、ラジカル発生膜形成組成物としての使用の観点から、上記式(6)で表される構造単位と、上記式(7)で表される構造単位のうち、上記式(7)で表される構造単位のみを含むポリイミド前駆体、及びそのイミド化物であるポリイミドから選ばれる少なくとも1種であるとより好ましい。好ましいテトラカルボン酸二無水物及びジアミンは、上記式(7)にて例示した通りである。
【0078】
また、本発明の液晶配向剤としてのラジカル発生膜形成組成物においては、(A)成分の重合体、(B)成分の重合体とも、液晶を垂直に配向させるための垂直配向性基を含有しないものであることが好ましい。
【0079】
また、上記ラジカル発生膜が、ラジカル重合を誘発する有機基を含有する重合体から成る場合、本発明に用いるラジカル発生膜形成組成物は、ラジカル重合を誘発する有機基を含有する重合体以外の他の重合体を含有していてもよい。その際、重合体全成分中における、他の重合体の含有量は5~95質量%が好ましく、より好ましくは30~70質量%である。
【0080】
ラジカル発生膜形成組成物を有する重合体の分子量は、ラジカル発生膜形成組成物を塗布して得られるラジカル発生膜の強度、塗膜形成時の作業性、塗膜の均一性等を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で、5,000~1,000,000が好ましく、より好ましくは、10,000~150,000である。
【0081】
ラジカル発生膜形成組成物は、重合体成分、必要に応じてその他の含有成分を溶解又は分散する有機溶媒を含有することができる。そのような有機溶媒は特に限定はなく、例えば、上記のポリアミック酸の合成で例示したような有機溶媒を挙げることができる。中でも、N-メチル-2-ピロリドン、γ-ブチロラクトン、N-エチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド等は、溶解性の観点から好ましい。特に、N-メチル-2-ピロリドン又はN-エチル-2-ピロリドンが好ましいが、2種類以上の混合溶媒を用いてもよい。
【0082】
また、塗膜の均一性や平滑性を向上させる溶媒を、ラジカル発生膜形成組成物の含有成分の溶解性が高い有機溶媒に混合して使用すると好ましい。
【0083】
塗膜の均一性や平滑性を向上させる溶媒としては、例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、ブチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸n-ブチル、乳酸イソアミル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、2-エチル-1-ヘキサノールなどが挙げられる。これらの溶媒は複数種類を混合してもよい。これらの溶媒を用いる場合は、液晶配向剤に含まれる溶媒全体の5~80質量%であることが好ましく、より好ましくは20~60質量%である。
【0084】
本発明のラジカル発生膜形成組成物は、重合体成分及び有機溶媒以外の成分を追加的に含有してもよい。このような追加成分としては、ラジカル発生膜と基板との密着性やラジカル発生膜とシール剤との密着性を高めるための密着助剤、ラジカル発生膜の強度を高めるための化合物(以下、架橋性化合物ともいう。)、ラジカル発生膜の誘電率や電気抵抗を調整するための誘電体や導電物質などが挙げられる。
【0085】
上記架橋性化合物としては、AC残像の発生が少なく、膜強度の改善効果が高い観点から、オキシラニル基、オキセタニル基、保護イソシアネート基、保護イソチオシアネート基、オキサゾリン環構造を含む基、メルドラム酸構造を含む基、シクロカーボネート基、下記式(d)で表される基よりなる群から選ばれる少なくとも1種の基を2つ以上有する化合物、又は下記式(e)で表される化合物から選ばれる化合物(以下、これらを総称して化合物(C)ともいう。)が好ましい。
【化21】
(式中、R
71及びR
72は、それぞれ独立に水素原子、炭素数1~3のアルキル基又は基「*-CH
2-OH」を表す。*は結合手であることを示す。Aは芳香環を有する(m+n)価の有機基を表す。mは1~6の整数を表し、nは0~4の整数を表す。R
73は炭素数1~5のアルキル基を表す。)
【0086】
オキシラニル基を有する化合物の具体例としては、例えば、特開平10-338880号公報の段落[0037]に記載の化合物や、国際公開公報WO2017/170483号に記載のトリアジン環を骨格にもつ化合物などの、2個以上のオキシラニル基を有する化合物が挙げられる。これらのうち、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-4、4’-ジアミノジフェニルメタン、N,N,N’,N’-テトラグリシジル-p-フェニレンジアミン、下記式(r-1)~(r-3)で表される化合物などの窒素原子を含有する化合物が特に好ましい。
【化22】
【0087】
オキセタニル基を有する化合物の具体例としては、例えば、国際公開公報2011/132751号の段落[0170]~[0175]に記載の2個以上のオキセタニル基を有する化合物等が挙げられる。
【0088】
保護イソシアネート基を有する化合物の具体例としては、例えば、特開2014-224978号公報の段落[0046]~[0047]に記載の2個以上の保護イソシアネート基を有する化合物、国際公開公報2015/141598号の段落[0119]~[0120]に記載の3個以上の保護イソシアネート基を有する化合物等が挙げられる。これらのうち、下記式(bi-1)~(bi-3)で表される化合物が好ましい。
【化23】
【0089】
保護イソチオシアネート基を有する化合物の具体例としては、例えば、特開2016-200798号公報に記載の、2個以上の保護イソチオシアネート基を有する化合物が挙げられる。
【0090】
オキサゾリン環構造を含む基を有する化合物の具体例としては、例えば、特開2007-286597号公報の段落[0115]に記載の、2個以上のオキサゾリン構造を含む化合物が挙げられる。
【0091】
メルドラム酸構造を含む基を有する化合物の具体例としては、例えば国際公開公報WO2012/091088号に記載の、メルドラム酸構造を2個以上有する化合物が挙げられる。
【0092】
シクロカーボネート基を有する化合物の具体例としては、例えば、国際公開公報WO2011/155577号に記載の化合物が挙げられる。
【0093】
上記式(d)で表される基のR71、R72の炭素数1~3のアルキル基としては、メチル基、エチル基、プロピル基等が挙げられる。
【0094】
