IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ダウ・東レ株式会社の特許一覧

特許7644604硬化性シリコーン組成物、その硬化物、およびその製造方法
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2025-03-04
(45)【発行日】2025-03-12
(54)【発明の名称】硬化性シリコーン組成物、その硬化物、およびその製造方法
(51)【国際特許分類】
   C08L 83/04 20060101AFI20250305BHJP
   C08K 3/013 20180101ALI20250305BHJP
   C08L 83/07 20060101ALI20250305BHJP
   C09J 7/30 20180101ALI20250305BHJP
   C09J 11/04 20060101ALI20250305BHJP
   C09J 183/04 20060101ALI20250305BHJP
   C09J 183/07 20060101ALI20250305BHJP
   H01L 21/56 20060101ALI20250305BHJP
   H01L 23/29 20060101ALI20250305BHJP
   H01L 23/31 20060101ALI20250305BHJP
【FI】
C08L83/04
C08K3/013
C08L83/07
C09J7/30
C09J11/04
C09J183/04
C09J183/07
H01L21/56 R
H01L23/30 R
【請求項の数】 13
(21)【出願番号】P 2020562489
(86)(22)【出願日】2019-12-27
(86)【国際出願番号】 JP2019051392
(87)【国際公開番号】W WO2020138409
(87)【国際公開日】2020-07-02
【審査請求日】2022-12-09
(31)【優先権主張番号】P 2018245659
(32)【優先日】2018-12-27
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】719000328
【氏名又は名称】ダウ・東レ株式会社
(72)【発明者】
【氏名】山崎 亮介
【審査官】大塚 龍平
(56)【参考文献】
【文献】国際公開第2018/030287(WO,A1)
【文献】国際公開第2018/030286(WO,A1)
【文献】国際公開第2019/078140(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C08L 83/04
C08K 3/013
C08L 83/07
C09J 7/30
C09J 11/04
C09J 183/04
C09J 183/07
H01L 21/56
H01L 23/29
(57)【特許請求の範囲】
【請求項1】
(A)オルガノポリシロキサン樹脂微粒子、
(B)補強性フィラー、白色顔料、熱伝導性フィラー、導電性フィラーまたは蛍光体から選ばれる1種類以上の無機フィラー、および
(C)硬化剤
を含有してなり、
(A)成分が
(A2-1)分子全体として軟化点が200℃以上であるオルガノポリシロキサン樹脂微粒子、および
(A2-2)25℃において液状の直鎖状または分岐鎖状のオルガノポリシロキサンであって、分子内に少なくとも2個の炭素-炭素二重結合を含む硬化反応性の官能基を有するもの
の混合物であり、
(A2-1)成分は、(A2-1-2)分子内に少なくとも1個の炭素-炭素二重結合を含む硬化反応性の官能基を有し、かつ、SiO 4/2 で表されるシロキサン単位を全シロキサン単位の少なくとも20モル%以上含有するオルガノポリシロキサン樹脂微粒子を含み、
硬化により、
25℃における貯蔵弾性率(G')の値が2000MPa以下であり、
150℃における貯蔵弾性率(G')の値が100MPa以下であり、
周波数1.0Hzにおける貯蔵弾性率/損失弾性率(G’/G’’)で表される損失正接(tanδ)のピーク値が0.40以上である硬化物を与えることを特徴とする、硬化性粒状シリコーン組成物。
【請求項2】
A2-2)成分が、
(A2-2-1)下記構造式:
SiO(SiR O)SiR
(式中、各Rは独立して1~10個の炭素原子を有する一価炭化水素基であり、但し1分子中のRの少なくとも2個はアルケニル基であり、kは20~5,000の数である)
で表される直鎖状ジオルガノポリシロキサンである、請求項1に記載の硬化性粒状シリコーン組成物。
【請求項3】
(A)成分が
(A2-1-1)分子全体としてホットメルト性を有さず、分子内に炭素-炭素二重結合を含む硬化反応性の官能基を有さず、かつ、SiO4/2で表されるシロキサン単位を全シロキサン単位の少なくとも20モル%以上含有するオルガノポリシロキサン樹脂微粒子 100質量部、
(A2-1-2)成分 3~50質量部、および
(A2-2-1)成分 15~100質量部
を含む混合物である、請求項2に記載の硬化性粒状シリコーン組成物。
【請求項4】
(B)成分の含有量が、組成物全体に対して10~50体積%の範囲である、請求項1~のいずれか1項に記載の硬化性粒状シリコーン組成物。
【請求項5】
剥離層を備える2枚のフィルム状基材間に、請求項1~のいずれか1項に記載の硬化性粒状シリコーン組成物からなるシート状部材を含む構造を有する、積層体。
【請求項6】
請求項1~のいずれか1項に記載の硬化性粒状シリコーン組成物からなるシート状部材の厚みが1mm以下であり、フィルム状接着剤であることを特徴とする、請求項の積層体。
【請求項7】
請求項1~のいずれか1項に記載の硬化性粒状シリコーン組成物を硬化させてなる、硬化物。
【請求項8】
請求項に記載の硬化物の半導体装置用部材としての使用。
【請求項9】
請求項に記載の硬化物を有する半導体装置。
【請求項10】
硬化性粒状シリコーン組成物を構成する各成分のみを、50℃を超えない温度条件下で混合することにより粒状化することを特徴とする、請求項1~のいずれか1項に記載の硬化性粒状シリコーン組成物の製造方法。
【請求項11】
下記工程(I)~(III)から少なくともなる硬化物の成型方法。
(I)請求項1~4のいずれか1項に記載の硬化性粒状シリコーン組成物を硬化させてペレット状又はシート状とした硬化物を100℃以上に加熱して、溶融する工程;
(II)前記工程(I)で得られた液状の硬化性シリコーン組成物を金型に注入する工程 又は 型締めにより金型に前記工程(I)で得られた硬化性シリコーン組成物を行き渡らせる工程;および
(III)前記工程(II)で注入した硬化性シリコーン組成物を硬化する工程
【請求項12】
請求項1~のいずれか1項に記載の硬化性粒状シリコーン組成物を硬化させてなる硬化物により、半導体素子のオーバーモールド成型及びアンダーフィルを一度に行う被覆工程を含む、請求項11の硬化物の成型方法。
【請求項13】
請求項1~のいずれか1項に記載の硬化性粒状シリコーン組成物を硬化させてなる硬化物により、単独又は複数の半導体素子を搭載した半導体ウエハ基板の表面を覆い、かつ、半導体素子の間隙が当該硬化物により充填されるようにオーバーモールド成型する被覆工程を含む、請求項11の硬化物の成型方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、簡便な製造方法で得ることができ、ホットメルト性およびリードフレーム等に対する硬化物の反り抑制に優れた硬化性粒状シリコーン組成に関する。さらに、本発明は、硬化性粒状シリコーン組成物またはペレット、シートを用いる硬化物、この硬化物の成型方法、この硬化物を備える半導体装置に関する。
【背景技術】
【0002】
硬化性シリコーン組成物は、硬化して、優れた耐熱性、耐寒性、電気絶縁性、耐候性、撥水性、透明性を有する硬化物を形成することから、幅広い産業分野で利用されている。こうした硬化性シリコーン組成物の硬化物は、一般に、他の有機材料と比較し変色しにくく、また、物理的物性の低下が小さいため、光学材料および半導体装置の封止剤としても適している。
【0003】
本出願人は、特許文献1および特許文献2において、成型用のホットメルト性の硬化性粒状シリコーン組成物および反応性シリコーン組成物を提案している。これらのシリコーン組成物はいわゆるフェニルシリコーン樹脂からなり、メチルシリコーン樹脂と比較するとホットメルト性に優れ、かつ、硬化物の硬さや強度に優れるという利点を有するものである。
【0004】
また、本出願人は、特許文献3および特許文献4において、液状(ペースト状)の硬化性シリコーン組成物を提案している。しかしながら、これらの液状乃至ペースト状の硬化性シリコーン組成物は、取扱作業性、硬化特性およびギャップフィル性が十分ではなく、かつ、硬化物の室温から150℃程度の高温における柔軟性および強靭性が不十分であり、特に、硬化物の柔軟性不足により、反りや破損の問題を生じる場合がある。
【0005】
一方、特許文献5および特許文献6には、粗大粒子を含む混合フィラーを用いたホットメルト性の硬化性組成物が開示されているが、硬化物の室温における貯蔵弾性率が極めて高く(例えば、特許文献5では5000MPa以上である)、柔軟性に乏しいため、室温で変形や折り曲げを受ける用途には適用することが困難である。
【0006】
これらの課題を解決すべく、本出願人は、特許文献7において、平均粒子径10.0μm以上の粗大粒子を実質的に含まない無機フィラーを含む、硬化性粒状シリコーン組成物を提案している。当該組成物は、硬化物の室温から150℃程度の高温における柔軟性および強靭性が改善されており、硬化物の反りや破損をある程度抑制することができる。
【0007】
しかしながら、近年、半導体デバイス産業の発展に伴い、成型面積の大面積化並びに成型される厚みの薄膜化の要求が強く生じている。上記の硬化性粒状シリコーン組成物であっても、大面積の薄膜成型を伴う成型方法、特に、反りが発生しやすい厚みが薄い基板との一体成型等の条件下では、硬化物の反りや破損が発生する場合があり、ホットメルト性を有し、取扱い作業性および硬化特性を損なうことなく、さらに、溶融時のギャップフィル性に優れ、室温から150℃程度の高温における柔軟性および強靭性が一層改善された硬化性シリコーン組成物が求められている。さらに、既存の硬化性シリコーン組成物では、機能性フィラーを比較的大量に配合した場合、特に薄型成型時に、上記の硬化物の応力緩和性が低下して、反りや破損が発生しやすく、機能性フィラーの含有量と硬化物の応力緩和特性の間のトレードオフの問題を解決できないという課題が生じていた。
【先行技術文献】
【特許文献】
【0008】
【文献】国際公開第2016/136243号パンフレット
【文献】特開2014-009322号公報
【文献】国際公開第2016/038836号パンフレット
【文献】特開2013-076050号公報
【文献】特開2013-221075号公報
【文献】国際公開第2013/051600号パンフレット
【文献】国際公開第2018/030287号パンフレット
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明の目的は、ホットメルト性を有し、取扱い作業性および硬化特性に優れると共に、溶融時のギャップフィル性に優れ、小粒径の機能性無機フィラーを大量に含有しても、応力緩和に優れた柔軟な硬化物を形成可能な硬化性粒状シリコーン組成物を提供することにある。また、本発明の目的は、このような硬化性シリコーン組成物を効率よく製造する方法を提供することにある。さらに、本発明は、こうした硬化性シリコーン組成物、ペレットおよびシート等の硬化物からなる半導体装置用部材、当該硬化物を有する半導体装置、および、硬化物の成型方法を提供することにある。
【課題を解決するための手段】
【0010】
鋭意検討の結果、本発明者らは、(A)硬化反応性の官能基を有するオルガノポリシロキサン樹脂微粒子、
(B)機能性無機フィラー、および
(C)硬化剤を含有してなり、
硬化により、
25℃における貯蔵弾性率(G')の値が2000MPa以下であり、
150℃における貯蔵弾性率(G')の値が100MPa以下であり、
周波数1.0Hzにおける貯蔵弾性率/損失弾性率(G’/G’’)で表される損失正接(tanδ)のピーク値が0.40以上である硬化物を与えることを特徴とする、硬化性粒状シリコーン組成物により上記課題を解決できる事を見出し、本発明に到達した。なお、上記の硬化性シリコーン組成物は、ペレット状またはシート状であってよい。
【0011】
上記の(B)成分は、補強性フィラー、白色顔料、熱伝導性フィラー、導電性フィラー又は有機フィラーから選ばれる1種類以上の機能性無機フィラーである機能性無機フィラーであることが好ましい。
【0012】
上記の(A)成分は、その少なくとも一部または全部が、
(A1)軟化点が30℃以上であり、分子内に少なくとも1個の炭素-炭素二重結合を含む硬化反応性の官能基を有するホットメルト性のオルガノポリシロキサン樹脂微粒子であってよい。
【0013】
また、上記の(A)成分は、その少なくとも一部または全部が、
(A2-1)分子全体としてホットメルト性を有さず、分子内に少なくとも1個の炭素-炭素二重結合を含む硬化反応性の官能基を有し、かつ、SiO4/2で表されるシロキサン単位を全シロキサン単位の少なくとも20モル%以上含有するオルガノポリシロキサン樹脂微粒子、および
(A2-2)25℃において液状の直鎖状または分岐鎖状のオルガノポリシロキサンであって、分子内に少なくとも2個の炭素-炭素二重結合を含む硬化反応性の官能基を有するもの
の混合物であってよい。さらに、上記の(A2-1)成分に加えて、(A2-1-2)分子全体としてホットメルト性を有さず、分子内に少なくとも1個の炭素-炭素二重結合を含む硬化反応性の官能基を有し、かつ、SiO4/2で表されるシロキサン単位を全シロキサン単位の少なくとも20モル%以上含有するオルガノポリシロキサン樹脂微粒子を含むものであっても良い。
【0014】
また、(B)成分は、軟化点を有さないか又は前記(A)成分の軟化点以下では軟化しないフィラーであることが好ましく、平均粒子径5.0μm以上の粗大粒子を実質的に含まないものであることが好ましい。また、硬化物の機能性および物理特性の見地から、(B)成分は、補強性フィラー、白色顔料、熱伝導性フィラー、導電性フィラー、蛍光体、またはこれらの少なくとも2種の混合物であることが好ましく、特に、室温~高温における柔軟性および高いギャップフィル性の見地から、(b1)平均粒子径0.1μm以下の無機フィラーと(b2)平均粒子径0.1~5.0μmの無機フィラーを1/99~50/50の質量比で含有することが特に好ましい。
【0015】
(B)成分の含有量は、組成物全体に対して10~50体積%の範囲であることが好ましい。
【0016】
このような本発明の硬化性粒状シリコーン組成物はペレット状またはシート状であることが好ましい。
【0017】
特に、本発明の硬化性粒状シリコーン組成物がシート状である場合、剥離層を備える2枚のフィルム状基材間に、上記の硬化性粒状シリコーン組成物からなるシート状部材を含む構造を有する、積層体を形成することができる。当該シート状部材の厚みが1mm以下であり、フィルム状接着剤であることが好ましく、剥離性積層体として取り扱うことが可能である。
【0018】
本発明の硬化性粒状シリコーン組成物は硬化物の形態で利用可能であり、半導体装置用部材として利用することができる。
【0019】
本発明の硬化性粒状シリコーン組成物およびその硬化物は、半導体装置に用いることができ、当該硬化物により封止材、光反射材等を形成してなる、パワー半導体装置、光半導体装置およびフレキシブル回路基盤上に実装された半導体装置が提供される。特に、本発明の硬化性粒状シリコーン組成物は溶融時のギャップフィル性に優れ、その硬化物は室温~高温における柔軟性に優れ、強靭であるため、いわゆるモールドアンダーフィルやウェハモールディングにより半導体素子が一括封止された半導体装置や、変形(折り曲げ等)を利用の前提とするフレキシブル回路基板上で本硬化物により半導体素子が封止された封止後半導体素子基盤が好適に提供される。
【0020】
本発明の硬化性粒状シリコーン組成物の成型方法は、少なくとも以下の工程を含む。
(I)前記のペレット状またはシート状の硬化性粒状シリコーン組成物を100℃以上に加熱して、溶融する工程;
(II)前記工程(I)で得られた硬化性シリコーン組成物を金型に注入する工程 又は 型締めにより金型に前記工程(I)で得られた硬化性シリコーン組成物を行き渡らせる工程; および
(III)前記工程(II)で注入した硬化性シリコーン組成物を硬化する工程
なお、上記の成型方法は、トランスファー成型、コンプレッション成型、あるいはインジェクション成型を含み、本発明の硬化性粒状シリコーン組成物はこれらの成型用材料として好適に用いられる。さらに、本発明の硬化性粒状シリコーン組成物は、硬化物により、半導体素子のオーバーモールド及びアンダーフィルを一度に行う被覆工程である、いわゆるモールドアンダーフィル方式や、半導体素子を搭載した半導体ウェハ基板の表面を覆い、かつ、半導体素子の間隙を充填するオーバーモールド成型であり、8インチは12インチなどの比較的大きなウェハを一括封止してもよいウェハモールディング方式の成型用材料として、好適に用いることができる。
【0021】
特に、本発明の硬化性粒状シリコーン組成物、特に、ペレット状またはシート状である硬化性粒状シリコーン組成物は、半導体基板(ウェハ含む)の大面積封止に利用できる。さらに、本発明の硬化性粒状シリコーン組成物をシート状に成型してなるシートは、ダイアタッチフィルム、フレキシブルデバイスの封止、二つの違う基材を接着する応力緩和層等に使用することができる。
