(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2025-04-28
(45)【発行日】2025-05-09
(54)【発明の名称】成膜装置及び成膜方法
(51)【国際特許分類】
C23C 16/455 20060101AFI20250430BHJP
H01L 21/365 20060101ALI20250430BHJP
H01L 21/368 20060101ALI20250430BHJP
【FI】
C23C16/455
H01L21/365
H01L21/368 Z
(21)【出願番号】P 2022000324
(22)【出願日】2022-01-05
(62)【分割の表示】P 2018120616の分割
【原出願日】2018-06-26
【審査請求日】2022-01-05
【審判番号】
【審判請求日】2024-02-02
(73)【特許権者】
【識別番号】000002060
【氏名又は名称】信越化学工業株式会社
(74)【代理人】
【識別番号】100102532
【氏名又は名称】好宮 幹夫
(74)【代理人】
【識別番号】100194881
【氏名又は名称】小林 俊弘
(74)【代理人】
【識別番号】100215142
【氏名又は名称】大塚 徹
(72)【発明者】
【氏名】渡部 武紀
(72)【発明者】
【氏名】橋上 洋
【合議体】
【審判長】粟野 正明
【審判官】土屋 知久
【審判官】池渕 立
(58)【調査した分野】(Int.Cl.,DB名)
C23C16/00-16/56
(57)【特許請求の範囲】
【請求項1】
ミストを熱処理して基板上に成膜を行う成膜装置であって、
原料溶液をミスト化してミストを発生させるミスト化部と、
前記ミストを搬送するキャリアガスを供給するキャリアガス供給部と、
基板を載置する載置部を内部に備える成膜室とを有し、
前記成膜室は、前記載置部の上方に前記基板の成膜面よりも小面積の排気口を有し、
前記ミストを、前記載置部の側方から前記基板の成膜面と略平行な流れを形成し、前記載置部の上方において衝突し、その後、前記排気口に向うように供給する供給手段であって、前記成膜室の側面に設けられた供給手段を有するものであ
り、
前記供給手段は、供給された前記ミストが前記載置部の上部で衝突するように対向配置される少なくとも1対のものであることを特徴とする成膜装置。
【請求項2】
前記排気口は、前記基板の成膜面の略中央上方に設けられていることを特徴とする請求項1に記載の成膜装置。
【請求項3】
ミストを熱処理して基板上に
酸化ガリウム膜の成膜を行う成膜装置であって、
原料溶液をミスト化してミストを発生させるミスト化部と、
前記ミストを搬送するキャリアガスを供給するキャリアガス供給部と、
基板を載置する載置部を内部に備える成膜室と、
前記成膜室の側面に設けられ、かつ、相対する方向に前記ミストを供給する、少なくとも1対の供給手段を有するものであり、
前記少なくとも1対の供給手段のミスト供給方向は基板表面と略平行な方向である、及び/又は、前記少なくとも1対の供給手段は前記基板表面と略同じ高さに設けられたものであることを特徴とする成膜装置。
【請求項4】
前記成膜室は、前記載置部の上方に排気口を有するものであることを特徴とする請求項
3に記載の成膜装置。
【請求項5】
前記少なくとも1対の供給手段は、供給された前記ミストが前記載置部の上部で衝突するように対向配置されるものであることを特徴とする請求項
3又は
4に記載の成膜装置。
【請求項6】
前記基板の面積が100mm
2以上、又は、前記基板の口径が直径2インチ(50mm)以上のものであることを特徴とする請求項1から
5のいずれか一項に記載の成膜装置。
【請求項7】
ミストを熱処理して基板上に成膜を行う成膜方法であって、
原料溶液をミスト化してミストを発生させるミスト発生工程と、
前記ミストをキャリアガスにより搬送する搬送工程と、
成膜室の側面に設けられた供給手段から、前記ミストを、前記基板の側方から前記基板の成膜面と略平行な流れを形成し、前記基板の上方において衝突するように供給するミスト供給工程と、
供給された前記ミストを熱処理して前記基板上に成膜を行う成膜工程とを有し、
前記熱処理後の前記ミストを、前記基板の上方に設けた排気口であって、前記基板の成膜面よりも小面積の前記排気口から排気
し、
前記供給手段は、相対する方向に前記ミストを供給する、少なくとも1対の供給手段であることを特徴とする成膜方法。
【請求項8】
ミストを熱処理して基板上に成膜を行う成膜方法であって、
原料溶液をミスト化してミストを発生させるミスト発生工程と、