上記式(d)で表される基を有する化合物の具体例としては、例えば、国際公開公報WO2015/072554号や、特開2016-118753号公報の段落[0058]に記載の、上記式(d)で表される基を2個以上有する化合物、特開2016-200798号公報に記載の化合物等が挙げられる。これらのうち、下記式(hd-1)~(hd-8)で表される化合物が好ましい。
【化24】
【0095】
上記式(e)のAにおける芳香環を有する(m+n)価の有機基としては、炭素数5~30の(m+n)価の芳香族炭化水素基、炭素数5~30の芳香族炭化水素基が直接又は連結基を介して結合した(m+n)価の有機基、芳香族複素環を有する(m+n)価の基が挙げられる。上記芳香族炭化水素としては、例えばベンゼン、ナフタレンなどが挙げられる。芳香族複素環としては、例えばピロール環、イミダゾール環、ピラゾール環、ピリジン環、ピリミジン環、キノリン環、イソキノリン環、カルバゾール環、ピリダジン環、ピラジン環、ベンズイミダゾール環、ベンゾイミダゾール環、インドール環、キノキサリン環、アクリジン環などが挙げられる。上記連結基としては、炭素数1~10のアルキレン基、又は上記アルキレン基から水素原子を一つ除いた基、2価又は3価のシクロヘキサン環等が挙げられる。尚、上記アルキレン基の任意の水素原子は、炭素数1~6のアルキル基、フッ素原子又はトリフルオロメチル基などの有機基で置換されてもよい。上記式(e)におけるR73のアルキル基としては、メチル基、エチル基、プロピル基等が挙げられる。具体例を挙げるならば、国際公開公報WO2010/074269号に記載の化合物等が挙げられる。
【0096】
好ましい具体例としては、下記式(e-1)~(e-9)が挙げられる。
【化25】
【0097】
上記化合物は架橋性化合物の一例であり、これらに限定されるものではない。例えば、国際公開公報2015/060357号の53頁[0105]~55頁[0116]に開示されている上記以外の成分などが挙げられる。また、本発明のラジカル発生膜形成組成物に含有される架橋性化合物は、1種類であってもよく、2種類以上組み合わせてもよい。
本発明のラジカル発生膜形成組成物における、架橋性化合物の含有量は、ラジカル発生膜形成組成物に含まれる重合体成分100質量部に対して、0.5~20質量部であることが好ましく、架橋反応が進行し目的の効果を発現し、かつAC残像の発生が少ない観点から、より好ましくは1~15質量部である。
【0098】
上記密着助剤としては、例えば3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルジエトキシメチルシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、トリス-(トリメトキシシリルプロピル)イソシアヌレート、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン等のシランカップリング剤が挙げられる。これらシランカップリング剤を使用する場合は、AC残像の発生が少ない観点から、液晶配向剤に含まれる重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは0.1~20質量部である。
【0099】
さらに、ラジカル発生膜形成組成物には、上記の他、本発明の効果が損なわれない範囲であれば、ラジカル発生膜の誘電率や導電性などの電気特性を変化させる目的の誘電体や導電物質を添加してもよい。
【0100】
なお、本発明のラジカル発生膜形成組成物は、ラジカル発生能を有する液晶配向剤である。そして、該ラジカル発生膜形成組成物から得られる液晶配向膜を、本明細書では、特にラジカル発生膜という。
【0101】
(ラジカル発生膜及び液晶配向膜)
本実施形態のラジカル発生膜は、上記ラジカル発生膜形成組成物を用いて得られる。例えば、本発明に用いるラジカル発生膜形成組成物を、基板に塗布した後、乾燥・焼成を行うことで得られる硬化膜を、そのままラジカル発生膜として用いることもできる。また、この硬化膜をラビングしたり、偏光又は特定の波長の光等を照射したり、イオンビーム等の処理をしたり、PSA用配向膜として液晶充填後の液晶表示素子にUVを照射することも可能である。
【0102】
ラジカル発生膜形成組成物の塗布方法としては、スピンコート法、印刷法、インクジェット法、スプレー法、ロールコート法などが挙げられるが、生産性の面から工業的には転写印刷法が広く用いられており、本発明でも好適に用いられる。
【0103】
ラジカル発生膜形成組成物を塗布する基板としては、透明性の高い基板であれば特に限定されない。具体例を挙げると、ガラス板、ポリカーボネート、ポリ(メタ)アクリレート、ポリエーテルサルホン、ポリアリレート、ポリウレタン、ポリサルホン、ポリエーテル、ポリエーテルケトン、トリメチルペンテン、ポリオレフィン、ポリエチレンテレフタレート、(メタ)アクリロニトリル、トリアセチルセルロース、ジアセチルセルロース、アセテートブチレートセルロースなどのプラスチック板などを挙げることができる。
【0104】
ラジカル発生膜形成組成物を塗布した後の乾燥の工程は、必ずしも必要とされないが、塗布後から焼成までの時間が基板ごとに一定していない場合、又は塗布後ただちに焼成されない場合には、乾燥工程を含める方が好ましい。この乾燥は、基板の搬送等により塗膜形状が変形しない程度に溶媒が除去されていればよく、その乾燥手段については特に限定されない。例えば、温度40~150℃、好ましくは60~100℃のホットプレート上で、0.5~30分、好ましくは1~5分乾燥させる方法が挙げられる。
【0105】
上記の方法でラジカル発生膜形成組成物を塗布して形成される塗膜は、焼成して硬化膜とすることができる。その際、焼成温度は、通常100~350℃の任意の温度で行うことができるが、好ましくは140~300℃であり、より好ましくは150~230℃、更に好ましくは160~220℃である。焼成時間は通常5~240分の任意の時間で焼成を行うことができる。好ましくは10~90分であり、より好ましくは20~90分である。加熱は、通常公知の方法、例えば、ホットプレート、熱風循環型オーブン、IR(赤外線)型オーブン、ベルト炉などを用いることができる。
【0106】
この硬化膜の厚みは必要に応じて選択することができるが、好ましくは5nm以上、より好ましくは10nm以上の場合、液晶表示素子の信頼性が得られ易いので好適である。また、硬化膜の厚みが好ましくは300nm以下、より好ましくは150nm以下の場合は、液晶表示素子の消費電力が極端に大きくならないので好適である。
【0107】