【発明の効果】
【0022】
本発明の硬化性粒状シリコーン組成物は、ホットメルト性を有し、取扱い作業性および硬化特性に優れると共に、溶融時のギャップフィル性に優れ、小粒径の機能性無機フィラーを大量に含有しても、応力緩和に優れた柔軟な硬化物を形成することができる。さらに、本発明の硬化性粒状シリコーン組成物は、当該機能性無機フィラーの種類を変更することにより、硬化物に低線膨張率化、熱伝導率の付与、光反射性などを付与することができる。また、このような硬化性シリコーン組成物は、簡便な混合工程のみで生産することができ、効率よく製造することができる。また、本発明の硬化物は、半導体装置の部材として有用であり、本発明の成型方法を用いることで、これらの硬化物を用途に合わせて効率よく製造できる。
【発明を実施するための形態】
【0023】
[硬化性粒状シリコーン組成物]
本発明の硬化性粒状シリコーン組成物は、
(A)硬化反応性の官能基を有するオルガノポリシロキサン樹脂微粒子、
(B)機能性無機フィラー、および
(C)硬化剤を含有してなり、
硬化により、
25℃における貯蔵弾性率(G')の値が2000MPa以下であり、
150℃における貯蔵弾性率(G')の値が100MPa以下であり、
周波数1.0Hzにおける貯蔵弾性率/損失弾性率(G’/G’’)で表されるtanδのピーク値が0.40以上である硬化物を与えることを特徴とする。なお、本発明において、特に記載がない場合、「ホットメルト性を有する」とは軟化点が50℃以上であり、150℃において溶融粘度(好適には、1000Pa・s未満の溶融粘度)を有し、流動する性質を有することをいう。一方で、軟化点が200℃以上の場合、成形用途などの一般的な使用温度以上なので、「ホットメルト性は有さない」と定義する。
【0024】
以下、組成物の各成分および任意成分について説明する。なお、本発明において、「平均粒子径」とは別に定義しない限り、粒子の一次平均粒子径を意味するものとする。また、平均粒子径10.0μm以上の機能性無機フィラーについて、「粗大粒子」と表記することがある。
【0025】
(A)成分は、本組成物の主剤であり、(C)硬化剤により硬化する、硬化反応性の官能基を有するオルガノポリシロキサン樹脂微粒子である。ここで、硬化反応性の官能基は、縮合反応性基、ヒドロシリル化反応性基、ラジカル反応性基および過酸化物硬化性基から選ばれる1種類以上の官能基であるが、ヒドロシリル化反応性基およびラジカル反応性基が好ましく、特に、炭素-炭素二重結合を含む硬化反応性の官能基であることが好ましい。
【0026】
(A)成分中のヒドロシリル化反応性基としては、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基等の炭素数2~20のアルケニル基、およびケイ素原子結合水素原子が例示される。このヒドロシリル化反応性基としては、アルケニル基が好ましい。このアルケニル基は、直鎖状でも分岐鎖状でもよく、好ましくは、ビニル基、ヘキセニル基である。(A)成分は、一分子中に少なくとも2個のヒドロシリル化反応性基を有することが好ましい。
【0027】
(A)成分中のヒドロシリル化反応性基以外のケイ素原子に結合する基としては、炭素数1~20のアルキル基、炭素数1~20のハロゲン置換アルキル基、炭素数6~20のアリール基、炭素数6~20のハロゲン置換アリール基、炭素数7~20のアラルキル基、アルコキシ基、および水酸基が例示される。具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基、アントラセニル基、フェナントリル基、ピレニル基等のアリール基;フェネチル基、フェニルプロピル基等のアラルキル基;およびこれらの基に結合している水素原子の一部または全部を塩素原子、臭素原子等のハロゲン原子で置換した基;メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基が例示される。特に、フェニル基、水酸基が好ましい。
【0028】
また、(A)成分中のラジカル反応性基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基等の炭素数1~20のアルキル基;ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基等の炭素数2~20のアルケニル基;3-アクリロキシプロピル基、4-アクリロキシブチル基等のアクリル含有基;3-メタクリロキシプロピル基、4-メタクリロキシブチル基等のメタクリル含有基;およびケイ素原子結合水素原子が例示される。このラジカル反応性基としては、アルケニル基が好ましい。このアルケニル基は、直鎖状でも分岐鎖状でもよく、好ましくは、ビニル基、ヘキセニル基である。(A)成分は、一分子中に少なくとも2個のラジカル反応性基を有することが好ましい。
【0029】
(A)成分中のラジカル反応性基以外のケイ素原子に結合する基としては、炭素数1~20のハロゲン置換アルキル基、炭素数6~20のアリール基、炭素数6~20のハロゲン置換アリール基、炭素数7~20のアラルキル基、アルコキシ基、および水酸基が例示され、前記と同様の基が例示される。特に、フェニル基、水酸基が好ましい。特に、(A)成分は、分子中の全有機基の10モル%以上がアリール基、特に、フェニル基であることが好ましい。
【0030】
本発明において、(A)成分は、硬化反応性の官能基を有するオルガノポリシロキサン樹脂微粒子を含むものであるが、当該オルガノポリシロキサン樹脂微粒子は、分子全体としてホットメルト性であってもよく、分子全体としてホットメルト性を有しないオルガノポリシロキサン樹脂微粒子を含んでも。なお、当該オルガノポリシロキサン樹脂微粒子がホットメルト性を有しない場合、直鎖状または分岐鎖状のオルガノポリシロキサンとの混合物であることが好ましい。さらに、硬化反応性の官能基を有さず、分子全体としてホットメルト性を有しないオルガノポリシロキサン樹脂微粒子を併用してもよく、かつ、好ましい。
【0031】
すなわち、(A)成分の少なくとも一部または全部が、
(A1)軟化点が30℃以上であり、分子内に少なくとも1個の炭素-炭素二重結合を含む硬化反応性の官能基を有するホットメルト性のオルガノポリシロキサン樹脂微粒子
であってもよく、
(A2-1)分子全体としてホットメルト性を有さず、分子内に少なくとも1個の炭素-炭素二重結合を含む硬化反応性の官能基を有し、かつ、SiO4/2で表されるシロキサン単位を全シロキサン単位の少なくとも20モル%以上含有するオルガノポリシロキサン樹脂微粒子、および
(A2-2)25℃において液状の直鎖状または分岐鎖状のオルガノポリシロキサンであって、分子内に少なくとも2個の炭素-炭素二重結合を含む硬化反応性の官能基を有するもの
の混合物であってもよい。以下、これらの成分について説明する。
【0032】
[(A1)成分]
(A1)成分は、それ自体がホットメルト性を有し、分子内に少なくとも1個の炭素-炭素二重結合を含む硬化反応性の官能基を有するため、後述する(C)硬化剤により硬化する。このような(A1)成分は、
(A)樹脂状オルガノポリシロキサン、
(A)少なくとも1種のオルガノポリシロキサンを架橋してなるオルガノポリシロキサン架橋物、
(A)樹脂状オルガノシロキサンブロックと鎖状オルガノシロキサンブロックからなるブロックコポリマー、
またはこれらの少なくとも2種の混合物
からなるオルガノポリシロキサン樹脂微粒子が好ましい。
【0033】
(A)成分はヒドロシリル化反応性基および/またはラジカル反応性基を有する樹脂状オルガノポリシロキサンであり、T単位又はQ単位を多く有し、アリール基を有するホットメルト性の樹脂状オルガノポリシロキサンであることが好ましい。このような(A)成分としては、トリオルガノシロキシ単位(M単位)(オルガノ基はメチル基のみ、メチル基とビニル基またはフェニル基である。)、ジオルガノシロキシ単位(D単位)(オルガノ基はメチル基のみ、メチル基とビニル基またはフェニル基である。)、モノオルガノシロキシ単位(T単位)(オルガノ基はメチル基、ビニル基、またはフェニル基である。)及びシロキシ単位(Q単位)の任意の組み合わせからなるMQ樹脂、MDQ樹脂、MTQ樹脂、MDTQ樹脂、TD樹脂、TQ樹脂、TDQ樹脂が例示される。なお、(A)成分は、分子中に少なくとも2個のヒドロシリル化反応性基および/またはラジカル反応性基を有し、分子中の全有機基の10モル%以上がアリール基、特に、フェニル基であることが好ましい。
【0034】
(A)成分は、少なくとも1種のオルガノポリシロキサンを架橋してなるので、(C)硬化剤により硬化する際にクラックが発生しにくく、硬化収縮を小さくすることができる。ここで、「架橋」とは、原料であるオルガノポリシロキサンをヒドロシリル化反応、縮合反応、ラジカル反応、高エネルギー線反応等により、前記オルガノポリシロキサンを連結することである。このヒドロシリル化反応性基やラジカル反応性基(高エネルギー線反応性基を含む)としては、前記と同様の基が例示され、縮合反応性基としては、ヒドロキシル基、アルコキシ基、アシルオキシ基が例示される。
【0035】
(A)成分を構成する単位は限定されず、シロキサン単位、シルアルキレン基含有シロキサン単位が例示され、また、得られる硬化物に十分な硬度と機械的強度を付与することから、同一分子内に樹脂状ポリシロキサン単位と鎖状ポリシロキサン単位を有することが好ましい。すなわち、(A)成分は、樹脂状(レジン状)オルガノポリシロキサンと鎖状(直鎖状または分岐鎖状を含む)オルガノポリシロキサンとの架橋物であることが好ましい。(A)成分中に、樹脂状オルガノポリシロキサン構造-鎖状オルガノポリシロキサン構造を導入することで、(A)成分は良好なホットメルト性を示すと共に、(C)硬化剤により、良好な硬化性を示す。
【0036】
(A)成分は、
(1)一分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサンと一分子中にケイ素原子結合水素原子を少なくとも2個有するオルガノポリシロキサンのヒドロシリル化反応を経て、分子中に樹脂状オルガノポリシロキサン構造-鎖状オルガノポリシロキサン構造をアルキレン結合により連結したもの
(2)一分子中に少なくとも2個のラジカル反応性基を有する少なくとも2種のオルガノポリシロキサンの有機過酸化物によるラジカル反応を経て、分子中に樹脂状オルガノポリシロキサン構造-鎖状オルガノポリシロキサン構造をシロキサン結合またはアルキレン結合により連結したもの
(3)少なくとも2種のオルガノポリシロキサンの縮合反応を経て、分子中に樹脂状オルガノポリシロキサン構造-鎖状オルガノポリシロキサン構造をシロキサン(-Si-O-Si-)結合により連結したもの
のいずれかである。このような(A)成分は、樹脂構造-鎖状構造のオルガノポリシロキサン部分がアルキレン基または新たなシロキサン結合により連結された構造を有するので、ホットメルト性が著しく改善される。
【0037】
上記(1)および(2)において、(A)成分中に含まれるアルキレン基としては、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基等の炭素数2~20のアルケニル基が例示され、これらは直鎖状でも分岐鎖状でもよく、好ましくは、エチレン基、ヘキシレン基である。
【0038】
樹脂状オルガノポリシロキサンと鎖状(直鎖状または分岐鎖状を含む)オルガノポリシロキサンの架橋物は、例えば、以下のシロキサン単位およびシルアルキレン基含有シロキサン単位により構成される。
M単位:R SiO1/2で表されるシロキサン単位、
D単位:RSiO2/2で表されるシロキサン単位、
M/RD単位:R 1/2 SiO1/2で表されるシルアルキレン基含有シロキサン単位およびR 1/2SiO2/2で表されるシルアルキレン基含有シロキサン単位から選ばれる少なくとも1種のシロキサン単位、ならびに
T/Q単位:RSiO3/2で表されるシロキサン単位およびSiO4/2で表されるシロキサン単位から選ばれる少なくとも1種のシロキサン単位
【0039】
式中、Rは、各々独立に、炭素数1~20のアルキル基、炭素数1~20のハロゲン置換アルキル基、炭素数2~20のアルケニル基、炭素数6~20のアリール基、炭素数6~20のハロゲン置換アリール基、または炭素数7~20のアラルキル基であり、前記と同様の基が例示される。Rは、メチル基、ビニル基、フェニル基が好ましい。ただし、全シロキサン単位のうち、少なくとも2個のRはアルケニル基であることが好ましい。
【0040】
また、式中、Rは、各々独立に、炭素数1~20のアルキル基、炭素数1~20のハロゲン置換アルキル基、炭素数6~20のアリール基、炭素数6~20のハロゲン置換アリール基、または炭素数7~20のアラルキル基であり、前記Rと同様の基が例示される。Rは、メチル基、フェニル基が好ましい。
【0041】
また、式中、Rは他のシロキサン単位中のケイ素原子に結合した、直鎖状または分岐鎖状の炭素数2~20のアルキレン基である。アルキレン基としては、前記と同様の基が例示され、エチレン基、ヘキシレン基が好ましい。
【0042】
M単位は(A)成分の末端を構成するシロキサン単位であり、D単位は直鎖状のポリシロキサン構造を構成するシロキサン単位である。なお、これらのM単位またはD単位、特に、M単位上にアルケニル基があることが好ましい。一方、RM単位およびRD単位はシルアルキレン結合を介して他のシロキサン単位中のケイ素原子に結合し、かつ、酸素原子を介して他のシロキサン単位中のケイ素原子に結合するシロキサン単位である。T/Q単位はポリシロキサンに樹脂状の構造を与える分岐のシロキサン単位であり、(A)成分がRSiO3/2で表されるシロキサン単位および/またはSiO4/2で表されるシロキサン単位を含むことが好ましい。特に、(A)成分のホットメルト性を向上させ、(A)成分中のアリール基の含有量を調整することから、(A)成分はRSiO3/2で表されるシロキサン単位を含むことが好ましく、特に、Rがフェニル基であるシロキサン単位を含むことが好ましい。
【0043】
M/RD単位は、(A)成分の特徴的な構造の1つであり、Rのアルキレン基を介して、ケイ素原子間が架橋された構造を表す。具体的には、R 1/2 SiO1/2で表されるアルキレン基含有シロキサン単位およびR 1/2SiO2/2で表されるアルキレン基含有シロキサン単位から選ばれる少なくとも1種のシロキサン単位であり、(A)成分を構成する全シロキサン単位の少なくとも二つはこれらのアルキレン基含有シロキサン単位であることが好ましい。Rのアルキレン基を有するシロキサン単位間の好適な結合形態は前記の通りであり、二つのアルキレン基含有シロキサン単位間のRの数は、M単位における酸素等と同様に結合価「1/2」として表現している。仮にRの数を1とすれば、[O1/2 SiRSiR 1/2]、[O1/2 SiRSiR2/2]および[O2/2SiRSiR2/2]で表されるシロキサンの構造単位から選ばれる少なくとも1以上が(A)成分中に含まれ、各酸素原子(O)は、前記のM,D,T/Q単位に含まれるケイ素原子に結合する。かかる構造を有することで、(A)成分は、D単位からなる鎖状ポリシロキサン構造、T/Q単位を含む樹脂状ポリシロキサン構造を分子内に有する構造を比較的容易に設計可能であり、その物理的物性において著しく優れたものである。
【0044】
上記(1)において、一分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサンと一分子中にケイ素原子結合水素原子を少なくとも2個有するオルガノポリシロキサンとを、[アルケニル基のモル数]/[ケイ素原子結合水素原子のモル数]>1となる反応比でヒドロシリル化反応させることにより得ることができる。
【0045】
上記(2)において、一分子中に少なくとも2個のラジカル反応性基を有する少なくとも2種のオルガノポリシロキサンを、系中の全てのラジカル反応性基が反応するには足りない量の有機過酸化物によるラジカル反応させることにより得ることができる。
【0046】
上記(1)および(2)において、(A)成分は、樹脂状シロキサン構造を有するオルガノポリシロキサンと、鎖状シロキサン構造を有するオルガノポリシロキサンをヒドロシリル化反応またはラジカル反応したものである。
【0047】
例えば、(A)成分は、
(A)分子中にRSiO3/2(式中、Rは、前記と同様の基である。)で表されるシロキサン単位および/またはSiO4/2で表されるシロキサン単位を含有し、かつ、炭素数2~20のアルケニル基またはケイ素原子結合水素原子あるいはラジカル反応性の基を有する、少なくとも1種の樹脂状オルガノポリシロキサン、および
(A)分子中にR SiO2/2で表されるシロキサン単位(式中、Rは、前記と同様の基である。)を含有し、かつ、前記の(A)成分とヒドロシリル化反応またはラジカル反応可能な基であって、炭素数2~20のアルケニル基またはケイ素原子結合水素原子を有する少なくとも1種の鎖状オルガノポリシロキサンを、
(A)成分または(A)成分中のヒドロシリル化反応性基および/またはラジカル反応性基が反応後に残存するように設計された比率で反応させて得たオルガノポリシロキサンである。
【0048】
上記(1)において、(A)成分の少なくとも一部が、炭素数2~20のアルケニル基を有する樹脂状オルガノポリシロキサンである場合、(A)成分の少なくとも一部はケイ素原子結合水素原子を有する鎖状オルガノポリシロキサンであることが好ましい。
【0049】
同様に、(A)成分の少なくとも一部が、ケイ素原子結合水素原子を有する樹脂状オルガノポリシロキサンである場合、(A)成分の少なくとも一部は炭素数2~20のアルケニル基を有する鎖状オルガノポリシロキサンであることが好ましい。