前記ミストをキャリアガスにより搬送する搬送工程と、
成膜室の側面に設けられた少なくとも1対の供給手段から、相対する方向に前記ミストを供給するミスト供給工程と、
供給された前記ミストを熱処理して前記基板上に
酸化ガリウム膜の成膜を行う成膜工程とを含み、
前記少なくとも1対の供給手段のミスト供給方向を前記基板表面と略平行な方向とする、及び/又は、前記少なくとも1対の供給手段の高さを前記基板表面と略同じ高さとすることを特徴とする成膜方法。
【請求項9】
前記成膜室の排気は、前記成膜室の上部であって前記基板の上方に設けた排気口から行うことを特徴とする請求項
8に記載の成膜方法。
【請求項10】
前記ミスト供給工程において、前記基板の上部で衝突するように前記ミストを供給することを特徴とする請求項
8又は
9に記載の成膜方法。
【請求項11】
前記成膜工程における前記熱処理で前記ミストが熱反応し、該熱反応により成膜することを特徴とする請求項
7から
10のいずれか一項に記載の成膜方法。
【請求項12】
前記成膜工程において、酸化ガリウム膜を成膜することを特徴とする請求項
7に記載の成膜方法。
【請求項13】
前記基板の面積を100mm
2以上、又は、前記基板の口径を直径2インチ(50mm)以上とすることを特徴とする請求項8から
12のいずれか一項に記載の成膜方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ミスト状の原料を用いて基板上に成膜を行う成膜装置及び成膜方法に関する。
【背景技術】
【0002】
従来、パルスレーザー堆積法(Pulsed laser deposition:PLD)、分子線エピタキシー法(Molecular beam epitaxy:MBE)、スパッタリング法等の非平衡状態を実現できる高真空成膜装置が開発されており、これまでの融液法等では作製不可能であった酸化物半導体の作製が可能となってきた。また、霧化されたミスト状の原料を用いて、基板上に結晶成長させるミスト化学気相成長法(Mist Chemical Vapor Deposition:Mist CVD。以下、「ミストCVD法」ともいう。)が開発され、コランダム構造を有する酸化ガリウム(α-Ga2O3)の作製が可能となってきた。α-Ga2O3は、バンドギャップの大きな半導体として、高耐圧、低損失および高耐熱を実現できる次世代のスイッチング素子への応用が期待されている。
【0003】
ミストCVD法に関して、特許文献1には、管状炉型のミストCVD装置が記載されている。特許文献2には、ファインチャネル型のミストCVD装置が記載されている。特許文献3には、リニアソース型のミストCVD装置が記載されている。特許文献4には、管状炉のミストCVD装置が記載されており、特許文献1に記載のミストCVD装置とは、ミスト発生器内にキャリアガスを導入する点で異なっている。特許文献5には、ミスト発生器の上方に基板を設置し、さらにサセプタがホットプレート上に備え付けられた回転ステージであるミストCVD装置が記載されている。
【先行技術文献】
【特許文献】
【0004】
【文献】特開平1-257337号公報
【文献】特開2005-307238号公報
【文献】特開2012-46772号公報
【文献】特許第5397794号
【文献】特開2014-63973号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ミストCVD法は、他のCVD法とは異なり比較的低温で成膜が行うことができ、α-酸化ガリウムのコランダム構造のような準安定相の結晶構造も作製可能である。しかしながら、本発明者らは、熱反応で成膜を行うために成膜室内で加熱を行うと、供給されたミストが指数関数的に減少してしまい、成膜速度が低下するとともに、膜厚の面内均一性を維持するのが困難になるという、新たな問題点を見出した。この問題は基板の口径が大きくなるほど顕著であった。このような問題に対し、特許文献3や特許文献5に記載の発明は、基板を走査、回転させることで解決を図っている。しかしながら、これらの方法を用いても膜厚の面内均一性は完全には解消されていない。また、成膜装置に走査や回転のための駆動部を設けることにより装置の初期コストが増加し、さらにメンテナンスが煩雑になるといった副次的な問題も生じていた。
【0006】