以上のようにしてラジカル発生膜を有する基板を得ることができるが、当該ラジカル発生膜に一軸配向処理を施すことができる。一軸配向処理を行う方法としては、光配向法、斜方蒸着法、ラビング、磁場による一軸配向処理等が挙げられる。
【0108】
一方向にラビング処理することによる配向処理を行う場合には、例えば、ラビング布が巻きつけられたラビングローラーを回転させながら、ラビング布と膜とが接触するように基板を移動させる。
【0109】
光配向処理により塗膜に液晶配向能を付与する場合、塗膜に照射する放射線としては、例えば150~800nmの波長の光を含む紫外線及び可視光線を用いることができる。放射線が偏光である場合、直線偏光であっても部分偏光であってもよい。また、用いる放射線が直線偏光又は部分偏光である場合には、照射は基板面に垂直の方向から行ってもよく、斜め方向から行ってもよく、又はこれらを組み合わせて行ってもよい。非偏光の放射線を照射する場合、照射の方向は斜め方向とする。
【0110】
使用する光源としては、例えば低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、エキシマレーザーなどを使用することができる。好ましい波長領域の紫外線は、光源を、例えばフィルター、回折格子などと併用する手段などにより得ることができる。放射線の照射量は、好ましくは10~2,000mJ/cm2であり、より好ましくは30~1,000mJ/cm2である。
【0111】
また、塗膜に対する光照射は、反応性を高めるために塗膜を加温しながら行ってもよい。加温の際の温度は、通常30~250℃であり、好ましくは40~200℃であり、より好ましくは50~150℃である。
【0112】
また、150~800nmの波長の光を含む紫外線を使用する場合には、上記工程で得られた光照射膜をそのまま液晶配向膜として使用することができるが、該光照射膜を焼成、水や有機溶媒による洗浄、又はこれらの組合せを実施してもよい。このときの焼成温度は、好ましくは80~300℃であり、より好ましくは80~250℃である。焼成時間は、好ましくは5~200分であり、より好ましくは10~100分である。尚、焼成の回数は1回若しくは2回以上の回数で行ってもよい。ここでの光配向処理が、液晶層と接触していない状態での光照射の処理に相当する。
【0113】
上記洗浄に使用する有機溶媒としては、特に限定されるものではないが、具体例としては、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1-メトキシ-2-プロパノール、1-メトキシ-2-プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル又は酢酸シクロヘキシルなどが挙げられる。
【0114】
本発明に係る液晶セルは、一方の基板側に配する液晶配向膜として、上記本発明のラジカル発生膜を用い、他方の基板側に配する液晶配向膜として、液晶配向膜として通常用いられている液晶配向膜を用いることができる。
他方の基板側に配する本実施形態の液晶配向膜としては、上記ラジカル発生膜形成組成物の代わりに通常用いられている液晶配向剤を用いる以外は、ラジカル発生膜と同様の方法を用いて得られる。
【0115】
なお、ラジカル発生膜形成組成物を塗布する基板と、液晶配向剤を塗布する基板としては、上記で挙げた基板のどちらか一方の上に液晶を駆動するための透明電極が形成された基板が好ましい。IPS方式の液晶表示素子に使用できる基板には、標準的なIPS櫛歯電極やPSAフィッシュボーン電極といった電極パターンやMVAのような突起パターンでも使用できる。
また、TFT型の素子のような高機能素子においては、液晶駆動のための電極と基板の間にトランジスタの如き素子が形成されたものが用いられる。
【0116】
透過型の液晶表示素子を意図している場合は、上記の如き基板を用いることが一般的であるが、反射型の液晶表示素子を意図している場合では、片側の基板のみにならばシリコンウエハー等の不透明な基板も用いることが可能である。その際、基板に形成された電極には、光を反射するアルミニウムの如き材料を用いることもできる。
【0117】
なお、櫛歯電極が形成されている基板上の液晶配向膜をラビングする場合、液晶の電気的物性によってラビング方向が選択されるが、正の誘電異方性を有する液晶を用いる場合においては、ラビング方向は櫛歯電極の延びている方向とほぼ同一の方向とすることが好ましい。
【0118】
(液晶セル)
本発明の液晶セルは、液晶配向膜を有する基板(第一基板)と、上記の方法により基板にラジカル発生膜を形成した基板(第二基板)とを、ラジカル発生膜と液晶配向膜とが向かい合うように配置し、スペーサーを挟んで、シール剤で固定し、液晶及びラジカル重合性化合物を含有する液晶組成物を注入して封止することにより得られる。その際、用いるスペーサーの大きさは通常1~30μmであるが、好ましくは2~10μmである。また、第一基板の配向方向と、第二基板の配向方向とを平行にすることにより、IPSモードやFFSモードに使用することができ、ラビング方向が直交するように配置すれば、ツイストネマチックモードに使用することができる。
上記第一基板と上記第二基板のいずれか一方は櫛歯電極基板であることが好ましい。
上記第一の基板に形成される配向膜としては、公知の液晶配向膜であっても、本発明に係るラジカル発生膜のいずれであってもよく、目的に応じて適宜選択することができる。
上記第一の基板に形成される配向膜には、一軸配向処理を施すことができる。
また、上記第一の基板に、一軸配向処理された水平配向用の液晶配向膜を形成することが好ましい。
【0119】
液晶及びラジカル重合性化合物を含有する液晶組成物を注入する方法は特に制限されず、作製した液晶セル内を減圧にした後、液晶と重合性化合物を含む混合物を注入する真空法、液晶と重合性化合物とを含む混合物を滴下した後に封止を行う滴下法などを挙げることができる。
【0120】
<液晶及びラジカル重合性化合物を含有する液晶組成物>
本発明の液晶表示素子の作成において、液晶とともに用いる重合性化合物は、ラジカル重合性化合物であれば特に限定されないが、例えば、一分子中に一個又は二個以上の重合性反応基を有する化合物である。好ましくは一分子中に一個の重合性反応基を有する化合物である(以下、「一官能の重合性基を有する化合物」、「単官能の重合性基を有する化合物」等と称する場合がある)。重合性反応基は、好ましくはラジカル重合性反応基であり、例えばビニル結合である。
【0121】
上記ラジカル重合性化合物のうち少なくとも一種は、液晶と相溶性を有する、一分子中に一個の重合性反応基を有する化合物、すなわち、単官能のラジカル重合性基を有する化合物であることが好ましい。