【0050】
このような(A)成分は、
(a)成分:下記(a1-1)成分および/または下記(a1-2)成分からなる分子中に炭素数2~20のアルケニル基を少なくとも2個有するオルガノポリシロキサンを有機過酸化物でラジカル反応させたもの、または
(a)成分と、
(a)オルガノハイドロジェンポリシロキサンを、
ヒドロシリル化反応用触媒の存在下において、上記(a)成分に含まれる炭素原子数2~20のアルケニル基に対して、上記(a)成分中のケイ素原子結合水素原子のモル比が0.2~0.7モルとなる量でヒドロシリル化反応させたものが好ましい。
【0051】
(a1-1)成分は、分岐単位の量が比較的多いポリシロキサンであり、平均単位式:
(R SiO1/2)(R SiO2/2)(RSiO3/2)(SiO4/2)(R1/2)
で表される一分子中にアルケニル基を少なくとも2個有するオルガノポリシロキサンである。式中、Rは、各々独立に、炭素数1~20のアルキル基、炭素数1~20のハロゲン置換アルキル基、炭素数2~20のアルケニル基、炭素数6~20のアリール基、炭素数6~20のハロゲン置換アリール基、または炭素数7~20のアラルキル基であり、前記Rと同様の基が例示される。Rは、メチル基、ビニル基、またはフェニル基であることが好ましい。ただし、Rの少なくとも2個はアルケニル基である。また、ホットメルト性が良好であることから、全Rの10モル%以上、あるいは20モル%以上がフェニル基であることが好ましい。また、式中、Rは水素原子または炭素数1~6のアルキル基であり、前記と同様のアルキル基が例示される。
【0052】
また、式中、aは0~0.7の範囲内の数、bは0~0.7の範囲内の数、cは0~0.9の範囲内の数、dは0~0.7の範囲内の数、eは0~0.1の範囲内の数、かつ、c+dは0.3~0.9の範囲内の数、a+b+c+dは1であり、好ましくは、aは0~0.6の範囲内の数、bは0~0.6の範囲内の数、cは0~0.9の範囲内の数、dは0~0.5の範囲内の数、eは0~0.05の範囲内の数、かつ、c+dは0.4~0.9の範囲内の数、a+b+c+dは1である。これは、a、b、およびc+dがそれぞれ上記範囲内の数であると、得られる硬化物の硬度や機械的強度が優れたものとなるからである。
【0053】
このような(a1-1)成分としては、次のオルガノポリシロキサンが例示される。式中、Me、Ph、Viはそれぞれメチル基、フェニル基、ビニル基を表す。
(ViMeSiO1/2)0.25(PhSiO3/2)0.75(HO1/2)0.02
(ViMeSiO1/2)0.25(PhSiO3/2)0.75
(ViMeSiO1/2)0.20(PhSiO3/2)0.80
(ViMeSiO1/2)0.15(MeSiO1/2)0.38(SiO4/2)0.47(HO1/2)0.01
(ViMeSiO1/2)0.13(MeSiO1/2)0.45(SiO4/2)0.42(HO1/2)0.01
(ViMeSiO1/2)0.15(PhSiO3/2)0.85(HO1/2)0.01
(MeSiO2/2)0.15(MeViSiO2/2)0.10(PhSiO3/2)0.75(HO1/2)0.04
(MeViPhSiO1/2)0.20(PhSiO3/2)0.80(HO1/2)0.05
(ViMeSiO1/2)0.15(PhSiO3/2)0.75(SiO4/2)0.10(HO1/2)0.02
(PhSiO2/2)0.25(MeViSiO2/2)0.30(PhSiO3/2)0.45(HO1/2)0.04
(MeSiO1/2)0.20(ViMePhSiO1/2)0.40(SiO4/2)0.40(HO1/2)0.08
【0054】
(a1-2)成分は、鎖状シロキサン単位の量が比較的多いポリシロキサンであり、平均単位式:
(R SiO1/2)a'(R SiO2/2)b'(RSiO3/2)c'(SiO4/2)d'(R1/2)e'
で表される、一分子中に炭素数2~20のアルケニル基を少なくとも2個有するオルガノポリシロキサンである。式中、RおよびRは前記と同様の基である。
【0055】
また、式中、a'は0.01~0.3の範囲内の数、b'は0.4~0.99の範囲内の数、c'は0~0.2の範囲内の数、d'は0~0.2の範囲内の数、e'は0~0.1の範囲内の数、かつ、c'+d'は0~0.2の範囲内の数、a'+b'+c'+d'は1であり、好ましくは、a'は0.02~0.20の範囲内の数、b'は0.6~0.99の範囲内の数、c'は0~0.1の範囲内の数、d'は0~0.1の範囲内の数、j'は0~0.05の範囲内の数、かつ、c'+d'は0~0.1の範囲内の数、a'+b'+c'+d'は1である。これは、a'、b'、c'、d'がそれぞれ上記範囲内の数であると、得られる硬化物に強靭性を付与できるからである。
【0056】
このような(a1-2)成分としては、次のオルガノポリシロキサンが例示される。式中、Me、Ph、Viはそれぞれメチル基、フェニル基、ビニル基を表す。
ViMeSiO(MePhSiO)18SiMeVi、すなわち、(ViMeSiO1/2)0.10(MePhSiO2/2)0.90
ViMeSiO(MePhSiO)30SiMeVi、すなわち、(ViMeSiO1/2)0.063(MePhSiO2/2)0.937
ViMeSiO(MePhSiO)150SiMeVi、すなわち、(ViMeSiO1/2)0.013(MePhSiO2/2)0.987
ViMeSiO(MeSiO)18SiMeVi、すなわち、(ViMeSiO1/2)0.10(MeSiO2/2)0.90
ViMeSiO(MeSiO)30SiMeVi、すなわち、(ViMeSiO1/2)0.063(MeSiO2/2)0.937
ViMeSiO(MeSiO)35(MePhSiO)13SiMeVi、すなわち、(ViMeSiO1/2)0.04(MeSiO2/2)0.70(MePhSiO2/2)0.26
ViMeSiO(MeSiO)10SiMeVi、すなわち、(ViMeSiO1/2)0.17(MeSiO2/2)0.83
(ViMeSiO1/2)0.10(MePhSiO2/2)0.80(PhSiO3/2)0.10(HO1/2)0.02
(ViMeSiO1/2)0.20(MePhSiO2/2)0.70(SiO4/2)0.10(HO1/2)0.01
HOMeSiO(MeViSiO)20SiMeOH
MeViSiO(MePhSiO)30SiMeVi
MeViSiO(MeSiO)150SiMeVi
【0057】
(a1-1)成分は得られる硬化物に硬度と機械的強度を付与するという観点から好ましく用いられる。(a1-2)成分は得られる硬化物に強靭性を付与できるという観点から任意成分として添加できるが、以下の(a)成分で鎖状シロキサン単位を多く有する架橋剤を用いる場合はそちらで代用してもよい。いずれの場合においても、分岐状シロキサン単位を多く有する成分と鎖状シロキサン単位を多く有する成分の質量比が50:50~100:0の範囲内、あるいは60:40~100:0の範囲内であることが好ましい。これは、分岐状シロキサン単位を多く有する成分と鎖状シロキサン単位を多く有する成分との質量比が上記範囲内の値であると、得られる硬化物の硬度ならびに機械的強度が良好となるからである。
【0058】
なお、(a)成分を、有機過酸化物によるラジカル反応する場合、(a1-1)成分と(a1-2)成分を10:90~90:10の範囲内で反応させ、(a)成分を用いなくてもよい。
【0059】
(a)成分は、ヒドロシリル化反応において、(a1-1)成分および/または(a1-2)成分を架橋するための成分であり、一分子中にケイ素原子結合水素原子を少なくとも2個含有するオルガノポリシロキサンである。(a)成分中の水素原子以外のケイ素原子に結合する基としては、炭素数1~20のアルキル基、炭素数1~20のハロゲン置換アルキル基、炭素数6~20のアリール基、炭素数6~20のハロゲン置換アリール基、炭素数7~20のアラルキル基、アルコキシ基、エポキシ基含有基、または水酸基が例示され、前記と同様の基が例示される。
【0060】
このような(a)成分は限定されないが、好ましくは、平均組成式:
SiO(4-k-m)/2
で表されるオルガノハイドロジェンポリシロキサンである。式中、Rは、炭素数1~20のアルキル基、炭素数1~20のハロゲン置換アルキル基、炭素数6~20のアリール基、炭素数6~20のハロゲン置換アリール基、または炭素数7~20のアラルキル基であり、前記Rと同様の基が例示され、好ましくは、メチル基、またはフェニル基である。
【0061】
また、式中、kは1.0~2.5の範囲の数、好ましくは、1.2~2.3の範囲の数であり、mは0.01~0.9の範囲の数、好ましくは、0.05~0.8の範囲の数であり、かつ、k+mは1.5~3.0の範囲の数、好ましくは、2.0~2.7の範囲の数である。
【0062】
(a)成分は、分岐状シロキサン単位を多く有する樹脂状オルガノハイドロジェンポリシロキサンであってもよく、鎖状シロキサン単位を多く有する鎖状オルガノハイドロジェンポリシロキサンであってもよい。具体的には、(a)成分は、下記(a2-1)で表されるオルガノハイドロジェンポリシロキサン、下記(a2-2)で表されるオルガノハイドロジェンポリシロキサン、またはこれらの混合物が例示される。
【0063】
(a2-1)成分は、平均単位式:
[R SiO1/2][R SiO2/2][RSiO3/2][SiO4/2](R1/2)
で表されるケイ素原子結合水素原子を有する樹脂状オルガノハイドロジェンポリシロキサンである。式中、Rは、各々独立に、炭素数1~20のアルキル基、炭素数1~20のハロゲン置換アルキル基、炭素数6~20のアリール基、炭素数6~20のハロゲン置換アリール基、炭素数7~20のアラルキル基、または水素原子であり、前記Rと同様の基が例示される。また、式中、Rは水素原子または炭素数1~6のアルキル基であり、前記と同様の基が例示される。
【0064】
また、式中、fは0~0.7の範囲内の数、gは0~0.7の範囲内の数、hは0~0.9の範囲内の数、iは0~0.7の範囲内の数、jは0~0.1の範囲内の数、かつ、h+iは0.3~0.9の範囲内の数、f+g+h+iは1であり、好ましくは、fは0~0.6の範囲内の数、gは0~0.6の範囲内の数、hは0~0.9の範囲内の数、iは0~0.5の範囲内の数、jは0~0.05の範囲内の数、かつ、h+iは0.4~0.9の範囲内の数、f+g+h+iは1である。
【0065】
(a2-2)成分は、平均単位式:
(R SiO1/2)f'(R SiO2/2)g'(RSiO3/2)h'(SiO4/2)i'(R1/2)j'
で表される、一分子中にケイ素原子結合水素原子を少なくとも2個有するオルガノポリシロキサンである。式中、RおよびRは前記と同様の基である。
【0066】
また、式中、f'は0.01~0.3の範囲内の数、g'は0.4~0.99の範囲内の数、h'は0~0.2の範囲内の数、i'は0~0.2の範囲内の数、j'は0~0.1の範囲内の数、かつ、h'+i'は0~0.2の範囲内の数、f'+g'+h'+i'は1であり、好ましくは、f'は0.02~0.20の範囲内の数、g'は0.6~0.99の範囲内の数、h'は0~0.1の範囲内の数、i'は0~0.1の範囲内の数、j'は0~0.05の範囲内の数、かつ、h'+i'は0~0.1の範囲内の数、f'+g'+h'+i'は1である。
【0067】
上記のとおり、(a)成分において、分岐状シロキサン単位を多く有するレジン状のオルガノポリシロキサンは、硬化物に硬度と機械的強度を付与し、鎖状シロキサン単位を多く有する得られるオルガノポリシロキサンは、硬化物に強靭性を付与するものであるので、(a)成分として(a2-1)成分と(a2-2)成分を適宜用いることが好ましい。具体的には、(a)成分中に分岐状シロキサン単位が少ない場合には、(a)成分として(a2-1)成分を主に用いることが好ましく、(a)成分中に鎖状シロキサン単位が少ない場合には、(a2-2)成分を主に用いることが好ましい。(a)成分は、(a2-1)成分と(a2-2)成分の質量比が50:50~100:0の範囲内、あるいは60:40~100:0の範囲内であることが好ましい。
【0068】
このような(a)成分としては、次のオルガノポリシロキサンが例示される。式中、Me、Phはそれぞれメチル基、フェニル基を表す。
PhSi(OSiMeH)、すなわち、Ph0.67Me1.330.67SiO0.67
HMeSiO(MeSiO)20SiMeH、すなわち、Me2.000.09SiO0.95
HMeSiO(MeSiO)55SiMeH、すなわち、Me2.000.04SiO0.98
PhSi(OSiMeH)、すなわち、Ph0.25Me1.500.75SiO0.75
(HMeSiO1/2)0.6(PhSiO3/2)0.4、すなわち、Ph0.40Me1.200.60SiO0.90
【0069】
(a)成分の添加量は、(a)成分中のアルケニル基に対して、(a)成分中のケイ素原子結合水素原子のモル比が0.2~0.7となる量であり、好ましくは、0.3~0.6となる量である。これは、(a)成分の添加量が上記範囲内であると、得られる硬化物の初期の硬度および機械的強度が良好となるためである。
【0070】
(a)成分をラジカル反応するために用いる有機過酸化物は限定されず、下記(C)成分で例示する有機過酸化物を用いることができる。ラジカル反応する際、(a)成分は、(a1-1)成分と(a1-2)成分の質量比が10:90~90:10の範囲内の混合物であることが好ましい。なお、有機過酸化物の添加量は限定されないが、(a)成分100質量部に対して、0.1~5質量部の範囲内、0.2~3質量部の範囲内、あるいは0.2~1.5質量部の範囲内であることが好ましい。
【0071】
また、(a)成分と(a)成分とをヒドロシリル化反応するために用いるヒドロシリル化反応用触媒は限定されず、下記(C)成分で例示するヒドロシリル化反応用触媒を用いることができる。なお、ヒドロシリル化反応用触媒の添加量は、(a)成分と(a)成分の合計量に対して、ヒドロシリル化反応用触媒中の白金系金属原子が質量単位で、0.01~500ppmの範囲内、0.01~100ppmの範囲内、あるいは0.01~50ppmの範囲内となる量であることが好ましい。
【0072】
上記(A)は、下記(a)成分および下記(a)成分を、縮合反応用触媒により縮合反応させたものである。
【0073】
(a)成分は、平均単位式:
(R SiO1/2)(R SiO2/2)(RSiO3/2)(SiO4/2)(R1/2)
で表される縮合反応性のオルガノポリシロキサンである。式中、Rは、各々独立に、炭素数1~20のアルキル基、炭素数1~20のハロゲン置換アルキル基、炭素数2~20のアルケニル基、炭素数6~20のアリール基、炭素数6~20のハロゲン置換アリール基、または炭素数7~20のアラルキル基であり、前記と同様の基が例示される。また、式中のRは水素原子、炭素数1~6のアルキル基、または炭素数2~5のアシル基であり、メトキシ基、エトキシ基等のアルコキシ基;アシルオキシ基が例示される。(a)成分は、一分子中に少なくとも1個のケイ素原子結合水酸基、ケイ素原子結合アルコキシ基、またはケイ素原子結合アシロキシ基を有する。また、一分子中、少なくとも2個のRはアルケニル基であり、全Rの10モル%以上、または20モル%以上がフェニル基であることが好ましい。
【0074】
式中、pは0~0.7の範囲内の数、qは0~0.7の範囲内の数、rは0~0.9の範囲内の数、sは0~0.7の範囲内の数、tは0.01~0.10の範囲内の数、かつ、r+sは0.3~0.9の範囲内の数、p+q+r+sは1であり、好ましくは、pは0~0.6の範囲内の数、qは0~0.6の範囲内の数、rは0~0.9の範囲内の数、sは0~0.5の範囲内の数、tは0.01~0.05の範囲内の数、かつ、r+sは0.4~0.9の範囲内の数である。これは、p、q、およびr+sがそれぞれ上記範囲内の数であると、25℃において柔軟性を持ちつつも、非流動性で、表面粘着性が低く、高温での溶融粘度が十分に低いホットメルト性のシリコーンが得られるからである。
【0075】
(a)成分は、平均単位式:
(R SiO1/2)p'(R SiO2/2)q'(RSiO3/2)r'(SiO4/2)s'(R1/2)t'
で表される縮合反応性のオルガノポリシロキサンである。式中、RおよびRは前記と同様の基である。(a)成分は、一分子中に少なくとも1個のケイ素原子結合水酸基、ケイ素原子結合アルコキシ基、またはケイ素原子結合アシロキシ基を有する。また、式中、p'は0.01~0.3の範囲内の数、q'は0.4~0.99の範囲内の数、r'は0~0.2の範囲内の数、s'は0~0.2の範囲内の数、t'は0~0.1の範囲内の数、かつ、r'+s'は0~0.2の範囲内の数、p'+q'+r'+s'は1であり、好ましくは、p'は0.02~0.20の範囲内の数、q'は0.6~0.99の範囲内の数、r'は0~0.1の範囲内の数、s'は0~0.1の範囲内の数、t'は0~0.05の範囲内の数、かつ、r'+s'は0~0.1の範囲内の数である。これは、p'、q'、r'、s'がそれぞれ上記範囲内の数であると、25℃において柔軟性を持ちつつも、非流動性で、表面粘着性が低く、高温での溶融粘度が十分に低いホットメルト性のシリコーンが得られるからである。
【0076】