本発明は、上記問題を解決するためになされたものであり、膜厚の面内均一性や成膜速度に優れミストCVD法が適用可能な成膜装置、及び、均一性や成膜速度に優れた成膜方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明は、上記目的を達成するためになされたものであり、ミストを熱処理して基板上に成膜を行う成膜装置であって、原料溶液をミスト化してミストを発生させるミスト化部と、前記ミストを搬送するキャリアガスを供給するキャリアガス供給部と、基板を載置する載置部を内部に備える成膜室と、前記成膜室の側面に設けられ、かつ、相対する方向に前記ミストを供給する、少なくとも1対の供給手段を有する成膜装置を提供する。
【0008】
このような成膜装置によれば、簡便な装置構成により膜厚の面内均一性が高く、成膜速度を大きく改善することが可能なものとなる。
【0009】
このとき、前記成膜室は、前記載置部の上方に排気口を有するものとすることができる。
【0010】
これにより、膜厚の面内均一性をさらに向上できるものとなる。
【0011】
このとき、前記少なくとも1対の供給手段は、供給された前記ミストが前記載置部の上部で衝突するように対向配置されるものとすることができる。
【0012】
これにより、基板の上部におけるミストの濃度を高めることができ、さらに高い成長速度とすることができるものとなる。
【0013】
このとき、前記基板の面積が100mm2以上、又は、前記基板の口径が直径2インチ(50mm)以上のものとすることができる。
【0014】
これにより、膜厚が不均一になりやすい大面積基板であっても、より高い面内均一性を得ることができるものとなる。
【0015】
また、ミストを熱処理して基板上に成膜を行う成膜方法であって、原料溶液をミスト化してミストを発生させるミスト発生工程と、前記ミストをキャリアガスにより搬送する搬送工程と、成膜室の側面に設けられた少なくとも1対の供給手段から、相対する方向に前記ミストを供給するミスト供給工程と、供給された前記ミストを熱処理して前記基板上に成膜を行う成膜工程とを含む成膜方法を提供する。
【0016】
このような成膜方法によれば、簡便な方法により膜厚の面内均一性を高く、成膜速度を大きく改善することができる。
【0017】
このとき、前記成膜室の排気は、前記成膜室の上部であって前記基板の上方に設けた排気口から行うこととすることができる。
【0018】
これにより、膜厚の面内均一性をさらに向上させることができる。
【0019】
このとき、ミスト供給工程において、前記基板の上部で衝突するように前記ミストを供給することとすることができる。
【0020】
これにより、基板の上部におけるミストの濃度を高めることができ、さらに高い成長速度とすることができる。
【0021】
このとき、前記基板の面積を100mm2以上、又は、前記基板の口径を直径2インチ(50mm)以上とすることができる。
【0022】
これにより、膜厚が不均一になりやすい大面積基板を用いた場合であっても、より高い面内均一性とすることができる。
【発明の効果】
【0023】
以上のように、本発明の成膜装置によれば、簡便な装置構成により膜厚の面内均一性が高く、成膜速度を大きく改善することが可能なものとなる。また、本発明の成膜方法によれば、簡便な方法により膜厚の面内均一性を高く、成膜速度を大きく改善することが可能となる。
【図面の簡単な説明】
【0024】
【
図2】本発明に係る成膜装置のミスト化部の一例を説明する図である。
【
図3】本発明に係るミストの供給手段を2対とした場合の概略図(平面図)である。
【
図4】本発明に係るミストの供給手段を4対とした場合の概略図(平面図)である。
【
図5】本発明に係るミストの供給手段の他の例を示す概略図(平面図)である。
【
図6】本発明に係るミストの供給手段のさらに他の例を示す概略図(平面図)である。
【発明を実施するための形態】
【0025】
以下、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
【0026】
上述のように、ミストCVD法において、膜厚の面内均一性や成膜速度に優れた成膜装置、及び、膜厚の面内均一性や成膜速度に優れた成膜方法が求められていた。
【0027】
本発明者らは、上記課題について鋭意検討を重ねた結果、ミストを熱処理して基板上に成膜を行う成膜装置であって、原料溶液をミスト化してミストを発生させるミスト化部と、前記ミストを搬送するキャリアガスを供給するキャリアガス供給部と、基板を載置する載置部を内部に備える成膜室と、前記成膜室の側面に設けられ、かつ、相対する方向に前記ミストを供給する、少なくとも1対の供給手段を有する成膜装置により、膜厚の面内均一性や成膜速度に優れたものとなることを見出し、本発明を完成した。
【0028】