【0122】
そして、上記ラジカル重合性化合物の重合性基としては以下の構造から選ばれる重合性基が好ましい。
【化26】
(式中、*は化合物分子の重合性反応基以外の部分との結合部位を示す。R
bは炭素数2~8の直鎖アルキル基を表し、Eは単結合、-O-、-NR
c-、-S-、エステル結合及びアミド結合から選ばれる結合基を表す。R
cは水素原子、炭素数1~4のアルキル基を示す。)
【0123】
また、上記液晶及びラジカル重合性化合物を含有する液晶組成物において、上記ラジカル重合性化合物を重合させて得られるポリマーのTgが100℃以下のものになるラジカル重合性化合物を含有することが好ましい。
【0124】
単官能のラジカル重合性基を有する化合物は、有機ラジカルの存在下でラジカル重合を行うことが可能な反応基を有するものであり、例えば、tert-ブチルメタクリレート、ヘキシルメタクリレート、2-エチルヘキシルメタクリレート、ノニルメタクリレート、ラウリルメタクリレート、n-オクチルメタクリレートなどのメタクリレート系モノマー;tert-ブチルアクリレート、ヘキシルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリレート、ベンジルアクリレート、ラウリルアクリレート、n-オクチルアクリレートなどのアクリレート系モノマー;スチレン、スチレン誘導体(例えば、o-、m-、p-メトキシスチレン、o-、m-、p-tert-ブトキシスチレン、o-、m-、p-クロロメチルスチレンなど)、ビニルエステル類(例えば、酢酸ビニル、プロピオン酸ビニル、安息香酸ビニル、酢酸ビニルなど)、ビニルケトン類(例えば、ビニルメチルケトン、ビニルヘキシルケトン、メチルイソプロペニルケトンなど)、N-ビニル化合物(例えば、N-ビニルピロリドン、N-ビニルピロール、N-ビニルカルバゾール、N-ビニルインドールなど)、(メタ)アクリル酸誘導体(例えば、アクリロニトリル、メタアクリロニトリル、アクリルアミド、イソプロピルアクリルアミド、メタクリルアミドなど)、ハロゲン化ビニル類(例えば、塩化ビニル、塩化ビニリデン、テトラクロロエチレン、ヘキサクロロプロペン、フッ化ビニルなど)などのビニルモノマーが挙げられるが、これらに限定はしない。これらの各種ラジカル重合性モノマーは、単独で使用しても、2種以上を併用してもよい。また、これらは、液晶と相溶性を有することが好ましい。
【0125】
また、上記ラジカル重合性化合物としては、下記式(A)で表される化合物も好ましい。
【化27】
(式(A)中、R
aおよびR
bはそれぞれ独立に炭素数2~8の直鎖アルキル基を表し、Eは単結合、-O-、-NR
c-、-S-、エステル結合、アミド結合から選ばれる結合基を表す。文中R
cは水素原子、炭素数1~4のアルキル基を示す。)
【0126】
上記ラジカル重合性化合物のうち少なくとも一種は、液晶と相溶性を有する、一分子中に一個の重合性反応基を有する化合物、すなわち、単官能のラジカル重合性基を有する化合物であることが好ましい。
【0127】
そして、上記式(A)で表されるラジカル重合性化合物としては式中Eがエステル結合(-C(=O)-O-または-O-C(=O)-であらわされる結合)のものが合成のしやすさや液晶への相溶性、重合反応性の観点で好ましく、具体的には以下のような構造を有する化合物が好ましいが、特に限定はしない。
【化28】
(式(A-1)及び(A-2)中、R
aおよびR
bはそれぞれ独立に炭素数2~8の直鎖アルキル基を表す。)
【0128】
液晶組成物中のラジカル重合性化合物の含有量は、液晶とラジカル重合性化合物との合計質量に対して、好ましくは3質量%以上、より好ましくは5質量%以上であり、好ましくは50質量%以下、より好ましくは20質量%以下である。
【0129】
上記ラジカル重合性化合物を重合させて得られるポリマーは、そのTgを100℃以下とすることが好ましい。
【0130】
なお、液晶とは一般に固体と液体の両方の性質を示す状態にある物質をいい、代表的な液晶相としてネマティック液晶とスメクティック液晶があるが、本発明において使用できる液晶は特に限定されない。一例を挙げれば4-ペンチル-4’-シアノビフェニルである。
【0131】
次に、この液晶とラジカル重合性化合物とを含む混合物(液晶組成物)が導入された液晶セルに当該ラジカル重合性化合物を重合反応させるのに十分なエネルギーを与える。これは、例えば、熱を加えるか、UV照射することにより実施することができ、当該ラジカル重合性化合物がその場で重合されることで、所望の特性が発現する。中でもUVの使用は配向性のパターニングが可能となり、更に短時間で重合反応させられる点で、UV照射が好ましい。なお、ツイストネマチックモードに使用する際は、上記液晶組成物に加えて、必要に応じてカイラルドーパントを液晶セルに導入すればよい。
【0132】
またUV照射の際、加熱を行ってもよい。UV照射を行う際の加熱温度は、導入された液晶が液晶性を発現する温度範囲が好ましく、通常40℃以上であり、液晶の等方相に変わる温度未満での加熱が好ましい。
【0133】
ここで、UV照射する場合におけるUV照射波長は、反応する重合性化合物の反応量子収率の最も良い波長を選択することが好ましく、UVの照射量は、通常0.5~30J/cm2であるが、好ましくは、1~10J/cm2であり、UV照射量が少ないほうが、液晶ディスプレイを構成する部材の破壊からなる信頼性低下を抑制でき、かつUV照射時間を減らせることで製造上のタクトが向上するので好適である。
【0134】
また、UV照射ではなく、加熱のみで重合させる場合の加熱は、重合性化合物の反応する温度であって、液晶の分解温度未満となる温度範囲で行うことが好ましい。具体的には、100℃以上150℃以下である。
【0135】
ラジカル重合性化合物を重合反応させるのに十分なエネルギーを与えるとき、電圧を印加しない、無電界状態であることが好ましい。
【0136】
(液晶表示素子)
このようにして得られた液晶セルを用いて液晶表示素子を作製することができる。
例えば、この液晶セルに必要に応じて反射電極、透明電極、λ/4板、偏光膜、カラーフィルター層等を常法に従って設けることにより反射型液晶表示素子とすることができる。
また、この液晶セルに必要に応じてバックライト、偏光板、λ/4板、透明電極、偏光膜、カラーフィルター層等を常法に従って設けることにより透過型液晶表示素子とすることができる。
図1は、本発明に係る液晶表示素子の一例を示す概略断面図であり、IPSモード液晶表示素子の例である。