(a)成分と(a)成分を縮合反応するための縮合反応用触媒は限定されず、例えば、ジブチル錫ジラウレート、ジブチル錫ジアセテート、オクテン酸錫、ジブチル錫ジオクテート、ラウリン酸錫等の有機錫化合物;テトラブチルチタネート、テトラプロピルチタネート、ジブトキシビス(エチルアセトアセテート)等の有機チタン化合物;その他、塩酸、硫酸、ドデシルベンゼンスルホン酸等の酸性化合物;アンモニア、水酸化ナトリウム等のアルカリ性化合物;1,8-ジアザビシクロ[5.4.0]ウンデセン(DBU)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)等のアミン系化合物が例示され、好ましくは、有機錫化合物、有機チタン化合物である。
【0077】
また、(A)成分は、樹脂状オルガノシロキサンブロックと鎖状オルガノシロキサンブロックからなるブロックコポリマーである。このような(A)成分は、好ましくは、40~90モル%の式[R SiO2/2]のジシロキシ単位、10~60モル%の式[RSiO3/2]のトリシロキシ単位からなり、0.5~35モル%のシラノール基[≡SiOH]を含むことが好ましい。ここで、Rは、各々独立に、炭素数1~20のアルキル基、炭素数1~20のハロゲン置換アルキル基、炭素数2~20のアルケニル基、炭素数6~20のアリール基、炭素数6~20のハロゲン置換アリール基、または炭素数7~20のアラルキル基であり、前記と同様の基が例示される。一分子中、少なくとも2個のRはアルケニル基である。また、前記ジシロキシ単位[R SiO2/2]は、1つの直鎖ブロック当たりに平均して100~300個のジシロキシ単位を有する直鎖ブロックを形成し、前記トリシロキシ単位[RSiO3/2]は、少なくとも500g/モルの分子量を有する非直鎖ブロックを形成し、少なくとも30%の非直鎖ブロックが互いに結合しており、各直鎖ブロックは、少なくとも1つの非直鎖ブロックと-Si-O-Si-結合を介して結合しており、少なくとも20000g/モルの質量平均分子量を有し、0.5~4.5モル%の少なくとも1つのアルケニル基を含む、樹脂状オルガノシロキサンブロック共重合体である。
【0078】
(A)成分は、(a)樹脂状オルガノシロキサンまたは樹脂状オルガノシロキサンブロック共重合体と、(a)鎖状オルガノシロキサン、さらに必要に応じて(a)シロキサン化合物を縮合反応して調製される。
【0079】
(a)成分は、平均単位式:
[R SiO1/2][RSiO2/2]ii[RSiO3/2]iii[RSiO3/2]iv[SiO4/2]
で表される樹脂状オルガノシロキサンである。式中、Rは、各々独立に、炭素数1~20のアルキル基、炭素数1~20のハロゲン置換アルキル基、炭素数2~20のアルケニル基、炭素数6~20のアリール基、炭素数6~20のハロゲン置換アリール基、または炭素数7~20のアラルキル基であり、前記と同様の基が例示される。また、式中、Rは、各々独立に、炭素数1~20のアルキル基、炭素数1~20のハロゲン置換アルキル基、炭素数6~20のアリール基、炭素数6~20のハロゲン置換アリール基、または炭素数7~20のアラルキル基であり、前記Rと同様の基が例示される。
【0080】
また、式中、i、ii、iii、iv、およびvは、各シロキシ単位のモル分率を表し、iは0~0.6の数であり、iiは0~0.6の数であり、iiiは0~1の数であり、ivは0~1の数であり、vは0~0.6の数であり、ただし、ii+iii+iv+v>0であり、かつ、i+ii+iii+iv+v≦1である。また、(a)成分は、一分子中に0~35モル%のシラノール基[≡SiOH]を含むことが好ましい。
【0081】
(a)成分は、一般式:
3-α(X)αSiO(R SiO)βSi(X)α 3-α
で表される直鎖状のオルガノシロキサンである。式中、Rは前記と同じであり、前記と同様の基が例示される。また、式中、Xは、-OR、F、Cl、Br、I、-OC(O)R、-N(R、または-ON=CR (ここで、Rは水素原子または炭素数1~6のアルキル基である。)から選択される加水分解性基である。また、式中、αは、各々独立して、1、2、または3であり、βは50~300の整数である。
【0082】
(a)成分は、一般式:
SiX
で表されるシロキサン化合物である。式中、R、R、およびXは前記と同様の基である。
【0083】
(a)成分と(a)成分および/または(a)成分を縮合反応するための縮合反応用触媒は限定されず、例えば、ジブチル錫ジラウレート、ジブチル錫ジアセテート、オクテン酸錫、ジブチル錫ジオクテート、ラウリン酸錫等の有機錫化合物;テトラブチルチタネート、テトラプロピルチタネート、ジブトキシビス(エチルアセトアセテート)等の有機チタン化合物;その他、塩酸、硫酸、ドデシルベンゼンスルホン酸等の酸性化合物;アンモニア、水酸化ナトリウム等のアルカリ性化合物;1,8-ジアザビシクロ[5.4.0]ウンデセン(DBU)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)等のアミン系化合物が例示される。
【0084】
(A1)成分は、ホットメルト性を示し、具体的には、25℃において非流動性であり、100℃の溶融粘度が8000Pa・s以下であることが好ましい。非流動性とは、無負荷の状態で流動しないことを意味し、例えば、JIS K 6863-1994「ホットメルト接着剤の軟化点試験方法」で規定されるホットメルト接着剤の環球法による軟化点試験方法で測定される軟化点未満での状態を示す。すなわち、25℃において非流動性であるためには、軟化点が25℃よりも高い必要がある。
【0085】
(A1)成分は、100℃の溶融粘度が8000Pa・s以下、5000Pa・s以下、あるいは10~3000Pa・sの範囲内であることが好ましい。100℃の溶融粘度が上記の範囲内であると、ホットメルト後、25℃に冷却した後の密着性が良好である。
【0086】
(A1)成分は微粒子状であれば、粒子径は限定されないが、平均一次粒子径は1~5000μmの範囲内、1~500μmの範囲内、1~100μmの範囲内、1~20μmの範囲内、あるいは1~10μmの範囲内であることが好ましい。この平均一次粒子径は、例えば、光学顕微鏡またはSEMで観察することにより求めることができる。(A1)成分の形状は限定されず、球状、紡錘状、板状、針状、不定形状が例示され、均一に溶融することから、球状あるいは真球状であることが好ましい。特に(A1)成分を1~10μmの真球状とすることで本配合物の溶融特性及び硬化後の機械的物性を良好に改善できる
【0087】
(A1)成分を製造する方法は限定されず、公知の方法を用いることができる。例えば、(A1)成分を単に微粒子化する方法、あるいは少なくとも2種類のオルガノポリシロキサンを架橋させる工程と、その反応物を微粒子化する工程を同時にまたは別々に行う方法が挙げられる。なお、微粒子状の(A1)成分を得る際に、後述する(C)成分の一部、例えば、ヒドロシリル化反応触媒等を(A1)成分と共に微粒子化してもよく、かつ、好ましい。
【0088】
少なくとも2種類のオルガノポリシロキサンを架橋させた後、得られたオルガノポリシロキサンを微粒子化する方法としては、例えば、前記オルガノポリシロキサンを、粉砕機を用いて粉砕する方法や、溶剤存在下において直接微粒子化する方法が挙げられる。粉砕機は限定されないが、例えば、ロールミル、ボールミル、ジェットミル、ターボミル、遊星ミルが挙げられる。また、前記シリコーンを溶剤存在下において直接微粒子化する方法としては、例えば、スプレードライヤーによるスプレー、あるいは2軸混練機やベルトドライヤーによる微粒子化が挙げられる。本発明においては、スプレードライヤーによるスプレーにより得られた真球状のホットメルト性オルガノポリシロキサン樹脂微粒子を用いることが、粒状配合物の溶融特性、硬化物の柔軟性、(B)成分の配合量、製造時の効率および組成物の取扱い作業性の見地から特に好ましい。
【0089】
スプレードライヤー等の使用により、真球状で、かつ、平均一次粒子径が1~500μmである(A1)成分を製造することができる。なお、スプレードライヤーの加熱・乾燥温度は、オルガノポリシロキサン樹脂微粒子の耐熱性等に基づいて適宜設定する必要がある。なお、オルガノポリシロキサン樹脂微粒子の二次凝集を防止するため、オルガノポリシロキサン樹脂微粒子の温度をそのガラス転移温度以下に制御することが好ましい。このようにして得られたオルガノポリシロキサン樹脂微粒子は、サイクロン、バッグフィルター等で回収できる。
【0090】
均一な(A1)成分を得る目的で、上記工程において、硬化反応を阻害しない範囲内で溶剤を用いてもよい。溶剤は限定されないが、n-ヘキサン、シクロヘキサン、n-ヘプタン等の脂肪族炭化水素;トルエン、キシレン、メシチレン等の芳香族炭化水素;テトラヒドロフラン、ジプロピルエーテル等のエーテル類;ヘキサメチルジシロキサン、オクタメチルトリシロキサン、デカメチルテトラシロキサン等のシリコーン類;酢酸エチル、酢酸ブチル、酢酸プロピレングリコールモノメチルエーテル等のエステル類;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類が例示される。
【0091】
[(A2-1)成分]
(A2-1)成分は、(A2-2)成分と共に使用される本組成物の主剤の一つであり、単独ではホットメルト性を有しない硬化反応性の官能基を含有するオルガノポリシロキサン樹脂微粒子またはそれを含むオルガノポリシロキサン樹脂微粒子の混合物である。このような(A2-1)成分は、他の成分(例えば、直鎖状または分岐鎖状のオルガノポリシロキサンである(A2-2)成分、非反応性のオルガノポリシロキサン樹脂微粒子である(A2-1-1)成分、硬化剤である(C)成分)とともに微粒子の形態であることが必要であり、平均一次粒子径が1~20μmの真球状のシリコーン微粒子であることが特に好ましい。
【0092】
(A2-1)成分は、分子内に炭素-炭素二重結合を有する硬化反応性基を有することが必要である、このような硬化反応性基は、ヒドロシリル化反応性、ラジカル反応性または有機過酸化物硬化性の官能基であり、他の成分との架橋反応によって、硬化物を形成する。
【0093】
(A2-1)成分は、分子全体としてホットメルト性を有さず、無溶媒の状態で固体状のオルガノポリシロキサン樹脂微粒子である。ここで、ホットメルト性を有しないとは、(A2-1)成分である樹脂粒子がそれ単独では200℃以下の温度において加熱溶融挙動を示さないことであり、具体的には、軟化点および溶融粘度を有さないことを意味する。(A2-1)成分において、このような物性は特に構造的に制限されるものではないが、オルガノポリシロキサン樹脂中の官能基が炭素原子数1~10の一価炭化水素基、特にメチル基等の炭素原子数1~10のアルキル基およびアルケニル基から選ばれる官能基であり、フェニル基等のアリール基を実質的に含まないことが好ましい。フェニル基等を大量に含む場合、当該成分はホットメルト性となる場合があり、かつ、後述する硬化物の加熱エージング(高温)下における耐着色性が低下する場合がある。好適には、(A2-1)成分中のケイ素原子に結合した官能基は、メチル基およびビニル基等のアルケニル基から選ばれる基であり、全てのケイ素原子に結合した官能基の70モル~99モル%がメチル基であることが好ましく、80~99モル%がメチル基あることがより好ましく、88~99モル%がメチル基あり、その他のケイ素原子に結合した官能基がビニル基等のアルケニル基であることが特に好ましい。かかる範囲において、(A2-1)成分はホットメルト性ではなく、その硬化物の高温下における耐着色性等に特に優れる成分として設計可能である。なお、当該(A2-1)成分中には、少量の水酸基またはアルコキシ基を含んでもよい。
【0094】
(A2-1)成分は、無溶媒の状態で固体状のオルガノポリシロキサン樹脂微粒子であり、分子内にSiO4/2で表されるシロキサン単位を全シロキサン単位の少なくとも20モル%以上含有することを特徴とする。好適には、これらの分岐シロキサン単位は、全シロキサン単位の少なくとも40モル%以上であり、50モル%以上、特に、50~90モル%の範囲であることが特に好ましい。また、Rは一価有機基であり、好適には炭素原子数1~10の一価炭化水素基、特にメチル基等の炭素原子数1~10のアルキル基およびアルケニル基から選ばれる官能基であり、技術的効果の見地から、Rにはフェニル基等のアリール基を実質的に含まないことが好ましい。
【0095】
すなわち、(A2-1)成分は、好適には、
(A2-1-1)分子全体としてホットメルト性を有さず、分子内に炭素-炭素二重結合を含む硬化反応性の官能基を有さず、かつ、SiO4/2で表されるシロキサン単位を全シロキサン単位の少なくとも20モル%以上含有するオルガノポリシロキサン樹脂微粒子であってよい。
【0096】
同様に、(A2-1)成分は、好適には、上記の(A2-1-1)成分と、(A2-1-2)分子全体としてホットメルト性を有さず、分子内に少なくとも1個の炭素-炭素二重結合を含む硬化反応性の官能基を有し、かつ、SiO4/2で表されるシロキサン単位を全シロキサン単位の少なくとも20モル%以上含有するオルガノポリシロキサン樹脂微粒子からなるオルガノポリシロキサン樹脂微粒子混合物であってよい。
【0097】
[(A2-1-1)成分]
本発明の、(A2-1-1)成分は、分子内に炭素-炭素二重結合を含む硬化反応性の官能基を有しない非ホットメルト性のオルガノポリシロキサン樹脂微粒子である。
【0098】
(A2-1-1)成分は分子全体としてホットメルト性を有さず、分子内に炭素-炭素二重結合を含む硬化反応性の官能基を有さず、かつ、SiO4/2で表されるシロキサン単位を全シロキサン単位の少なくとも20モル%以上含有するオルガノポリシロキサン樹脂微粒子であり、本成分を、(A2-1)成分の一部として、(A2-2)成分である直鎖状または分岐鎖状のオルガノポリシロキサンと所定の量的範囲で併用することで、組成物全体としてのホットメルト性を実現する成分である。
【0099】
(A2-1-1)成分は、分子全体としてホットメルト性を有さず、無溶媒の状態で固体状のオルガノポリシロキサン樹脂微粒子である。ここで、ホットメルト性を有しないとは、(A2-1-1)成分である樹脂粒子がそれ単独では200℃以下の温度で加熱溶融挙動を示さないことであり、具体的には、軟化点および溶融粘度を有さないことを意味し、既に(A2-1)成分において説明したとおりである。
【0100】
好適には、(A2-1-1)成分中のケイ素原子に結合した官能基は、メチル基であり、全てのケイ素原子に結合した官能基の70モル%以上がメチル基であることが好ましく、80モル%以上がメチル基あることがより好ましく、88モル%以上がメチル基であることが特に好ましい。かかる範囲において、(A)成分はホットメルト性ではなく、その硬化物の高温下における耐着色性等に特に優れる成分として設計可能である。なお、当該(A)成分中には、少量の水酸基またはアルコキシ基を含んでもよい。
【0101】
(A2-1-1)成分は、分子内に炭素-炭素二重結合を有する硬化反応性基を有しないので、それ自体では、硬化物を形成しないが、組成物全体としてのホットメルト性の改善や硬化物に対する補強効果を有し、硬化性を有する(A2-1)成分の一部として使用することができる。
【0102】
(A2-1-1)成分は、無溶媒の状態で固体状のオルガノポリシロキサン樹脂微粒子であり、分子内に分岐シロキサン単位であるSiO4/2で表されるシロキサン単位を全シロキサン単位の少なくとも20モル%以上含有することを特徴とする。好適には、当該シロキサン単位は、全シロキサン単位の少なくとも40モル%以上であり、50モル%以上、特に、50~65モル%の範囲であることが特に好ましい。
【0103】
好適には、(A2-1-1)成分は、(A1)下記平均単位式:
(R SiO1/2(R SiO2/2(RSiO3/2(SiO4/2(R1/2)e
(式中、各Rは独立して1~10個の炭素原子を有し、炭素-炭素二重結合を含まない一価炭化水素基;各Rは水素原子又は1~10個の炭素原子を有するアルキル基であり;a、b、c、d及びeは、以下を満たす数である:0.10≦a≦0.60、0≦b≦0.70、0≦c≦0.80、0.20≦d≦0.65、0≦e≦0.05、かつa+b+c+d=1)
で表される非ホットメルト性のオルガノポリシロキサン樹脂粒子である。
【0104】
上記の平均単位式において、各Rは独立して1~10個の炭素原子を有し、炭素-炭素二重結合を含まない一価炭化水素基、例えばメチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、又は類似のアルキル基;フェニル、トリル、キシリル、又は類似のアリール基;ベンジル、フェネチル、又は類似のアラルキル基;及びクロロメチル、3-クロロプロピル、3,3,3-トリフルオロプロピル、又は類似のハロゲン化アルキル基等である。ここで、1分子中の全Rの70モル%以上がメチル基等の炭素原子数1~10のアルキル基であることが好ましく、88モル%以上がメチル基であることが、工業生産上および発明の技術的効果の見地から、特に好ましい。一方、Rはフェニル基等のアリール基を実質的に含まないことが好ましい。フェニル基等のアリール基を大量に含む場合、(A)成分自体がホットメルト性となって、本発明の技術的効果を達成できなくなる場合があるほか、硬化物の高温下での耐着色性が悪化する場合がある。
【0105】
式中、Rは水素原子又は1~10個の炭素原子を有するアルキル基である。Rのアルキル基は、メチル、エチル、プロピル、ブチル、ペンチル又はヘキシルで例示される。当該Rを含む官能基R1/2は、(A2-1-1)成分中の水酸基又はアルコキシ基に該当する。
【0106】
式中、aは、一般式:R SiO1/2のシロキサン単位の割合を示す数である。この数は、0.1≦a≦0.60、好ましくは0.15≦a≦0.55を満たす。aが前記範囲の下限以上であれば、本成分を含む組成物が、組成物全体として良好なホットメルト性能を実現できる。他方、aが前記範囲の上限以下であれば、得られる硬化物の機械的強度(硬度等)が低くなりすぎない。