また、ミストを熱処理して基板上に成膜を行う成膜方法であって、原料溶液をミスト化してミストを発生させるミスト発生工程と、前記ミストをキャリアガスにより搬送する搬送工程と、成膜室の側面に設けられた少なくとも1対の供給手段から、相対する方向に前記ミストを供給するミスト供給工程と、供給された前記ミストを熱処理して前記基板上に成膜を行う成膜工程とを含む成膜方法により、膜厚の面内均一性を向上し成膜速度を高くできることを見出し、本発明を完成した。
【0029】
以下、図面を参照して説明する。
【0030】
ここで、本発明でいうミストとは、気体中に分散した液体の微粒子の総称を指し、霧、液滴等と呼ばれるものを含む。
【0031】
図1に、本発明に係る成膜装置101の一例を示す。成膜装置101は、原料溶液をミスト化してミストを発生させるミスト化部120と、ミストを搬送するキャリアガスを供給するキャリアガス供給部130と、成膜室107の側面に設けられ、かつ、相対する方向にミストを供給する、少なくとも1対の供給手段111と、供給されたミストを熱処理して基板上に成膜を行う成膜室107とを有する。排気口112は、基板110が載置される載置部113の上方に設けられていてもよい。
【0032】
(ミスト化部)
ミスト化部120では、原料溶液を調整し、前記原料溶液をミスト化してミストを発生させる。ミスト化手段は、原料溶液をミスト化できさえすれば特に限定されず、公知のミスト化手段であってよいが、超音波振動によるミスト化手段を用いることが好ましい。より安定してミスト化することができるためである。
【0033】
このようなミスト化部120の一例を、
図2も併せて参照しながら説明する。例えば、原料溶液104aが収容されるミスト発生源104と、超音波振動を伝達可能な媒体、例えば水105aが入れられる容器105と、容器105の底面に取り付けられた超音波振動子106を含んでもよい。詳細には、原料溶液104aが収容されている容器からなるミスト発生源104が、水105aが収容されている容器105に、支持体(図示せず)を用いて収納されている。容器105の底部には、超音波振動子106が備え付けられており、超音波振動子106と発振器116とが接続されている。そして、発振器116を作動させると超音波振動子106が振動し、水105aを介してミスト発生源104内に超音波が伝播し、原料溶液104aがミスト化するように構成されている。
【0034】
(キャリアガス供給部)
図1に示すように、キャリアガス供給部130はキャリアガスを供給するキャリアガス源102aを有する。このとき、キャリアガス源102aから送り出されるキャリアガスの流量を調節するための流量調節弁103aを備えていてもよい。また、必要に応じて希釈用キャリアガスを供給する希釈用キャリアガス源102bや、希釈用キャリアガス源102bから送り出される希釈用キャリアガスの流量を調節するための流量調節弁103bを備えることもできる。
【0035】
キャリアガスの種類は、特に限定されず、成膜物に応じて適宜選択可能である。例えば、酸素、オゾン、窒素やアルゴン等の不活性ガス、又は水素ガスやフォーミングガス等の還元ガスなどが挙げられる。また、キャリアガスの種類は1種類でも、2種類以上であってもよい。例えば、第1のキャリアガスと同じガスをそれ以外のガスで希釈した(例えば10倍に希釈した)希釈ガスなどを、第2のキャリアガスとしてさらに用いてもよく、空気を用いることもできる。
また、キャリアガスの供給箇所も1箇所だけでなく、2箇所以上あってもよい。
キャリアガスの流量は、特に限定されない。例えば、30mm角の基板上に成膜する場合には、0.01~20L/分とすることが好ましく、1~10L/分とすることがより好ましい。
【0036】
(供給管)
成膜装置101は、ミスト化部120と供給手段111とを接続する供給管109を備えていてもよい。この場合、ミストは、ミスト化部120のミスト発生源104から供給手段111へと、供給管109を介してキャリアガスによって搬送され、供給手段111から成膜室107内に供給される。供給管109は、例えば、石英管や樹脂製のチューブなどを使用することができる。
【0037】
(成膜室)
成膜室107では、ミストを加熱し熱反応を生じさせて、基板110上に成膜を行う。基板110は、成膜室107内の載置部113に載置される。載置部113には、基板110を加熱するためのホットプレート108を備えることができる。ホットプレート108は、
図1に示されるように成膜室107の外部に設けられていてもよいし、成膜室107の内部に設けられていてもよい。