図1に例示する液晶表示素子1においては、ラジカル発生膜2cを具備する櫛歯電極基板2と液晶配向膜4aを具備する対向基板4との間に、液晶組成物3が挟持されている。櫛歯電極基板2は、基材2aと、基材2a上に形成され、櫛歯状に配置された複数の線状電極2bと、基材2a上に線状電極2bを覆うように形成されたラジカル発生膜2cとを有している。対向基板4は、基材4bと、基材4b上に形成された液晶配向膜4aとを有している。
この液晶表示素子1においては、線状電極2bに電圧が印加されると、電気力線Lで示すように線状電極2b間で電界が発生する。
図2は、本発明に係る液晶表示素子の他の例を示す概略断面図であり、FFSモード液晶表示素子の例である。
図2に例示する液晶表示素子1においては、ラジカル発生膜2hを具備する櫛歯電極基板2と液晶配向膜4aを具備する対向基板4との間に、液晶組成物3が挟持されている。櫛歯電極基板2は、基材2dと、基材2d上に形成された面電極2eと、面電極2e上に形成された絶縁膜2fと、絶縁膜2f上に形成され、櫛歯状に配置された複数の線状電極2gと、絶縁膜2f上に線状電極2gを覆うように形成されたラジカル発生膜2hとを有している。対向基板4は、基材4bと、基材4b上に形成された液晶配向膜4aとを有している。
この液晶表示素子1においては、面電極2eおよび線状電極2gに電圧が印加されると、電気力線Lで示すように面電極2eおよび線状電極2g間で電界が発生する。
【実施例】
【0137】
本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されない。ポリマーの重合および膜形成組成物の調製で使用した化合物の略号、及び特性評価の方法は以下のとおりである。
【化29】
【0138】
【化30】
NMP:N-メチル-2-ピロリドン、
BCS:ブチルセロソルブ
【0139】
<粘度測定>
ポリアミック酸溶液について、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)にて25℃の粘度を測定した。
【0140】
<分子量の測定>
分子量は常温GPC(ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキサイド換算値として数平均分子量(Mn)と重量平均分子量(Mw)を算出した。
GPC装置:GPC-101(昭和電工社製)、カラム:GPC KD-803、GPC KD-805(昭和電工社製)の直列、カラム温度:50℃、溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム一水和物(LiBr・H2O)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10mL/L)、流速:1.0mL/分
検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量;約900,000、150,000、100,000及び30,000)(東ソー社製)及びポリエチレングリコール(分子量;約12,000、4,000及び1,000)(ポリマーラボラトリー社製)。
【0141】
<イミド化率の測定>
ポリイミド粉末20mgをNMRサンプル管(草野科学社製 NMRサンプリングチューブスタンダード φ5)に入れ、重水素化ジメチルスルホキシド(DMSO-d6、0.05質量%TMS(テトラメチルシラン)混合品)0.53mLを添加し、超音波をかけて完全に溶解させた。この溶液の500MHzのプロトンNMRを、測定装置(日本電子データム社製、JNW-ECA500)にて測定した。
イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5~10.0ppm付近に現れるアミド基のNHに由来するプロトンピーク積算値とを用い以下の式によって求めた。
イミド化率(%)=(1-α・x/y)×100
式中、xはアミド基のNH由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミック酸(イミド化率が0%)の場合におけるアミド基のNHプロトン1個に対する基準プロトンの個数割合である。
【0142】
【0143】
(第1工程)
4,4’-ジニトロ-[1,1’-ビフェニル]-2,2’-ジカルボン酸(20.0g,60.2mmol)に対し、テトラヒドロフラン(120g)、2-ヒドロキシ-4’-(2-ヒドロキシエトキシ)-2-メチルプロピオフェノン(28.4g,126mmol)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(28.0g,181mmol)、及びN,N-ジメチルアミノピリジン(0.735g,6.02mmol)を仕込み、室温で終夜撹拌した。反応終了後、水/クロロホルムで2回分液抽出し、得られた有機相を濃縮し水飴状茶色オイルを得た。これを酢酸エチル/ヘキサン=3/1(体積比)混合溶媒でカラムクロマトグラフィーにより精製した。得られたフラクションを濃縮したところ、黄色透明オイルとなり、静置し続けたところオイルから白色結晶が析出した。析出した結晶を酢酸エチル/ヘキサン=3/1(体積比)混合溶媒でスラリー洗浄し、濾過し、結晶を乾燥させ、化合物[1]を得た(収量:29.8g,40.0mmol,収率67%)。
1H-NMR(500MHz) in DMSO-d6:8.57(d,J=2.5Hz,2H),8.37(dd,J=8.5Hz,2.5Hz,2H),8.18(d,J=9.0Hz,4H),7.55(d,J=8.5Hz,2H),6.85(d,J=9.0Hz,4H),5.631(s,2H),4.39-4.35(m,4H),4.02-3.99(m,2H),3.96-3.94(m,2H),1.40(s,12H).
【0144】
(第2工程)
第1工程で得られた化合物[1](29.8g,40.0mmol)に対し、テトラヒドロフラン(240g)を加え、窒素置換した後、3%プラチナカーボン(含水品)(2.38g)を加えさらに窒素置換し、水素テドラーバッグを取り付け室温で約17時間撹拌した。反応終了後、メンブレンフィルターに通しプラチナカーボンを除去後、濃縮・乾燥させ、DA-5を得た(収量:27.4g,40.0mmol,収率quant)。
1H-NMR(500MHz) in DMSO-d6:8.20(dd,J=7.1Hz,1.9Hz,4H),6.99(d,J=2.5Hz,2H),6.92(dd,J=7.3Hz,1.9Hz,4H),6.80(d,J=8.2Hz,2H),6.67(dd,J=8.2Hz,2.5Hz,2H),5.64(s,2H),5.24(s,4H),4.22(t,J=4.5Hz,4H),4.00(br,4H),1.39(s,12H).