【0107】
式中、bは、一般式:R SiO2/2のシロキサン単位の割合を示す数である。この数は、0≦b≦0.70、好ましくは0≦b≦0.60を満たす。bが範囲の上限以下であれば、本成分を含む組成物が、組成物全体として良好なホットメルト性能を実現でき、かつ室温にてべたつきの少ない粒状組成物を得ることができる。本発明において、bは0であってよく、かつ好ましい。
【0108】
式中、cは、一般式:RSiO3/2のシロキサン単位の割合を示す数である。この数は、0≦c≦0.70、好ましくは0≦c≦0.60を満たす。cが範囲の上限以下であれば、本成分を含む組成物が、組成物全体として良好なホットメルト性能を実現でき、かつ室温にてべたつきの少ない粒状組成物を得ることができる。本発明において、cは0であってよく、かつ好ましい。
【0109】
式中、dは、SiO4/2のシロキサン単位の割合を示す数であり、0.20≦d≦0.65であることが必要であり、0.40≦d≦0.65であることが好ましく、0.50≦d≦0.65であることが特に好ましい。当該数値範囲内において、本成分を含む組成物が、組成物全体として良好なホットメルト性能でき、得られる硬化物の機械的強度に優れ、かつ、組成物全体としてべたつきのない、取扱作業性の良好な組成物が実現できる。
【0110】
式中、eは一般式:R1/2の単位の割合を示す数であり、同単位はオルガノポリシロキサン樹脂中に含まれうるケイ素原子に結合した水酸基またはアルコキシ基を意味する。この数は、0≦e≦0.05、好ましくは0≦e≦0.03を満たす。eが範囲の上限以下であれば、組成物全体として良好なホットメルト性能を実現する材料を得ることができる。なお、最終的には、各シロキサン単位の総和であるa、b、c及びdの合計は1に等しい。
【0111】
(A2-1-1)成分は、上記の特徴を有する微粒子状のオルガノポリシロキサン樹脂であり、好適には、レーザー回折・散乱法等を用いて測定される平均一次粒子径が1~20μmの真球状のオルガノポリシロキサン樹脂微粒子である。かかる微粒子成分を用いることで、本組成物を取り扱い作業性およびホットメルト性に優れた硬化性粒状組成物として調製ないし生産することができる。ここで、(A2-1-1)成分を製造する方法は限定されず、上記の(A1)成分において例示したものと同様の方法が挙げられる。また、微粒子状の(A2-1-1)成分を得る際に、後述する(C)成分、例えば、ヒドロシリル化反応触媒等を(A2-1-1)成分と共に微粒子化してもよく、かつ、好ましい。
【0112】
本発明の(A2-1)成分が、非反応性の(A2-1-1)成分を含む混合物である場合、(A2-1-1)成分100質量部に対して、反応性のオルガノポリシロキサン樹脂微粒子を3~50質量部の範囲で配合することが好ましい。
【0113】
より具体的には、本発明の(A2-1)成分は、
(A2-1-1)分子全体としてホットメルト性を有さず、分子内に炭素-炭素二重結合を含む硬化反応性の官能基を有さず、かつ、SiO4/2で表されるシロキサン単位を全シロキサン単位の少なくとも20モル%以上含有するオルガノポリシロキサン樹脂微粒子 100質量部、および
(A2-1-2)分子全体としてホットメルト性を有さず、分子内に少なくとも1個の炭素-炭素二重結合を含む硬化反応性の官能基を有し、かつ、SiO4/2で表されるシロキサン単位を全シロキサン単位の少なくとも20モル%以上含有するオルガノポリシロキサン樹脂微粒子 3~50質量部
の混合物であることが特に好ましい。
【0114】
[(A2-2)成分]
(A2-2)成分は、(A2-1)成分と共に使用される本組成物の主剤の一つであり、25℃において液状の直鎖状または分岐鎖状のオルガノポリシロキサンであって、分子内に少なくとも2個の炭素-炭素二重結合を含む硬化反応性の官能基を有するものである。このような硬化反応性の鎖状オルガノポリシロキサンは、前述の固体状オルガノポリシロキサン樹脂粒子と混合することで、組成物全体としてホットメルト特性を発現する。
【0115】
(A2-1)成分同様に、(A2-2)成分は、分子内に炭素-炭素二重結合を有する硬化反応性基を有することが必要である、このような硬化反応性基は、ヒドロシリル化反応性、ラジカル反応性または有機過酸化物硬化性の官能基であり、他の成分との架橋反応によって、硬化物を形成する。このような硬化反応性基は、アルケニル基またはアクリル基であり、前記同様の基が例示され、特にビニル基またはヘキセニル基であることが好ましい。
【0116】
(A2-2)成分は、25℃(室温)において液状の直鎖状または分岐鎖状のオルガノポリシロキサンであり、室温で固体状の(A2-1)成分、および任意で後述する(A2-1-2)成分と混合することで、組成物全体としてホットメルト特性を発現する。その構造は、少数の分岐のシロキサン単位(例えば、一般式:RSiO3/2で表されるT単位(Rは独立して1~10個の炭素原子を有する一価炭化水素基)またはSiO4/2で表されるQ単位)を有する分岐鎖状のオルガノポリシロキサンであってもよいが、好適には、
(A2-2-1)下記構造式:
SiO(SiR O)SiR
(式中、各Rは独立して1~10個の炭素原子を有する一価炭化水素基であり、但し1分子中のRの少なくとも2個はアルケニル基であり、kは20~5,000の数である)
で表される直鎖状ジオルガノポリシロキサンである。好適には、分子鎖両末端に各々1個ずつアルケニル基を有する直鎖状ジオルガノポリシロキサンが好ましい。
【0117】
式中、各Rは独立して1~10個の炭素原子を有する一価炭化水素基、例えばメチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、又は類似のアルキル基;ビニル、アリル、ブテニル、ペンテニル、ヘキセニル、又は類似のアルケニル基;フェニル、トリル、キシリル、又は類似のアリール基;ベンジル、フェネチル、又は類似のアラルキル基;及びクロロメチル、3-クロロプロピル、3,3,3-トリフルオロプロピル、又は類似のハロゲン化アルキル基等である。更に、1分子中のRの少なくとも2個がアルケニル基、好ましくはビニル基である。また、各Rはメチル基等の炭素原子数1~10のアルキル基およびビニル基、ヘキセニル基等のアルケニル基から選ばれる官能基であることが好ましく、全てのRのうち、少なくとも2個がアルケニル基であり、残りのRがメチル基であることが好ましい。なお、発明の技術的効果の見地から、Rはフェニル基等のアリール基を実質的に含まないことが好ましい。フェニル基等のアリール基を大量に含む場合、硬化物の高温下での耐着色性が悪化する場合がある。特に好適には、分子鎖両末端に一つずつビニル基等のアルケニル基を有し、他のRがメチル基であるものが好ましい。
【0118】
式中、kは、20~5,000、好ましくは30~3,000、特に好ましくは45~800の数である。kが前記の範囲の下限以上であれば、室温でべたつきの少ない粒状組成物を得ることができる。他方、kが前記の範囲の上限以下であれば、組成物全体として良好なホットメルト性能を実現できる。
【0119】
[非ホットメルト性のオルガノポリシロキサン樹脂微粒子を含む混合物]
上記の(A2-1-2)成分、(A2-1-1)成分および(A2-2)成分を本発明の(A)成分として使用する場合、(A2-1-1)成分 100質量部に対して、(A2-1-2)成分の使用量が3~50質量部の範囲内であり、4~45質量部の範囲が特に好ましい。ここで、(A2-1-2)成分は、(A2-2)成分とともに本シリコーン組成物に硬化反応性を与える成分であるので、前記下限未満では、硬化性および硬化速度が低下する場合がある。また、前記上限を超えると、特に、当該組成物に機能性フィラーを大量に配合した場合に、硬化物の応力緩和性が高いという技術的効果を達成できなくなる場合がある。
【0120】
上記の(A2-1-1,2)成分と(A2-2)成分の組み合わせについて限定されるものではないが、好適には、オルガノポリシロキサン樹脂粒子である(A2-1-1,2)成分と、直鎖状または分岐鎖状のオルガノポリシロキサンである(A2-2)成分との分子量が異なる組み合わせを選択することが好ましい。すなわち、比較的分子量の小さい(A2-1-1,2)成分と比較的分子量の大きい(A2-2)成分の組み合わせ;または比較的分子量の大きい(A2-1-1,2)成分と比較的分子量の小さい(A2-2)成分の組み合わせが、粒子化の見地から好ましい。一方、分子量が比較的小さい成分同士を組み合わせると、両者が相溶して粒子化できない場合がある。なお、特許文献3に開示された高分子量のMQ樹脂と分子量の大きい(長鎖)ビニルポリシロキサンの組み合わせにおいては、混合物の溶融粘度が高くなる傾向にあり、後述の機能性無機フィラーを加える本発明の組成物では溶融粘度の低い組成物を生産するために、無機フィラーの充填量を少なくする必要がある。
【0121】
[(B)成分]
本発明の(B)成分は機能性無機フィラーであり、軟化点を有さないか又は50℃以下では軟化しない少なくとも1種のフィラーであることが好ましく、本組成物の取扱い作業性を向上し、本組成物の硬化物に機械的特性やその他の特性を付与する成分であってもよい。(B)成分としては、無機フィラー、有機フィラー、およびこれらの混合物が例示され、無機フィラーが好ましい。この無機フィラーとしては、補強性フィラー、白色顔料、熱伝導性フィラー、導電性フィラー、蛍光体、およびこれらの少なくとも2種の混合物が例示され、特に、平均粒子径5μm以上の粗大粒子を実質的に含まない補強性フィラーを含有することが好ましい。また、有機フィラーとしては、シリコーン樹脂系フィラー、フッ素樹脂系フィラー、ポリブタジエン樹脂系フィラーが例示される。なお、これらのフィラーの形状は特に制限されるものではなく、球状、紡錘状、扁平状、針状、不定形等であってよい。
【0122】
本組成物を封止剤、保護剤、接着剤、光反射材等の用途で使用する場合には、硬化物に機械的強度を付与し、保護性または接着性を向上させることから、(B)成分として補強性フィラーを配合することが好ましい。この補強性フィラーとしては、ヒュームドシリカ、沈降性シリカ、溶融シリカ、焼成シリカ、ヒュームド二酸化チタン、石英、炭酸カルシウム、ケイ藻土、酸化アルミニウム、水酸化アルミニウム、酸化亜鉛、炭酸亜鉛が例示される。また、これらの補強性フィラーを、メチルトリメトキシシラン等のオルガノアルコキシシラン;トリメチルクロロシラン等のオルガノハロシラン;ヘキサメチルジシラザン等のオルガノシラザン;α,ω-シラノール基封鎖ジメチルシロキサンオリゴマー、α,ω-シラノール基封鎖メチルフェニルシロキサンオリゴマー、α,ω-シラノール基封鎖メチルビニルシロキサンオリゴマー等のシロキサンオリゴマー等により表面処理してもよい。さらに、補強性フィラーとして、メタケイ酸カルシウム、チタン酸カリウム、硫酸マグネシウム、セピオライト、ゾノライト、ホウ酸アルミニウム、ロックウール、ガラスファイバー等の繊維状フィラーを用いてもよい。
【0123】
特に、本組成物に、溶融時の良好なギャップフィル性を付与する見地から、(B)成分は、(b1)平均粒子径0.1μm以下の無機フィラー、好適には補強性フィラーと(b2)平均粒子径0.1~5.0μmのの無機フィラー、好適には補強性フィラーの混合物であることが好ましい。両者の配合比は任意であるが、1/99~20/80、1/99~50/50、または5/95~40/60の質量比であってよい。特に、(b1-1)平均粒子径0.1μm以下、好適には0.05μm以下のフュームドシリカと(b2-1)平均粒子径0.1~5.0μm、好適には0.15~4.0μmの溶融シリカを、1/99~20/80で含有するものでよく、好適には、1/99~50/50、より好適には、5/95~40/60の質量比で含有することが好ましい。かかる無機フィラーの混合物の粒子は(A)成分の粒子径と同じ又は小さいサイズとなる場合、溶融時に良好なシリコーンーフィラーマトリックスを形成できる。これにより硬化物の柔軟性及び機械的強度が改善される。また、このような(B)成分は、実質的に粗大粒子を含有しないため、良好なギャップフィル性も達成できる。
【0124】
本発明の硬化性粒状シリコーン組成物は、光反射材、特に光半導体(LED)用途に用いる光反射材として用いることができ、硬化物の白色度を付与し、光反射性を向上させることから、(B)成分として、白色顔料を用いてもよい。この白色顔料としては、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化ジルコニウム、酸化マグネシウム等の金属酸化物;ガラスバルーン、ガラスビーズ等の中空フィラー;その他、硫酸バリウム、硫酸亜鉛、チタン酸バリウム、窒化アルミニウム、ボロンナイトライド、酸化アンチモンが例示される。光反射率と隠蔽性が高いことから、酸化チタンが好ましい。また、UV領域の光反射率が高いことから、酸化アルミニウム、酸化亜鉛、チタン酸バリウムが好ましい。また、この白色顔料をシランカップリング剤、シリカ、酸化アルミニウム等で表面処理してもよい。特に好適な白色顔料は、平均粒子径が0.5μm以下の酸化チタン微粒子であり、組成物中に10~30体積%程度充填することにより、硬化物に可視波長領域における高い光反射率と隠蔽性を与え、さらに、可視波長領域における光反射率が低波長側と高波長側を比較した場合にほとんど変化しないという実益がある。
【0125】
(B)成分は、(A)成分に該当しないシリコーン微粒子を含んでもよく、応力緩和特性等を改善、あるいは所望により調整することができる。シリコーン微粒子は、非反応性のシリコーンレジン微粒子およびシリコーンエラストマー微粒子が挙げられるが、柔軟性または応力緩和特性の改善の見地から、シリコーンエラストマー微粒子が好適に例示される。
【0126】
シリコーンエラストマー微粒子は、主としてジオルガノシロキシ単位(D単位)からなる直鎖状ジオルガノポリシロキサンの架橋物である。シリコーンエラストマー微粒子は、ヒドロシリル化反応やシラノール基の縮合反応等によるジオルガノポリシロキサンの架橋反応により調製することができ、中でも、側鎖又は末端に珪素結合水素原子を有するオルガノハイドロジェンポリシロキサンと側鎖又は末端にアルケニル基等の不飽和炭化水素基を有するジオルガノポリシロキサンを、ヒドロシリル化反応触媒下で架橋反応させることによって好適に得ることができる。シリコーンエラストマー微粒子は、球状、扁平状、及び不定形状等種々の形状を取りうるが、分散性の点から球状であることが好ましく、中でも真球状であることがより好ましい。こうしたシリコーンエラストマー微粒子の市販品としては、例えば、東レ・ダウコーニング社製の「トレフィルEシリーズ」、「EPパウダーシリーズ」、信越化学工業社製の「KMPシリーズ」等を挙げることができる。
なお、シリコーンエラストマー微粒子は、表面処理がされていてもよい。表面処理剤の例としては、例えば、メチルハイドロジェンポリシロキサン、シリコーンレジン、金属石鹸、シランカップリング剤、シリカ、酸化チタン等の無機酸化物、パーフルオロアルキルシラン、及びパーフルオロアルキルリン酸エステル塩等のフッ素化合物等が挙げられる。
【0127】
また、本組成物をLEDの波長変換材料に用いる場合には、光半導体素子からの発光波長を変換するため、(B)成分として蛍光体を配合してもよい。この蛍光体としては、特に制限はなく、発光ダイオード(LED)に広く利用されている、酸化物系蛍光体、酸窒化物系蛍光体、窒化物系蛍光体、硫化物系蛍光体、酸硫化物系蛍光体等からなる黄色、赤色、緑色、および青色発光蛍光体が例示される。酸化物系蛍光体としては、セリウムイオンを包含するイットリウム、アルミニウム、ガーネット系のYAG系緑色~黄色発光蛍光体;セリウムイオンを包含するテルビウム、アルミニウム、ガーネット系のTAG系黄色発光蛍光体;セリウムやユーロピウムイオンを包含するシリケート系緑色~黄色発光蛍光体が例示される。また、酸窒化物系蛍光体としては、ユーロピウムイオンを包含するケイ素、アルミニウム、酸素、窒素系のサイアロン系赤色~緑色発光蛍光体が例示される。窒化物系蛍光体としては、ユーロピウムイオンを包含するカルシウム、ストロンチウム、アルミニウム、ケイ素、窒素系のカズン系赤色発光蛍光体が例示される。硫化物系蛍光体としては、銅イオンやアルミニウムイオンを包含するZnS系緑色発色蛍光体が例示される。酸硫化物系蛍光体としては、ユーロピウムイオンを包含するYS系赤色発光蛍光体が例示される。本組成物では、これらの蛍光体を2種以上組み合わせて用いてもよい。
【0128】
さらに、本組成物には、硬化物に熱伝導性または電気伝導性を付与するため、熱伝導性フィラーまたは導電性フィラーを含有してもよい。この熱伝導性フィラーまたは導電性フィラーとしては、金、銀、ニッケル、銅、アルミニウム等の金属微粉末;セラミック、ガラス、石英、有機樹脂等の微粉末表面に金、銀、ニッケル、銅等の金属を蒸着またはメッキした微粉末;酸化アルミニウム、酸化マグネシウム、窒化アルミニウム、窒化ホウ素、酸化亜鉛等の金属化合物;グラファイト、およびこれらの2種以上の混合物が例示される。本組成物に電気絶縁性が求められる場合には、金属酸化物系粉末、または金属窒化物系粉末が好ましく、特に、酸化アルミニウム粉末、酸化亜鉛粉末、または窒化アルミニウム粉末が好ましい。
【0129】