【0145】
<ポリアミック酸・ポリイミドの合成>
<合成例1> TC-1/DA-1、DA-2(50) ポリアミック酸(PAA-1)の重合
メカニカルスターラーと窒素導入管を備え付けた100mLの4口フラスコにDA-1(1.62g:15.0mmol)、DA-2(3.66g:15.0mmol)及びNMP(55.4g)を量り取り、しばらく撹拌し溶解させた後、TC-1(6.25g:27.9mmol)及びNMP(10.0g)を加え、窒素雰囲気下、40℃にて6時間反応させることで、固形分濃度が15質量%のポリアミック酸溶液(PAA-1)を得た。粘度は390mPa・sであり、重量平均分子量は約32,100であった。
【0146】
<合成例2> TC-3/DA-3(100) ポリアミック酸(PAA-2)の重合
メカニカルスターラーと窒素導入管を備え付けた100mLの4口フラスコに、DA-3(5.73g:20.0mmol)及びNMP(61.8g)を量り取り、しばらく撹拌し溶解させた後、TC-3(4.06g:18.6mmol)及びNMP(10.0g)を加え、窒素雰囲気下、23℃にて6時間反応させることで、固形分濃度が12質量%のポリアミック酸溶液(PAA-2)を得た。粘度は240mPa・sであり、重量平均分子量は約25,900であった。
【0147】
<合成例3> TC-2、TC-4(50)/DA-1、DA-4(50) ポリアミック酸(PAA-3)の重合
メカニカルスターラーと窒素導入管を備え付けた50mL容積4口フラスコに、DA-1(1.08g:10.0mmol)、DA-4(3.30g:10.0mmol)及びNMP(32.9g)を量り取り、窒素雰囲気下でしばらく撹拌し溶解させた後、TC-4(2.50g:10.0mmol)を加え、窒素雰囲気下、40℃にて6時間反応させた後、TC-2(1.88g:9.6mmol)及びNMP(2.1g)を加え、窒素雰囲気下40℃で12時間反応させることで、固形分濃度が20質量%のポリアミック酸溶液(PAA-3)を得た。粘度は980mPa・sであり、重量平均分子量は約35,900であった。
【0148】
<合成例4> TC-2、TC-4(50)/DA-1、DA-4(50) 可溶性ポリイミド(SPI-1)の合成
窒素導入管と空冷菅、撹拌子を備え付けた100mLナスフラスコに、上記合成例3で得られたポリアミック酸溶液(PAA-3)(30.0g)を量り取り、NMP(70.0g)、無水酢酸(3.14g:30.9mmol)及びピリジン(1.62g:20.6mmol)を加え、窒素雰囲気下、室温で30分撹拌した後、50℃で3時間撹拌した。反応終了後、反応溶液を室温まで戻し、10℃まで冷却したメタノール(300mL)中にゆっくり注ぎ固体を析出させ、10分間撹拌した。得られた固体を濾過にて回収し、得られた固体を更にメタノール(100mL)で10分間撹拌洗浄を計2回行い、80℃の真空乾燥オーブンで6時間乾燥させ、目的のポリイミド粉末(SPI-1)を得た。イミド化率は62%であった。
【0149】
<合成例5> TC-2、TC-4(50)/DA-4(100) ポリアミック酸(PAA-4)の重合
メカニカルスターラーと窒素導入管を備え付けた50mL容積4口フラスコに、DA-4(6.61g:20.0mmol)及びNMP(34.1g)を量り取り、窒素雰囲気下でしばらく撹拌し溶解させた後、TC-4(2.50g:10.0mmol)を加え、窒素雰囲気下、40℃にて6時間反応させた後、TC-2(1.92g:9.8mmol)及びNMP(10.0g)を加え、窒素雰囲気下40℃で12時間反応させることで、固形分濃度が20質量%のポリアミック酸溶液(PAA-4)を得た。粘度は1,120mPa・sであり、重量平均分子量は約38,400であった。
【0150】
<合成例6> TC-2、TC-4(50)/DA-4(100) 可溶性ポリイミド(SPI-2)の合成
窒素導入管と空冷菅、撹拌子を備え付けた100mLナスフラスコに、上記合成例5で得られたポリアミック酸溶液(PAA-4)(30.0g)を量り取り、NMP(70.0g)、無水酢酸(3.33g:32.7mmol)及びピリジン(1.72g:21.8mmol)を加え、窒素雰囲気下、室温で30分撹拌した後、50℃で3時間撹拌した。反応終了後、反応溶液を室温まで戻し、10℃まで冷却したメタノール(300mL)にゆっくり注ぎ固体を析出させ、10分間撹拌した。得られた固体を濾過にて回収し、得られた固体を更にメタノール(100mL)で10分間撹拌洗浄を計2回行い、80℃の真空乾燥オーブンで6時間乾燥させ、目的のポリイミド粉末(SPI-2)を得た。イミド化率は59%であった。
【0151】
<合成例7> TC-1/DA-2、DA-4(50) ポリアミック酸(PAA-5)の重合
メカニカルスターラーと窒素導入管を備え付けた50mL容積4口フラスコに、DA-2(1.57g:7.00mmol)、DA-4(4.79g:7.00mmol)及びNMP(42.60g)を量り取り、しばらく撹拌し溶解させた後、TC-1(2.92g:13.02mmol)及びNMP(10.0g)を加え、窒素雰囲気下、40℃にて6時間反応させることで、ポリアミック酸溶液(PAA-5)を得た。粘度は440mPa・sであり、重量平均分子量は約32,600であった。
【0152】
<合成例8> TC-1/DA-2、DA-4(50) 可溶性ポリイミド(SPI-3)の合成
窒素導入管と空冷菅、撹拌子を備え付けた100mLナスフラスコに、上記合成例7で得られたポリアミック酸溶液(PAA-5)(30.0g)を量り取り、NMP(45.0g)、無水酢酸(1.85g:18.0mmol)及びピリジン(0.95g:12.0mmol)を加え、窒素雰囲気下、室温で30分撹拌した後、50℃で3時間撹拌した。反応終了後、反応溶液を室温まで戻し、10℃まで冷却したメタノール(300mL)にゆっくり注ぎ固体を析出させ、10分間撹拌した。得られた固体を濾過にて回収し、得られた固体を更にメタノール(100mL)で10分間撹拌洗浄を計2回行い、80℃の真空乾燥オーブンで6時間乾燥させ、目的のポリイミド粉末(SPI-3)を得た。イミド化率は72%であった。
【0153】
<合成例9> TC-1/DA-2、DA-5(50) ポリアミック酸(PAA-6)の重合
メカニカルスターラーと窒素導入管を備え付けた50mL容積4口フラスコに、DA-2(2.44g:10.00mmol)、DA-5(6.85g:10.00mmol)及びNMP(66.0g)を量り取り、しばらく撹拌し溶解させた後、TC-1(4.12g:18.38mmol)及びNMP(10.0g)を加え、窒素雰囲気下、40℃にて6時間反応させることで、固形分濃度が15質量%のポリアミック酸溶液(PAA-6)を得た。粘度は380mPa・sであり、重量平均分子量は約29,600であった。