(B)成分の含有量は限定されないが、組成物全体の10~50体積%であることが好ましく、特に好適には10~40体積%の範囲内である。(B)成分の含有量が前記上限以上になると得られる硬化物が硬くなる傾向にあり、後述のtanδの値が低下して、本発明の技術的効果である、組成物の取り扱い作業性やホットメルト時のギャップフィル性が低下し、かつ、得られる硬化物の室温~高温下における柔軟性と機械的強度が不十分となり、硬化物の応力緩和特性が低下する場合がある。
【0130】
[(C)成分]
(C)成分は、(A)成分を硬化するための硬化剤であり、(A)成分を硬化できるものであれば限定されない。(A)成分がアルケニル基を有する場合には、(C)成分は、一分子中に少なくとも2個のケイ素原子結合水素原子を有するオルガノハイドロジェンポリシロキサンとヒドロシリル化反応用触媒であり、(A)成分がアルケニル基を含有し、ヒドロシリル化反応用触媒を含有する場合には、(C)成分は、一分子中に少なくとも2個のケイ素原子結合水素原子を有するオルガノポリシロキサンのみでよいが、ヒドロシリル化反応用触媒を併用してもよい。また、(A)成分がアルケニル基を有する場合には、(C)成分は有機過酸化物でもよく、一分子中に少なくとも2個のケイ素原子結合水素原子を有するオルガノポリシロキサンを併用してもよい。一方、(A)成分がケイ素原子結合水素原子を有する場合には、(C)成分は、一分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサンとヒドロシリル化反応用触媒であり、(A)成分がケイ素原子結合水素原子を有し、ヒドロシリル化反応用触媒を含有する場合には、(C)成分は、一分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサンのみでよいが、ヒドロシリル化反応用触媒を併用してもよい
【0131】
(C)成分中のオルガノポリシロキサンとしては、前記(a)および/または前記(a)で表されるアルケニル基含有オルガノポリシロキサン、あるいは前記(a)および/または前記(a)で表されるケイ素原子結合水素原子含有オルガノポリシロキサンが例示される。
【0132】
(C)成分としてオルガノポリシロキサンを使用する場合、その含有量は限定されないが、本組成物が硬化するためには、本組成物中のアルケニル基1モルに対してケイ素原子結合水素原子が0.5~20モルとなる範囲内の量、あるいは1.0~10モルとなる範囲内の量であることが好ましい。
【0133】
ヒドロシリル化反応用触媒としては、白金系触媒、ロジウム系触媒、パラジウム系触媒が例示され、本組成物の硬化を著しく促進できることから白金系触媒が好ましい。この白金系触媒としては、白金微粉末、塩化白金酸、塩化白金酸のアルコール溶液、白金-アルケニルシロキサン錯体、白金-オレフィン錯体、白金-カルボニル錯体、およびこれらの白金系触媒を、シリコーン樹脂、ポリカーボネート樹脂、アクリル樹脂等の熱可塑性樹脂で分散あるいはカプセル化した触媒が例示され、特に、白金-アルケニルシロキサン錯体が好ましい。このアルケニルシロキサンとしては、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン、これらのアルケニルシロキサンのメチル基の一部をエチル基、フェニル基等で置換したアルケニルシロキサン、これらのアルケニルシロキサンのビニル基をアリル基、ヘキセニル基等で置換したアルケニルシロキサンが例示される。特に、この白金-アルケニルシロキサン錯体の安定性が良好であることから、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンであることが好ましい。加えて、取扱作業性および組成物のポットライフの改善の見地から、熱可塑性樹脂で分散あるいはカプセル化した微粒子状の白金含有ヒドロシリル化反応触媒を用いてもよい。なお、ヒドロシリル化反応を促進する触媒としては、鉄、ルテニウム、鉄/コバルトなどの非白金系金属触媒を用いてもよい。
【0134】
ヒドロシリル化反応用触媒の添加量は、(A)成分に対して、金属原子が質量単位で0.01~500ppmの範囲内となる量、0.01~100ppmの範囲内となる量、あるいは、0.01~50ppmの範囲内となる量であることが好ましい。
【0135】
有機過酸化物としては、過酸化アルキル類、過酸化ジアシル類、過酸化エステル類、および過酸化カーボネート類が例示される。
【0136】
過酸化アルキル類としては、ジクミルパーオキサイド、ジ-tert-ブチルパーオキサイド、ジ-tert-ブチルクミルパーオキサイド、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキシン-3、tert-ブチルクミル、1,3-ビス(tert-ブチルパーオキシイソプロピル)ベンゼン、3,6,9-トリエチル-3,6,9-トリメチル-1,4,7-トリパーオキソナンが例示される。
【0137】
過酸化ジアシル類としては、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、デカノイルパーオキサイドが例示される。
【0138】
過酸化エステル類としては、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、α-クミルパーオキシネオデカノエート、tert-ブチルパーオキシネオデカノエート、tert-ブチルパーオキシネオヘプタノエート、tert-ブチルパーオキシピバレート、tert-ヘキシルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、tert-アミルパーオキシル-2-エチルヘキサノエート、tert-ブチルパーオキシ-2-エチルヘキサノエート、tert-ブチルパーオキシイソブチレート、ジ-tert-ブチルパーオキシヘキサヒドロテレフタレート、tert-アミルパーオキシ-3,5,5―トリメチルヘキサノエート、tert-ブチルパーオキシ-3,5,5―トリメチルヘキサノエート、tert-ブチルパーオキシアセテート、tert-ブチルパーオキシベンゾエート、ジ-ブチルパーオキシトリメチルアディペートが例示される。
【0139】
過酸化カーボネート類としては、ジ-3-メトキシブチルパーオキシジカーボネート、ジ(2-エチルヘキシル)パーオキシジカーボネート、ジイソプロピルパーオキシカーボネート、tert-ブチルパーオキシイソプロピルカーボネート、ジ(4-tert-ブチルシクロヘキシル)パーオキシジカーボネート、ジセチルパーオキシジカーボネート、ジミリスチルパーオキシジカーボネートが例示される。
【0140】
この有機過酸化物は、その半減期が10時間である温度が90℃以上、あるいは95℃以上であるものが好ましい。このような有機過酸化物としては、ジクミルパーオキサイド、ジ-t-ブチルパーオキサイド、ジ-t-ヘキシルパーオキサイド、t-ブチルクミルパーオキサイド、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン、1,3-ビス(tert-ブチルパーオキシイソプロピル)ベンゼン、ジ-(2-t-ブチルペルオキシイソプロピル)ベンゼン、3,6,9-トリエチル-3,6,9-トリメチル-1,4,7-トリパーオキソナンが例示される。
【0141】
有機過酸化物の含有量は限定されないが、(A)成分100質量部に対して、0.05~10質量部の範囲内、あるいは0.10~5.0質量部の範囲内であることが好ましい。
【0142】
また、本組成物には、本発明の目的を損なわない限り、その他任意の成分として、(A)成分以外のホットメルト性の微粒子、硬化遅延剤や接着付与剤を含有してもよい。
【0143】
(A)成分以外のホットメルト性の微粒子としては、各種のホットメルト性の合成樹脂、ワックス類、脂肪酸金属塩等から選ばれる1種類以上が使用できる。当該ワックス成分は、高温(150℃)において低い動粘度を呈し、流動性に優れた溶融物を形成する。また、前記(A)~(C)成分と併用することにより、本組成物からなる溶融物内のワックス成分は、高温下で組成物全体に速やかに広がることにより、溶融した組成物が適用された基材面と組成物全体の粘度を低下させると共に、基材および溶融組成物の表面摩擦を急激に低下させ、組成物全体の流動性を大幅に上昇させる効果を呈する。このため、他の成分の総量に対して、ごく少量添加するだけで、溶融組成物の粘度および流動性を大きく改善することができる。
【0144】
ワックス成分は、上記の滴点及び溶融時の動粘度の条件を満たす限り、パラフィン等の石油系ワックス類であってもよいが、本発明の技術的効果の見地から、脂肪酸金属塩からなるホットメルト成分であることが好ましく、ステアリン酸、パルミチン酸、オレイン酸、イソノナン酸等の高級脂肪酸の金属塩が特に好ましい。ここで、上記の脂肪酸金属塩の種類も特に制限されるものではないが、リチウム、ナトリウム、カリウム等のアルカリ金属塩;マグネシウム、カルシウム、バリウム等のアルカリ土類金属塩;または亜鉛塩が好適に例示される。
【0145】
ワックス成分として、特に好適には、遊離脂肪酸量が5.0%以下の脂肪酸金属塩であり、4.0%以下であり、0.05~3.5%の脂肪酸金属塩がより好ましい。このような成分として、例えば、少なくとも1種以上のステアリン酸金属塩が例示される。本発明の技術的効果の見地から、本成分は、実質的に1種以上のステアリン酸金属塩のみからなることが好ましく、ステアリン酸カルシウム(融点150℃)、ステアリン酸亜鉛(融点120℃)、およびステアリン酸マグネシウム(融点130℃)から選ばれる、融点が150℃以下のホットメルト成分の使用が最も好ましい。
【0146】
ワックス成分の使用量は、組成物全体を100質量部とした場合、その含有量が0.01~5.0質量部の範囲であり、0.01~3.5質量部、0.01~3.0質量部であってよい。ワックス成分の使用量が前記の上限を超えると、本発明の粒状硬化性シリコーン組成物から得られる硬化物の接着性および機械的強度が不十分となる場合がある。また、使用量が前記の下限未満では、加熱溶融時の十分な流動性が実現できない場合がある。
【0147】
硬化遅延剤としては、2-メチル-3-ブチン-2-オール、3,5-ジメチル-1-ヘキシン-3-オール、2-フェニル-3-ブチン-2-オール、1-エチニル-1-シクロヘキサノール等のアルキンアルコール;3-メチル-3-ペンテン-1-イン、3,5-ジメチル-3-ヘキセン-1-イン等のエンイン化合物;テトラメチルテトラビニルシクロテトラシロキサン、テトラメチルテトラヘキセニルシクロテトラシロキサン等のアルケニル基含有低分子量シロキサン;メチル-トリス(1,1-ジメチルプロピニルオキシ)シラン、ビニル-トリス(1,1-ジメチルプロピニルオキシ)シラン等のアルキニルオキシシランが例示される。この硬化遅延剤の含有量は限定されないが、本組成物に対して、質量単位で、10~10000ppmの範囲内であることが好ましい。
【0148】
接着付与剤としては、ケイ素原子に結合したアルコキシ基を一分子中に少なくとも1個有する有機ケイ素化合物が好ましい。このアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、メトキシエトキシ基が例示され、特に、メトキシ基が好ましい。また、有機ケイ素化合物中のアルコキシ基以外のケイ素原子に結合する基としては、アルキル基、アルケニル基、アリール基、アラルキル基、ハロゲン化アルキル基等のハロゲン置換もしくは非置換の一価炭化水素基;3-グリシドキシプロピル基、4-グリシドキシブチル基等のグリシドキシアルキル基;2-(3,4-エポキシシクロヘキシル)エチル基、3-(3,4-エポキシシクロヘキシル)プロピル基等のエポキシシクロヘキシルアルキル基;3,4-エポキシブチル基、7,8-エポキシオクチル基等のエポキシアルキル基;3-メタクリロキシプロピル基等のアクリル基含有一価有機基;水素原子が例示される。この有機ケイ素化合物は本組成物中のアルケニル基またはケイ素原子結合水素原子と反応し得る基を有することが好ましく、具体的には、ケイ素原子結合水素原子またはアルケニル基を有することが好ましい。また、各種の基材に対して良好な接着性を付与できることから、この有機ケイ素化合物は一分子中に少なくとも1個のエポキシ基含有一価有機基を有するものであることが好ましい。こうした有機ケイ素化合物としては、オルガノシラン化合物、オルガノシロキサンオリゴマー、アルキルシリケートが例示される。このオルガノシロキサンオリゴマーあるいはアルキルシリケートの分子構造としては、直鎖状、一部分枝を有する直鎖状、分枝鎖状、環状、網状が例示され、特に、直鎖状、分枝鎖状、網状であることが好ましい。有機ケイ素化合物としては、3-グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン等のシラン化合物;一分子中にケイ素原子結合アルケニル基もしくはケイ素原子結合水素原子、およびケイ素原子結合アルコキシ基をそれぞれ少なくとも1個ずつ有するシロキサン化合物、ケイ素原子結合アルコキシ基を少なくとも1個有するシラン化合物またはシロキサン化合物と一分子中にケイ素原子結合ヒドロキシ基とケイ素原子結合アルケニル基をそれぞれ少なくとも1個ずつ有するシロキサン化合物との混合物、メチルポリシリケート、エチルポリシリケート、エポキシ基含有エチルポリシリケートが例示される。この接着付与剤は低粘度液状であることが好ましく、その粘度は限定されないが、25℃において1~500mPa・sの範囲内であることが好ましい。また、この接着付与剤の含有量は限定されないが、本組成物の合計100質量部に対して0.01~10質量部の範囲内であることが好ましい。
【0149】
さらに、本組成物には、本発明の目的を損なわない限り、その他任意の成分として、酸化鉄(ベンガラ)、酸化セリウム、セリウムジメチルシラノレート、脂肪酸セリウム塩、水酸化セリウム、ジルコニウム化合物等の耐熱剤;その他、染料、白色以外の顔料、難燃性付与剤等を含有してもよい。
【0150】
上記の組成物は、(B)成分を、特定の割合で(A)成分であるオルガノポリシロキサン樹脂微粒子又はそれを含む混合物と併用することにより、溶融(ホットメルト)特性に優れ、硬化物が室温から高温、具体的には、25℃~150℃において柔軟であり、応力緩和特性に優れ、かつ、室温で折り曲げ等の変形が生じても破損しにくいという優れた特性を有する。上記の(B)成分は無機フィラーを含むことが好適であるが、白色顔料、熱伝導性フィラー、導電性フィラー、蛍光体等を用いることにより、光反射率の向上等の更なる機能性を付与することが可能である。
【0151】
[硬化物の貯蔵弾性率]
具体的には、上記組成物を硬化してなる硬化物は、25℃における貯蔵弾性率(G')の値が2000MPa以下であり、かつ、150℃における貯蔵弾性率(G')の値が100MPa以下である。かかる硬化物は室温(25℃)および高温(150℃)のいずれにおいても柔軟であり、半導体基盤等の基材への密着性と追従性に優れ、かつ、近年導入が進んでいるフレキシブル半導体基盤のように変形を前提とした半導体素子の封止用途であっても、封止した半導体素子の破損あるいは剥離、ボイド等の欠陥の発生が抑制される。なお、特に高い伸びおよび変形に対する追従性が求められる用途にあっては、25℃における貯蔵弾性率(G')の値が1500MPa以下、1000MPa以下にしてもよく、かつ、150℃における貯蔵弾性率(G')の値が50MPa以下または40MPa以下にしてもよい。
【0152】
[硬化物の損失正接(tanδ)のピーク値およびピーク温度]
さらに、本発明の組成物を硬化してなる硬化物は、周波数1.0Hzにおける損失弾性率(G’’)に対する貯蔵弾性率(G’)の比、すなわち、G’/G’’により定義される損失正接(tanδ)のピーク値が0.40以上であることが必要であり、0.50以上であることが好ましく、0.50~0.80の範囲にあることが特に好ましい。当該tanδのピーク値が0.40未満では、特に薄膜状、あるいは、アルミリードフレーム等と一体成型した場合に、成型物の反りまたは破損が発生する場合がある。なお、tanδのピーク値を与えるピーク温度は特に制限されるものではないが、30~200℃の範囲にあることが好ましく、40~150℃の範囲にピーク温度があることが特に好ましい。
【0153】
本発明の組成物においては、上記のtanδのピーク値を0.4以上とすることで応力緩和能力に優れた硬化物を形成するものであるが、特に、好適には上記の成分を選択することによって、無機フィラーの含有量が比較的多い組成でも高いtanδのピーク値を実現することができる。この様な硬化物は近年導入が進んでいる半導体の大面積一括封止プロセスにおいて優れた低反り能力を実現するものである。なお、上記のtanδのピーク値は(A)成分中の分岐状ポリオルガノシロキサン成分の添加量、(A)成分中の炭素―炭素二重結合の量、(B)成分の添加量により制御することが可能である。
【0154】
[本組成物の使用]
本組成物をペレット状で使用してもよい。本組成物のペレットは、本組成物を打錠成型して得られるものであり、取扱い作業性および硬化性が優れる。なお、「ペレット」は、「タブレット」とも言うことがある。ペレットの形状は限定されないが、通常、球状、楕円球状あるいは円柱状である。また、ペレットの大きさは限定されないが、例えば、500μm以上の平均粒子径または円相当径を有する。
【0155】
本組成物はシート状に成型して使用しても良い。例えば、平均厚みが100~1000μmの硬化性粒状シリコーン組成物からなるシートは、ホットメルト性を有し、高温下で加熱硬化性を有するので、特にコンプレッション成型等に用いる場合、取扱作業性および溶融特性に優れる点で有利である。この様なシート状の組成物は前記方法で得られた硬化性粒状組成物を低温で一軸または二軸の連続混練機により一体化した後に、2本ロールなどを通して所定の厚みにして生産しても良い。