【0154】
<合成例10> TC-1/DA-2、DA-5(50) 可溶性ポリイミド(SPI-4)の合成
窒素導入管と空冷菅、撹拌子を備え付けた100mLナスフラスコに、上記合成例9で得られたポリアミック酸溶液(PAA-6)(30.0g)を量り取り、NMP(45.0g)、無水酢酸(2.42g:23.7mmol)及びピリジン(1.25g:15.8mmol)を加え、窒素雰囲気下、室温で30分撹拌した後、50℃で3時間撹拌した。反応終了後、反応溶液を室温まで戻し、10℃まで冷却したメタノール(300mL)にゆっくり注ぎ固体を析出させ、10分間撹拌した。得られた固体を濾過にて回収し、得られた固体を更にメタノール(100mL)で10分間撹拌洗浄を計2回行い、80℃の真空乾燥オーブンで6時間乾燥させ、目的のポリイミド粉末(SPI-4)を得た。イミド化率は68%であった。
【0155】
(実施例1)
高アンカリング液晶配向剤(強アンカリング液晶配向剤ともいう) AL-1の調製
撹拌子を取り付けた50mL三角フラスコに、上記合成例1にて得られたポリアミック酸溶液(PAA-1)(20.0g)を量り取り、NMP(15.0g)、BCS(15.0g)及びAdd-1(0.15g)を加え、室温で30分撹拌することで液晶配向剤AL-1を調製した。
【0156】
(実施例2)
高アンカリング液晶配向剤 AL-2の調製
撹拌子を取り付けた50mL三角フラスコに、上記合成例2にて得られたポリアミック酸溶液(PAA-2)(20.0g)を量り取り、NMP(8.0g)、BCS(12.0g)及びAdd-2(0.12g)を加え、室温で30分撹拌することで液晶配向剤AL-2を調製した。
【0157】
(実施例3~6) ラジカル発生膜形成組成物AL-3~AL-6の調製
窒素導入管と撹拌子を取り付けた2口ナスフラスコに、上記合成例4にて得られたポリイミド粉末(SPI-1)(2.0g)を量り取り、NMP(18.0g)を加え、40℃で6時間撹拌し溶解させた。完全に溶解したのを確認し、NMP(3.3g)、BCS(10.0g)及びAdd-2(0.10g)を加え、室温で30分撹拌することでラジカル発生膜形成組成物AL-3を得た。
また、SPI-1の代わりにSPI-2~SPI-4を用いて、SPI-2にはAdd-2を、SPI-3,SPI-4にはAdd-1を用いた以外は上記AL-3と同様に調製し、それぞれラジカル発生膜形成組成物AL-4~AL-6を得た。
【0158】
(実施例7) ラジカル発生膜形成組成物AL-7の調製
撹拌子を備えた40mLのサンプル瓶に、実施例1にて調製した強アンカリング液晶配向剤AL-1(5.0g)、及び実施例3にて調製したAL-3(5.0g)を加え、室温で30分撹拌することで本発明とするラジカル発生膜形成組成物AL-7を調製した。
【0159】
(実施例8) ラジカル発生膜形成組成物AL-8の調製
撹拌子を備えた40mLのサンプル瓶に、実施例1にて調製した強アンカリング液晶配向剤AL-1(5.0g)、及び実施例4にて調製したAL-4(5.0g)を加え、室温で30分撹拌することで本発明とするラジカル発生膜形成組成物AL-8を調製した。
【0160】
(実施例9) ラジカル発生膜形成組成物AL-9の調製
撹拌子を備えた40mLのサンプル瓶に、実施例1にて調製した強アンカリング液晶配向剤AL-1(5.0g)、及び実施例5にて調製したAL-5(5.0g)を加え、室温で30分撹拌することで本発明とするラジカル発生膜形成組成物AL-9を調製した。
【0161】
(実施例10) ラジカル発生膜形成組成物AL-10の調製
撹拌子を備えた40mLのサンプル瓶に、実施例1にて調製した強アンカリング液晶配向剤AL-1(5.0g)、及び実施例6にて調製したAL-6(5.0g)を加え、室温で30分撹拌することで本発明とするラジカル発生膜形成組成物AL-10を調製した。
【0162】
(実施例11) ラジカル発生膜形成組成物AL-11の調製
撹拌子を備えた40mLのサンプル瓶に、実施例2にて調製した強アンカリング液晶配向剤AL-2(5.0g)、及び実施例3にて調製したAL-3(5.0g)を加え、室温で30分撹拌することで本発明とするラジカル発生膜形成組成物AL-11を調製した。
【0163】
(実施例12) ラジカル発生膜形成組成物AL-12の調製
撹拌子を備えた40mLのサンプル瓶に、実施例2にて調製した強アンカリング液晶配向剤AL-2(5.0g)、及び実施例4にて調製したAL-4(5.0g)を加え、室温で30分撹拌することで本発明とするラジカル発生膜形成組成物AL-12を調製した。
【0164】
<液晶セルの作製>
以下に、液晶配向性を評価するための液晶セルの作製方法を示す。
【0165】
初めに電極付きの基板を準備した。基板は、30mm×35mmの大きさで、厚さが0.7mmのガラス基板である。基板上には第1層目として対向電極を構成する、ベタ状のパターンを備えたIZO電極が形成されている。第1層目の対向電極の上には第2層目として、CVD(化学蒸着)法により成膜されたSiN(窒化珪素)膜が形成されている。第2層目のSiN膜の膜厚は500nmであり、層間絶縁膜として機能する。第2層目のSiN膜の上には、第3層目としてIZO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素および第2画素の2つの画素を形成している。各画素のサイズは、縦10mmで横約5mmである。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により電気的に絶縁されている。
第3層目の画素電極は、中央部分が内角160°で屈曲した幅3μmの電極要素が6μmの間隔を開けて平行になるように複数配列された櫛歯形状を有しており、1つの画素は、複数の電極要素の屈曲部を結ぶ線を境に第1領域と第2領域を有している。
各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。すなわち、後述する液晶配向膜の配向方向を基準とした場合、画素の第1領域では画素電極の電極要素が+80°の角度(時計回り)をなすように形成され、画素の第2領域では画素電極の電極要素が-80°の角度(時計回り)をなすように形成されている。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が互いに逆方向となるように構成されている。以後FFS基板(第1基板)と呼ぶ。
【0166】