【0156】
[積層体およびフィルム接着剤としての使用]
本組成物はシート状にして使用することができ、特に、剥離層を備える2枚のフィルム状基材間に、上記の硬化性粒状シリコーン組成物からなるシート状部材を含む構造を有する、積層体として使用可能である。
【0157】
このような剥離性積層体の製造方法は特に制限されないが、ホットメルト性を有する硬化性シリコーンシートは、オルガノポリシロキサン樹脂微粒子を原料として製造することができ、以下の
工程1:オルガノポリシロキサン樹脂微粒子、硬化剤および機能性フィラーを混合する工程
工程2:工程1で得た混合物を、120℃以下の温度で加熱溶融しながら混練する工程。
工程3:工程2で得た加熱溶融し混錬した後の混合物を、それぞれが少なくとも1の剥離面を備えた2枚のフィルム間に積層して積層体を形成する工程;
工程4:工程3で得た積層体中の混合物をロール間で延伸し、特定の膜厚を有する硬化性ホットメルトシリコーンシートを成型する工程
を含む製造方法である。
【0158】
なお、上記の製造方法において、工程3および工程4は連続的かつ一体化した工程であってよく、例えば、工程2で得た加熱溶融後の混合物は、ロール間の直下において、少なくとも1の剥離面を備えたフィルム間に吐出乃至塗布されることで積層され、それと同時にロール間の間隙調整により、特定の膜厚に延伸成型されてもよい。このように、工程3および工程4が実質的に統合された工程を有する製造方法も、上記の製造方法の範囲内に含まれる。
すなわち、工程3及び工程4は、工程2で得た混合物を2枚の剥離フィルムの間へ吐出乃至塗布して2枚の剥離フィルム間、例えば2枚の長尺の剥離フィルム間に前記の混合物を挟む工程と、それによって得られる2枚の剥離フィルム及びそれらの間に介装された前記の混合物からなる積層体を続けてロール間に通して剥離フィルム間の混合物を延伸成型し、所定の膜厚に調節して、目的とする積層体を得る工程とを連続して一体的に行ってもよい。このような工程3と工程4を一体的に行う方法も上述した製造方法に含まれる。
【0159】
また、上記の工程3において、加熱溶融後の混合物をフィルム間に積層する工程は特に制限されず、(i) 剥離面を備えた第一の剥離フィルム上に工程2からの加熱溶融後の混合物を吐出乃至塗布した後、同混合物の第一の剥離フィルムと接する面とは反対側の面に対して第二の剥離フィルムを接触させて第一の剥離フィルムと第二の剥離フィルム間に加熱溶融後の混合物を介装する、すなわち挟む工程であってもよく、あるいは(ii) 剥離面を備えた第一の剥離フィルムおよび第二の剥離フィルム間に工程2からの加熱溶融後の混合物を吐出乃至塗布することで、両剥離フィルム間に加熱溶融後の混合物を介装する工程であってもよい。(ii)は、第一及び第二の剥離フィルムを適切な手段、たとえば2ロールなどにより接近させ、2つの剥離フィルムが接近した箇所に工程2からの混合物を吐出乃至塗工して、混合物を同時乃至ほぼ同時に2枚の剥離フィルム間の間隙に挟む方法が例示できる。上記工程3及び4は、連続的な工程であることが特に好ましい。
【0160】
フィルム状基材の種類は特には限定されるものではなく、ポリエステルフィルム、ポリオレフィンフィルム、ポリカーボネートフィルム、アクリルフィルム等を適宜使用することができる。シート状基材は非多孔性であることが好ましい。
【0161】
剥離層は、硬化性粒状シリコーン組成物からなるシート状部材をフィルム状基材から容易に剥離するために必要な構成であり、剥離ライナー、セパレーター、離型層或いは剥離コーティング層と呼ばれることもある。好適には、剥離層は、シリコーン系剥離剤、フッ素系剥離剤、アルキド系剥離剤、又は、フルオロシリコーン系剥離剤等の剥離コーティング能を有する剥離層、基材表面に物理的に微細な凹凸を形成させたり、本発明の硬化反応性シリコーン粘着剤組成物又はその硬化物からなる接着材層と付着しにくい基材それ自体であってもよい。特に本発明の積層体においては、剥離層として、フルオロシリコーン系剥離剤を硬化させてなる剥離層の使用が好ましい。
【0162】
上記の積層体は、例えば、硬化性粒状シリコーン組成物からなるシート状部材を被着体に適用後に、当該未硬化状態のシート状部材を、フィルム状基材から剥離することにより使用することができる。
【0163】
ここで、硬化性粒状シリコーン組成物からなるシート状部材は、厚みが1mm以下であり、フィルム状接着剤であってよい。すなわち、前記の積層体は、基材フィルムにより保持された剥離性のフィルム状接着剤を含むものであってよく、かつ、好ましい。フィルム状接着剤は、ホットメルト性を有するため、半導体部材の仮固定等に用いる接着剤であってよく、ダイアタッチフィルムとして使用してもよい。
【0164】
また、硬化性粒状シリコーン組成物からなるシート状部材をそのままコンプレッション成型やプレス成型などで、基材と一体成型しても良く、この時、片面のフィルム状基材を残したまま成型を行い、成型時の金型への付着を防ぐ離型フィルムとして使用しても良い。
【0165】
本組成物は、25℃において非流動性である。ここで、非流動性とは、無負荷の状態で変形・流動しないことを意味し、好適には、ペレットまたはタブレット等に成型した場合に、25℃かつ無負荷の状態で変形・流動しないものである。このような非流動性は、例えば、25℃のホットプレート上に成型した本組成物を置き、無負荷または一定の加重をかけても、実質的に変形・流動しないことにより評価可能である。25℃において非流動性であると、該温度での形状保持性が良好で、表面粘着性が低いからである。
【0166】
本組成物の軟化点は100℃以下であることが好ましい。このような軟化点は、ホットプレート上で、100グラム重の荷重で上から10秒間押し続け、荷重を取り除いた後、組成物の変形量を測定した場合、高さ方向の変形量が1mm以上となる温度を意味する。
【0167】
本組成物は高温・高圧下で(すなわち成型工程において)急激に粘度が低下する傾向があり、有用な溶融粘度の値としては同様の高温・高圧下で測定した値を用いることが好ましい。従って、本組成物の溶融粘度はレオメーターなどの回転粘度計で測定するよりも高化式フローテスター(島津製作所(株)製)を用いて高圧下測定することが好ましい。具体的には本組成物は、150℃の溶融粘度が200Pa・s以下、より好ましくは150以下であることが好ましい。これは、本組成物をホットメルト後、25℃に冷却した後の基材への密着性が良好であるからである。
【0168】
本組成物は、硬化特性が優れる。本組成物の硬化特性は、レオメーターを用いて評価することができる。本組成物の硬化特性は、150~180℃の一定の温度で3分後のトルク値を100としたとき、1%トルク値と90%トルク値が得られる時間(秒)をそれぞれT、T90とする値に基づいて評価できる。本組成物は、150~180℃の一定の温度で測定したときのTが20秒以上、あるいは25秒以上であることが好ましい。また、150~180℃で測定したときのT90が145秒以下、あるいは140秒以下であることが好ましい。なお、測定に用いるレオメーターとしては、レオメーターMDR2000(アルファテクノロジーズ社製)が例示される。
【0169】
[硬化性粒状シリコーン組成物の製造方法]
本組成物は、(A)成分~(C)成分、さらにその他任意の成分を、(A)成分の軟化点未満の温度で粉体混合することにより製造することができる。本製造方法で用いる粉体混合機は限定されず、一軸または二軸の連続混合機、二本ロール、ロスミキサー、ホバートミキサー、デンタルミキサー、プラネタリミキサー、ニーダーミキサー、ラボミルサー、小型粉砕機、ヘンシェルミキサーが例示され、好ましくは、ラボミルサー、小型粉砕機、ヘンシェルミキサーである。
【0170】
[硬化物の成型方法]
本組成物は、次の工程(I)~(III)から少なくともなる方法により硬化することができる。
(I)本組成物を50℃以上に加熱して、溶融する工程;
(II)前記工程(I)で得られた硬化性シリコーン組成物を金型に注入する工程、又は型締めにより金型に前記工程(I)で得られた硬化性シリコーン組成物を行き渡らせる工程;および
(III)前記工程(II)で注入した硬化性シリコーン組成物を硬化する工程
【0171】
本組成物は、上記のとおり、溶融時のギャップフィル性、硬化物の室温~高温における柔軟性に優れることから、硬化物により、半導体素子のオーバーモールド及びアンダーフィルを一度に行う被覆工程(いわゆる、モールドアンダーフィル法)を含む成型方法に極めて好適に用いることができる。さらに、本組成物は、上記の特性により、単独又は複数の半導体素子を搭載した半導体ウエハ基板の表面を覆い、かつ、半導体素子の間隙が当該硬化物により充填されるようにオーバーモールド成型する被覆工程(いわゆる、ウェハモールディング)を含む成型方法に好適に用いることができる。
【0172】
上記工程において、トランスファー成型機、コンプレッション成型機、インジェクション成型機、補助ラム式成型機、スライド式成型器、二重ラム式成型機、または低圧封入用成型機等を用いることができる。特に、本発明組成物は、トランスファー成型およびコンプレッション成型により硬化物を得る目的で好適に利用できる。特に、本発明組成物をシート状に成型したものは、コンプレッション成型用の材料として有用である。
【0173】
最後に、工程(III)において、工程(II)で注入(適用)した硬化性シリコーン組成物を硬化する。なお、(C)成分として有機過酸化物を用いる場合には、加熱温度は150℃以上、あるいは170℃以上であることが好ましい。
【0174】
半導体等の保護部材として好適であることから、本組成物を硬化して得られる硬化物の25℃におけるタイプDデュロメータ硬さが20以上であることが好ましい。なお、このタイプDデュロメータ硬さは、JIS K 6253-1997「加硫ゴムおよび熱可塑性ゴムの硬さ試験方法」に準じてタイプDデュロメータによって求められる。
【0175】
さらに、柔軟性を要求されるフレキシブル用途の半導体の封止材として好適であることから、JIS K 6911-1995「熱硬化性プラスチック一般試験方法」に規定の方法により測定した硬化物の曲げ伸び率は2%以上、あるいは4%以上であることが好ましい。
【0176】
[組成物の用途]
本組成物は、ホットメルト性を有し、溶融(ホットメルト)時のギャップフィル性、取扱い作業性および硬化性が優れているので、半導体用の封止剤やアンダーフィル剤;SiC、GaN等のパワー半導体用の封止剤やアンダーフィル剤;発光ダイオード、フォトダイオード、フォトトランジスタ、レーザーダイオード等の光半導体用の封止剤や光反射材;電気・電子用の接着剤、ポッティング剤、保護剤、コーティング剤として好適である。また、本組成物は、ホットメルト性を有するので、トランスファー成型、コンプレッション成型、あるいはインジェクション成型用の材料としても好適である。特に、成型時にモールドアンダーフィル法やウェハモールディング法を用いる半導体用の封止剤として用いることが好適である。さらに、本組成物をシート状にしたものは硬化性のフィルム接着剤や線膨張係数の違う2種類の基材の間の応力の緩衝層として使用する事ができる。
【0177】
[硬化物の用途]
本発明の硬化物の用途は特に制限されるものではないが、本発明組成物がホットメルト性を有し、成形性、ギャップフィル特性に優れ、かつ、硬化物は上記の室温における柔軟性、高い応力緩和特性、曲げ伸び率等を有する。このため、本組成物を硬化してなる硬化物は、半導体装置用部材として好適に利用することができ、半導体素子やICチップ等の封止材、光半導体装置の光反射材、半導体装置の接着剤・結合部材として好適に用いることができる。
【0178】
本発明の硬化物からな部材を備えた半導体装置は特に制限されるものではないが、特に、パワー半導体装置、光半導体装置およびフレキシブル回路基盤に搭載された半導体装置であることが好ましい。
【0179】
また、本発明の硬化性粒状シリコーン組成物、特に、ペレット状またはシート状である硬化性粒状シリコーン組成物は、半導体基板(ウェハ含む)の大面積封止に利用できる。さらに、本発明の硬化性粒状シリコーン組成物をシート状に成型してなるシートは、ダイアタッチフィルム、フレキシブルデバイスの封止、二つの違う基材を接着する応力緩和層等に使用することができる。
【実施例
【0180】
本発明のホットメルト性の硬化性シリコーン組成物およびその製造方法を実施例と比較例により詳細に説明する。なお、式中、Me、Ph、Viは、それぞれメチル基、フェニル基、ビニル基を表す。また、各実施例、比較例の硬化性シリコーン組成物について、その軟化点を以下の方法で測定した。また、硬化性シリコーン組成物を150℃で2時間加熱して硬化物を作製し、貯蔵弾性率、損失正接(tanδ)、成型物の反りを以下の方法で測定した。結果を表1に示した。
【0181】
[硬化性粒状シリコーン組成物の軟化点]
硬化性粒状シリコーン組成物をφ14mm×22mmの円柱状のペレットに成型した。このペレットを25℃~100℃に設定したホットプレート上に置き、100グラム重の荷重で上から10秒間押し続け、荷重を取り除いた後、該ペレットの変形量を測定した。高さ方向の変形量が1mm以上となった温度を軟化点とした。
【0182】
[硬化物の貯蔵弾性率及びtanδ]
硬化性シリコーン組成物を150℃で2時間加熱して硬化物を作製した。この硬化物の-50℃から250℃までの貯蔵弾性率、損失弾性率をレオメーターARES(ティー・エイ・インスツルメント・ジャパン株式会社製)を用いて測定し、貯蔵弾性率の25℃、150℃における値、及びtanδ(貯蔵弾性率/損失弾性率)のピーク温度及びピーク値を読み取った。表1に、その結果を示す。
【0183】
[成型物の反り]
60mm×60mm×0.4mmのサイズのアルミニウム製の板の上に硬化性シリコーン組成物を60mm×60mm×0.6mmのをサイズにて熱プレスにより150℃で2時間加熱して一体成型を行った。反り挙動を分かり易くするため、反りやすい基材(薄膜のアルミニウム板)を評価に使用した。得られた成型物の片側をテープで水平な机に固定し、もう片側の机からの浮き上がり距離を定規を用いて測定し、成型物の反り値とした。
【0184】
以下、参考例1~6に示す方法で、ヒドロシリル化反応触媒を含むオルガノポリシロキサン樹脂またはオルガノポリシロキサン架橋物を調製し、そのホットメルト性の有無を軟化点/溶融粘度の有無により評価した。また、参考例3~6に示す方法で当該オルガノポリシロキサン樹脂微粒子を調製した。なお、参考例において、ヒドロシリル化反応触媒である白金錯体に用いる1,1,3,3-テトラメチル-1,3-ジビニルジシロキサンは、「1,3-ジビニルテトラメチルジシロキサン」と記述する。
【0185】
[参考例1]
1Lのフラスコに、25℃において白色固体状で、平均単位式:
(PhSiO3/2)0.80(MeViSiO1/2)0.20
で表される樹脂状オルガノポリシロキサンの55質量%-トルエン溶液 270.5g、式:
HMeSiO(PhSiO)SiMe
で表される、粘度5mPa・sの分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジフェニルシロキサン(ケイ素原子結合水素原子の含有量=0.6質量%) 21.3g(前記樹脂状オルガノポリシロキサン中のビニル基1モルに対して、本成分中のケイ素原子結合水素原子が0.5モルとなる量)、および白金の1,3-ジビニルテトラメチルジシロキサン錯体の1,3-ジビニルテトラメチルジシロキサン溶液(白金金属の含有量=約4000ppm) 0.43g(本液状混合物に対して白金金属が質量単位で10ppmとなる量)を投入し、室温で均一に攪拌した。その後、オイルバスにてフラスコ内の温度を100℃まで上げて、トルエン還流下、2時間攪拌して、上記樹脂状オルガノポリシロキサンに由来する樹脂状オルガノシロキサンと上記ジフェニルシロキサンに由来する鎖状オルガノシロキサンからなり、上記反応に関与しなかったビニル基を有するオルガノシロキサン架橋物(1)のトルエン溶液を調製した。なお、このオルガノシロキサン架橋物(1)を、FT-IRにて分析したところ、ケイ素原子結合水素原子のピークは観測されなかった。また、このオルガノシロキサン架橋物(1)の軟化点は75℃であり、その100℃での溶融粘度は700Pa・sであった。
【0186】
[参考例2]
1Lのフラスコに、25℃において白色固体状で、平均単位式:
(MeViSiO1/2)0.05(MeSiO1/2)0.39(SiO4/2)0.56(HO1/2)0.02
で表されるオルガノポリシロキサン樹脂の55質量%-キシレン溶液 270.5g、および白金の1,3-ジビニルテトラメチルジシロキサン錯体の1,3-ジビニルテトラメチルジシロキサン溶液(白金金属の含有量=約4000ppm) 0.375gを投入し、室温(25℃)で均一に攪拌して、白金金属として質量単位で10ppm含有するオルガノポリシロキサン樹脂(2)のキシレン溶液を調製した。また、このオルガノポリシロキサン樹脂(2)は200℃まで加熱しても軟化/溶融せず、ホットメルト性を有していなかった。
【0187】
[参考例3]
1Lのフラスコに、25℃において白色固体状で、平均単位式:
(MeSiO1/2)0.44(SiO4/2)0.56(HO1/2)0.02
で表されるオルガノポリシロキサン樹脂の55質量%-キシレン溶液 270.5g、および白金の1,3-ジビニルテトラメチルジシロキサン錯体の1,3-ジビニルテトラメチルジシロキサン溶液(白金金属の含有量=約4000ppm) 0.375gを投入し、室温(25℃)で均一に攪拌して、白金金属として質量単位で10ppm含有するオルガノポリシロキサン樹脂(3)のキシレン溶液を調製した。また、このオルガノポリシロキサン樹脂(3)は200℃まで加熱しても軟化/溶融せず、ホットメルト性を有していなかった。
【0188】
[参考例4:ホットメルト性のオルガノポリシロキサン樹脂微粒子(1)]
参考例1で調製したオルガノシロキサン架橋物(1)のトルエン溶液を40℃のスプレードライによりトルエンを除去しながら微粒子化して、真球状のホットメルト性シリコーン微粒子(1)を調製した。この微粒子を光学顕微鏡で観測したところ、粒子径が5~10μmであり、平均粒子径は7.5μmであった。
【0189】
[参考例5:非ホットメルト性のオルガノポリシロキサン樹脂微粒子(2)]
参考例1で調製したオルガノポリシロキサン樹脂(2)のキシレン溶液を50℃においてスプレードライヤーを用いたスプレー法によりキシレンを除去しながら粒子化し、真球状の非ホットメルト性のオルガノポリシロキサン樹脂微粒子(2)を調製した。この微粒子を光学顕微鏡で観測したところ、粒子径が5~10μmであり、平均粒子径は6.9μmであった。
【0190】
[参考例6:非ホットメルト性のオルガノポリシロキサン樹脂微粒子(3)]
参考例2で調製したオルガノポリシロキサン樹脂(3)のキシレン溶液を50℃においてスプレードライヤーを用いたスプレー法によりキシレンを除去しながら粒子化し、真球状の非ホットメルト性のオルガノポリシロキサン樹脂微粒子(3)を調製した。この微粒子を光学顕微鏡で観測したところ、粒子径が5~10μmであり、平均粒子径は7.4μmであった。
【0191】
[実施例1]
ホットメルト性シリコーン微粒子(1) 73.1g、
式:HMeSiO(PhSiO)SiMe
で表される、粘度5mPa・sの分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジフェニルシロキサン(ケイ素原子結合水素原子の含有量=0.6質量%) 9.5g、
粘度1,000mPa・sであり、
平均式 MeViSiO(MePhSiO)17.5SiMeVi
で表される分子鎖両末端ジメチルビニルシロキシ基封鎖メチルフェニルポリシロキサン(ビニル基の含有量=2.1質量%) 17.4g
{シリコーン微粒子(1)と分子鎖両末端ジメチルビニルシロキシ基封鎖メチルフェニルポリシロキサン中のビニル基1.0モルに対して、上記ジフェニルシロキサン中のケイ素原子結合水素原子が0.9モルとなる量}、
1-エチニル-1-シクロヘキサノール(本組成物に対して質量単位で300ppmとなる量)、
平均粒子径2.5μmの溶融シリカ(新日鉄マテリアルズ マイクロン社製のSP60)24.0g、および
平均粒子径0.04μmのフュームドシリカ(日本アエロジル社のAEROSIL50)30.0g
を小型粉砕機に一括投入し、室温(25℃)で1分間攪拌を行い、均一な硬化性粒状シリコーン組成物を調製した。また、この組成物の軟化点等の測定結果を表1に示す。
【0192】
[実施例2]
ホットメルト性シリコーン微粒子(1) 89.3g、
式:HMeSiO(PhSiO)SiMe
で表される、粘度5mPa・sの分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジフェニルシロキサン(ケイ素原子結合水素原子の含有量=0.6質量%) 10.7g、
{シリコーン微粒子(1)中のビニル基1.0モルに対して、上記ジフェニルシロキサン中のケイ素原子結合水素原子が0.9モルとなる量}、
1-エチニル-1-シクロヘキサノール(本組成物に対して質量単位で300ppmとなる量)、
平均粒子径0.5μmの酸化チタン(堺化学工業製のSX-3103)98.0g、
平均粒子径0.04μmのフュームドシリカ(日本アエロジル社のAEROSIL50)4.0g
を小型粉砕機に一括投入し、室温(25℃)で1分間攪拌を行い、均一な硬化性粒状シリコーン組成物を調製した。また、この組成物の軟化点等の測定結果を表1に示す。
【0193】
[実施例3]
(a+c(pt)) 非ホットメルト性のオルガノポリシロキサン樹脂微粒子(3)(ビニル基含有量=0質量%) 58.5g、
(a+c(pt)) 非ホットメルト性のオルガノポリシロキサン樹脂微粒子(2)(ビニル基含有量=1.91質量%) 10.3g、
(b1)式:
ViMeSiO(MeSiO)800SiViMe
で表される、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン(ビニル基の含有量=0.09質量%) 29.5g、
(c4(SiH))式:
MeSiO(MeHSiO)(MeSiO)6.5SiMe
で表されるオルガノハイドロジェンポリシロキサン 1.57g、
{オルガノポリシロキサン樹脂微粒子粒子(2)および分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン中のビニル基1モルに対して、上記オルガノハイドロジェンポリシロキサン中のケイ素原子結合水素原子が1.3モルとなる量}、
(d1)平均粒子径0.44μmのアルミナ(住友化学製のAES-12)203.1g、
1-エチニル-1-シクロヘキサノール(本組成物に対して質量単位1000ppmとなる量を小型粉砕機に一括投入し、室温(25℃)で1分間攪拌を行い、均一な硬化性粒状シリコーン組成物を調製した。また、この組成物の軟化点等の測定結果を表1に示す。
【0194】
[実施例4]
(a+c(pt)) 非ホットメルト性のオルガノポリシロキサン樹脂微粒子(3)(ビニル基含有量=0質量%) 55.3g、
(a+c(pt)) 非ホットメルト性のオルガノポリシロキサン樹脂微粒子(2)(ビニル基含有量=1.91質量%) 13.8g、
(b1)式:
ViMeSiO(MeSiO)800SiViMe
で表される、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン(ビニル基の含有量=0.09質量%) 29.6g、
(c2(SiH))式:
(HMeSiO1/2)0.67(SiO4/2)0.33
で表されるオルガノハイドロジェンポリシロキサンレジン(ケイ素原子結合水素原子の含有量=0.95質量%) 1.1g
{オルガノポリシロキサン樹脂微粒子粒子(2)および分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン中のビニル基1モルに対して、上記オルガノハイドロジェンポリシロキサンレジン中のケイ素原子結合水素原子が1.1モルとなる量}、
(d1)平均粒子径0.44μmのアルミナ(住友化学製のAES-12)232.6g、
1-エチニル-1-シクロヘキサノール(本組成物に対して質量単位1000ppmとなる量を小型粉砕機に一括投入し、室温(25℃)で1分間攪拌を行い、均一な硬化性粒状シリコーン組成物を調製した。また、この組成物の軟化点等の測定結果を表1に示す。
【0195】
[比較例1]
ホットメルト性シリコーン微粒子(1) 89.3g、式:
HMeSiO(PhSiO)SiMe
で表される、粘度5mPa・sの分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジフェニルシロキサン(ケイ素原子結合水素原子の含有量=0.6質量%) 10.7g、
{シリコーン微粒子(1)中のビニル基1.0モルに対して、上記ジフェニルシロキサン中のケイ素原子結合水素原子が0.9モルとなる量}、1-エチニル-1-シクロヘキサノール(本組成物に対して質量単位で300ppmとなる量)、平均粒子径0.5μmの酸化チタン(堺化学工業製のSX-3103)298.5g、平均粒子径0.04μmのフュームドシリカ(日本アエロジル社のAEROSIL50)1.5g、を小型粉砕機に一括投入し、室温(25℃)で1分間攪拌を行い、均一な硬化性粒状シリコーン組成物を調製した。また、この組成物の軟化点等の測定結果を表1に示す。
【0196】
[比較例2]
ホットメルト性シリコーン微粒子(1) 89.3g、
式:HMeSiO(PhSiO)SiMe
で表される、粘度5mPa・sの分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジフェニルシロキサン(ケイ素原子結合水素原子の含有量=0.6質量%) 10.7g、
{シリコーン微粒子(1)中のビニル基1.0モルに対して、上記ジフェニルシロキサン中のケイ素原子結合水素原子が0.9モルとなる量}、
1-エチニル-1-シクロヘキサノール(本組成物に対して質量単位で300ppmとなる量)、
平均粒子径2.5μmの溶融シリカ(新日鉄マテリアルズ マイクロン社製のSP60)235.0g
を小型粉砕機に一括投入し、室温(25℃)で1分間攪拌を行い、均一な硬化性粒状シリコーン組成物を調製した。また、この組成物の軟化点等の測定結果を表1に示す。
【0197】
[比較例3]
ホットメルト性シリコーン微粒子(1) 89.3g、
式:HMeSiO(PhSiO)SiMe
で表される、粘度5mPa・sの分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジフェニルシロキサン(ケイ素原子結合水素原子の含有量=0.6質量%) 7.4g、
平均単位式:
(PhSiO3/2)0.4(HMeSiO1/2)0.6
で表される、一分子中に2個以上のケイ素原子結合水素原子を有する、粘度25mPa・sの分岐鎖状オルガノポリシロキサン(ケイ素原子結合水素原子の含有量=0.65質量%) 3.1g
{シリコーン微粒子(1)中のビニル基1.0モルに対して、上記ジフェニルシロキサン中及び分岐鎖状オルガノポリシロキサン中のケイ素原子結合水素原子が0.9モルとなる量}、
1-エチニル-1-シクロヘキサノール(本組成物に対して質量単位で300ppmとなる量)、
平均粒子径0.5μmの酸化チタン(堺化学工業製のSX-3103)232.0g、
平均粒子径0.04μmのフュームドシリカ(日本アエロジル社のAEROSIL50)1.5g
を小型粉砕機に一括投入し、室温(25℃)で1分間攪拌を行い、均一な硬化性粒状シリコーン組成物を調製した。また、この組成物の軟化点等の測定結果を表1に示す。
【0198】
[比較例4]
ホットメルト性シリコーン微粒子(1) 45.0g、
粘度20,000mPa・sであり、
平均式 MeViSiO(MePhSiO)92SiMeVi
で表される分子鎖両末端ジメチルビニルシロキシ基封鎖メチルフェニルポリシロキサン(ビニル基の含有量=0.63質量%) 47.6g
式:HMeSiO(PhSiO)SiMe
で表される、粘度5mPa・sの分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジフェニルシロキサン(ケイ素原子結合水素原子の含有量=0.6質量%) 1.0g、
平均単位式:
(PhSiO3/2)0.4(HMeSiO1/2)0.6
で表される、一分子中に2個以上のケイ素原子結合水素原子を有する、粘度25mPa・sの分岐鎖状オルガノポリシロキサン(ケイ素原子結合水素原子の含有量=0.65質量%) 6.3g
{シリコーン微粒子(1)中のビニル基1.0モルに対して、上記ジフェニルシロキサン中及び分岐鎖状オルガノポリシロキサン中のケイ素原子結合水素原子が0.9モルとなる量}、
1-エチニル-1-シクロヘキサノール(本組成物に対して質量単位で300ppmとなる量)、
平均粒子径0.5μmの酸化チタン(堺化学工業製のSX-3103)98.0g、
平均粒子径0.04μmのフュームドシリカ(日本アエロジル社のAEROSIL50)4.0g
を小型粉砕機に一括投入し、室温(25℃)で1分間攪拌を行い、均一な硬化性粒状シリコーン組成物を調製した。また、この組成物の軟化点等の測定結果を表1に示す。
【0199】
[比較例5]
(a+c(pt)) 非ホットメルト性のオルガノポリシロキサン樹脂微粒子(2)(ビニル基含有量=0質量%) 34.1g、
(a+c(pt)) ホットメルト性のオルガノポリシロキサン樹脂微粒子(1)(ビニル基含有量=1.91質量%) 34.1g、
(b2)式:ViMeSiO(MeSiO)140SiViMe
で表される、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン(ビニル基の含有量=0.44質量%) 14.5g、
(b3)式:ViMeSiO(MeSiO)300SiViMe
で表される、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン(ビニル基の含有量=0.21質量%) 14.5g、
(c2(SiH))式:(HMeSiO1/2)0.67(SiO4/2)0.33
で表されるオルガノハイドロジェンポリシロキサンレジン(ケイ素原子結合水素原子の含有量=0.95質量%) 2.85g
{オルガノポリシロキサン樹脂微粒子粒子(1)および分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン中のビニル基1モルに対して、上記オルガノハイドロジェンポリシロキサンレジン中のケイ素原子結合水素原子が1.1モルとなる量}、
(d2)平均粒子径0.5μmの酸化チタン(堺化学工業製のSX-3103)142.6g、
(d3)平均粒子径0.04μmのフュームドシリカ(日本アエロジル社のAEROSIL50)10.3g、
1-エチニル-1-シクロヘキサノール(本組成物に対して質量単位1000ppmとなる量)
を小型粉砕機に一括投入し、室温(25℃)で1分間攪拌を行い、均一な硬化性粒状シリコーン組成物を調製した。また、この組成物の軟化点等の測定結果を表1に示す。
【0200】
[比較例6]
(a+c(pt)) 非ホットメルト性のオルガノポリシロキサン樹脂微粒子(2)(ビニル基含有量=0質量%) 41.3g、
(a+c(pt)) ホットメルト性のオルガノポリシロキサン樹脂微粒子(1)(ビニル基含有量=1.91質量%) 27.5g、
(b4)式:ViMeSiO(MeSiO)45SiViMe
で表される、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン(ビニル基の含有量=1.53質量%) 27.5g、
(c2(SiH))式:(HMeSiO1/2)0.67(SiO4/2)0.33
で表されるオルガノハイドロジェンポリシロキサンレジン(ケイ素原子結合水素原子の含有量=0.95質量%) 3.68g
{オルガノポリシロキサン樹脂微粒子粒子(1)および分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン中のビニル基1モルに対して、上記オルガノハイドロジェンポリシロキサンレジン中のケイ素原子結合水素原子が1.0モルとなる量}、
(d2)平均粒子径0.5μmの酸化チタン(堺化学工業製のSX-3103)299.0g、
(d3)平均粒子径0.04μmのフュームドシリカ(日本アエロジル社のAEROSIL50)1.5g、
1-エチニル-1-シクロヘキサノール(本組成物に対して質量単位1000ppmとなる量)を小型粉砕機に一括投入し、室温(25℃)で1分間攪拌を行い、均一な白色の硬化性粒状シリコーン組成物を調製した。また、この組成物の軟化点等の測定結果を表1に示す。
【0201】

【0202】
[総括]
本発明にかかる実施例1~4の硬化性粒状シリコーン組成物は良好なホットメルト性を有する。さらに、その硬化物の25℃および150℃の貯蔵弾性率が本発明の要件を満たし、かつ、貯蔵弾性率/損失弾性率(G’/G’’)で表されるtanδのピーク値が十分に高いため、反りやすいアルミ板を用いる一体成型においても、成型物の反りおよび破損は発生しなかった。このため、これらの硬化性粒状シリコーン組成物を用いて得られる硬化物は、応力緩和特性に優れ、半導体の薄層封止や、半導体の大面積一括封止プロセスに適合することが期待される。
【0203】
一方、本発明の組成上の要件または25℃および150℃の貯蔵弾性率、tanδのピーク値に関する要件を満たさない比較例1~6にあっては、アルミ板を用いる一体成型において、成型物の反りが1mm以上発生し、その硬化物において、十分な応力緩和特性を実現することができなかった。
【0204】
<製造例1>
上記実施例1等の粒状にした硬化性シリコーン組成物を80℃に加熱しながら、二軸押出機を用いて加熱溶融混練し、半固体状の軟化物の形態で、剥離性フィルム(株式会社タカラインコーポレーション社製、FL2-01)上に供給量5kg/時間となるように供給し、2枚の剥離性フィルム間に積層する。続いて、当該積層体を、ロール間で延伸することで、厚さ500μmのホットメルト性の硬化性シリコーンシートが2枚の剥離性フィルム間に積層された積層体を形成させ、-15℃に設定した冷却ロールにより全体を冷却する。当該積層体において、剥離性フィルムを分離することにより、平坦かつ均質なホットメルト性の硬化性シリコーンシートを得ることができた。
【0205】
<製造例2>
上記実施例1等の粒状にした硬化性シリコーン組成物を80℃に加熱しながら、二軸押出機を用いて加熱溶融混練し、T型ダイ(開口寸法:800μm×100mm、80℃加熱)により略シート状に成型しながら、剥離性フィルム(株式会社タカラインコーポレーション社製、FL2-01)上に供給量5kg/時間となるように供給し、-15℃に設定した冷却ロールにより全体を冷却した後に、2枚の剥離性フィルム間に積層した。続いて、当該積層体を、ロール間で延伸することで、厚さ500μmのホットメルト性の硬化性シリコーンシートが2枚の剥離性フィルム間に積層された積層体を形成する。当該積層体において、剥離性フィルムを分離することにより、平坦かつ均質なホットメルト性の硬化性シリコーンシートを得ることができた。