次に、上記の方法で得られたラジカル発生膜形成組成物AL-3~AL12、及び液晶配向剤AL-1、並びに水平配向用の液晶配向剤であるSE-6414(日産化学社製)を孔径1.0μmのフィルターで濾過した後、準備された上記第1基板と、対向基板として裏面にITO膜が成膜されており、かつ高さ4.0μmの柱状のスペーサーを有するガラス基板(以後第2基板と呼ぶ)にスピンコート法にて塗布・成膜を行った。次いで、80℃のホットプレート上で80分乾燥後、230℃で20分焼成し、膜厚100nmの塗膜を得た。第1基板側のポリイミド膜においては、櫛歯の方向に添う方向で配向処理を行い、第2基板側のポリイミド膜においては櫛歯電極と直行する方向に配向処理を行った。尚、配向処理は、SE-6414、AL-3、AL-4、AL-11、AL-12においてはラビング処理にて行い、AL-1、AL-5、AL-6、AL-7、AL-8、AL-9、AL-10においては光配向で行った。ラビング処理に関して、ラビングの布は吉川化工製のレーヨン布YA-20Rを用い、ローラー系12mm、回転数700rpm、ステージ送り速度30mm/s、押し込み圧0.4mmで行い、ラジカル発生膜に関しては回転数300rpm、ステージ送り速度50mm/s、押し込み圧0.2mmにて行った。また光配向はいずれもウシオ電機株式会社製のUV露光装置を用い、消光比が約26:1の直線偏光UVを、254nmの波長を基準として50~500mJ/cm2の間の照射量で偏光UVを照射し、230℃にて30分加熱することで行い、それぞれの最も配向品位が良好になる条件を用いて比較を行った。
【0167】
その後、上記2種類の基板を用いて、実施例の対象とする表示素子に関しては第1基板側にAL-1、またはSE-6414を用い、第2基板側にラジカル発生膜AL-7、AL-8、AL-9、AL-10、AL-11、AL-12を設けたもの同士の組み合わせにて作製したものを用い、比較対象とする表示素子においては両方の基板にAL-1またはSE-6414を用いたもの、及び第1基板側にラジカル発生膜AL-3、AL-4、AL-5、AL-6を用い、第2基板側にAL-1を用いたもの組み合わせにて作製したものを用いた。それぞれの配向方向が平行になるように組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが約4.0μmの空セルを作製した。この空セルに、液晶(メルク社製MLC-3019に添加剤IC6を3質量%添加したもの)を常温で真空注入した後、注入口を封止して、アンチパラレル配向の液晶セルとした。得られた液晶セルは、FFSモード液晶表示素子を構成する。その後、得られた液晶セルを120℃で10分加熱処理を行い、電圧を印加していない状態で東芝ライテック社製UV-FL照射装置を用いてUV(UVランプ:FLR40SUV32/A-1)を30分間照射して液晶表示素子を得た。
【0168】
<液晶配向性の評価>
偏光顕微鏡を用い、偏光版をクロスニコルに設定し、液晶セルの輝度が最も小さくなる状態で固定し、そこから1°液晶セルを回転させ、液晶の配向状態の観察を行った。ムラやザラツキ等が観察されない場合あるいは非常に軽微な場合は「良好」とし、明確に観察させた場合は「不良」として評価した。
また、同偏光顕微鏡にフォトダイオードを取り付け、電流-電圧変換アンプを介してエレクトロメーターに接続し、クロスニコル下で輝度が最も小さくなる条件での電圧をモニターすることで黒輝度の測定を行った。
【0169】
<V-Tカーブの測定と駆動閾値電圧、輝度最大電圧評価>
光軸が合うように白色LEDバックライトと輝度計をセットし、その間に、輝度が最も小さくなるように偏光板を取り付けた液晶セル(液晶表示素子)をセットし、1V間隔で8Vまで電圧を印加し、電圧における輝度を測定することでV-Tカーブの測定を行った。得られたV-Tカーブから駆動閾値電圧と輝度が最大になる電圧の値を見積もった。また、電圧無印加の液晶セルを介して、パラレルニコル時の透過輝度を100%とし、V-Tカーブでの最大透過輝度を比較することにより最大透過率として見積もった。
【0170】
<応答時間(Ton、Toff)の測定>
上記V-Tカーブの測定で使用した装置を用い、輝度計をオシロスコープに接続し、最大輝度になる電圧を印加した際の応答速度(Ton)及び電圧を0Vに戻した際の応答速度(Toff)を測定した。
【0171】
【0172】
<液晶配向剤またはラジカル発生膜形成組成物の内容>
【表2】
【0173】
<実施例液晶セルの内容>
液晶セルの構成を下記表3に示す。
【表3】
【0174】
【0175】
比較例1は光配向の強アンカリング配向膜同士の組み合わせ、比較例2及び比較例3はラジカル発生膜の構成成分が単独成分である場合の例である。実施例13~16はラジカル発生膜に強アンカリング成分とラジカル発生成分とを混合した場合の例である。実施例13~16の黒輝度は比較例1の強アンカリング配向膜同士の組み合わせとほぼ同等レベルの特性が得られており、比較例2や比較例3と比べても黒輝度は良好であり、透過率も大きく向上し応答時間の遅延が抑制されているのが分かる。特に、光配向しないラジカル発生膜成分を用いたもの(実施例13、実施例14)でも良好な配向性や黒輝度が得られ、良好な弱アンカリング特性が得られることが分かった。一方で比較例3は黒輝度も透過率も比較的良好なものであるが、これも単独成分よりも強アンカリング成分を混合する(実施例16)ことで黒輝度が更に改善し、応答時間が改善しているのが分かる。
【0176】
比較例4はラビング用強アンカリング配向膜同士の組み合わせ、比較例5及び比較例6は光配向しない単独成分のラジカル発生膜を用いた場合の例である。それに対し、実施例17及び実施例18はラビング用強アンカリング成分とラジカル発生成分とを混合した場合の例である。実施例17及び実施例18は、いずれも配向性及び黒輝度がSE-6414と同等のレベルであり、透過率も向上しているが応答時間の遅延も抑制されているのが分かる。
【0177】
よって、これらの検証により、強アンカリング成分とラジカル発生成分とを混合した本発明のラジカル発生膜形成組成物を用いることで、良好な配向性を保ちつつ透過率の向上と応答時間の抑制の両立が可能な液晶表示素子が得られることが分かった。
【産業上の利用可能性】
【0178】
本発明のラジカル発生膜形成組成物を用いることにより、良好な黒表示が可能であり、高いバックライト透過率、速い応答速度を実現できる横電界液晶表示素子を提供することができる。また、本発明の方法で得られる液晶表示素子は、横電界駆動方式の液晶表示素子として有用である。
【符号の説明】
【0179】
1 液晶表示素子
2 櫛歯電極基板
2a 基材
2b 線状電極
2c ラジカル発生膜
2d 基材
2e 面電極
2f 絶縁膜
2g 線状電極
2h ラジカル発生膜
3 液晶組成物
4 対向基板
4a 液晶配向膜
4b 基材