ミストの供給手段111は、成膜室107の側面に設けられる。供給手段111については、後で詳述する。
また、排気口112は、成膜室107の上部であって載置部113(基板110)の上方に設けられることが好ましい。これにより、膜厚の均一性はさらに向上する。
【0038】
ここで、
図3-6は、成膜室107の上方から基板110方向を見た図(平面図)である。
図3-6においては、成膜室107はすべて直方体として記載されているが、必ずしも直方体である必要はなく、六角柱形、八角柱形であってもよいし、円柱状であってもよい。
なお、基板110を成膜室107の上面に設置するなどして、フェイスダウンとしてもよいし、基板110を成膜室107の底面に設置して、フェイスアップとしてもよい。
【0039】
熱反応は、加熱によりミストが反応すればよく、反応条件等も特に限定されない。原料や成膜物に応じて適宜設定することができる。例えば、加熱温度は120~600℃の範囲であり、好ましくは200℃~600℃の範囲であり、より好ましくは300℃~550℃の範囲とすることができる。
また、熱反応は、真空下、非酸素雰囲気下、還元ガス雰囲気下、空気雰囲気下及び酸素雰囲気下のいずれの雰囲気下で行われてもよく、成膜物に応じて適宜設定すればよい。また、反応圧力は、大気圧下、加圧下又は減圧下のいずれの条件下で行われてもよいが、大気圧下の成膜であれば、装置構成が簡略化できるので好ましい。
【0040】
(供給手段)
上述の通り、ミストの供給手段111は、成膜室107の側面に設けられるものであり、相対する方向にミストを供給する、少なくとも1対の供給手段である。
図1は、載置部113(基板110)を挟んで左右1対の供給手段111が設けられている例である。
ここで、「相対する方向」とは、成膜室107の上方から基板110を見た場合に、1対の供給手段のうちの、一方のミスト供給方向と、他方のミスト供給方向とが、互いに反対方向であることを意味する。この場合、1対の相対する方向の供給手段は、完全に同軸上で向き合っている場合に限られない。また、供給方向は完全に反対向きとなっているものの、供給方向の軸は互いに偏芯していてもよい。ここで、一方の供給方向を基準の0°とした場合、他方の供給方向が180°の方向の場合だけでなく、180°±10°の範囲内であればよい。
【0041】
また、成膜室107を側方から見た場合のミスト供給方向を、基板表面と略平行な方向とし、成膜室107の側面における供給手段111の高さを基板表面と略同程度の高さとすることが好ましい。このようにすることで、基板110の表面に平行な方向の流れを作ることができ、その結果、膜厚の面内均一性をより改善し、成膜速度をより高くすることができる。
なお、供給手段111は、成膜室107の側面に設けられた開口部でも、成膜室107の側面に設けられた成膜室107内に挿入されるノズルでもよい。
【0042】
図3は、ミストの供給手段として載置部113(基板110)を挟んで2対の開口部111a、111bが設けられている例、
図4は、4対の開口部111a、111b、111c、111dが設けられている例である。なお、図中、ミスト供給方向114を一点鎖線矢印で示した(後述の
図5、6も同様)。
【0043】
供給手段111の対の数の上限は特に限定されないが、基板の大きさ、対の数を増やすことによる膜厚の面内均一性向上や成長速度向上の効果、コスト、メンテナンス性等を比較して適宜設定すればよく、8対程度を上限とすることができる。
【0044】
図3-4に示す例における開口部(111a、111b、111c、111d)は、1対の供給手段のうちの一方の供給手段におけるミストの供給方向114の延長線上に、他方の供給手段が位置するものである。この場合、成膜室107に供給されたミストは、基板110の上部で衝突することとなり、基板110上の広範囲に渡って高密度のミストを導入することが可能となる。その結果、膜厚の面内分布をより改善し、成膜速度もより高くすることができる。
【0045】
また、本発明における「少なくとも1対の供給手段」には、
図3-4に例示するもののほか、一方の供給手段におけるミスト供給方向114の延長線上からずれた位置に、他方の供給手段が設けられるような位置関係にあるものも含む。例えば
図5に示すように、成膜室107の側面の片側に寄せるように供給手段である開口部111a、111bを設置してもよい。このような供給手段とすることによっても、基板110上でのミスト濃度を均一にできるため、膜厚の面内均一性が向上するとともに、成膜速度を高くすることができる。
【0046】
さらに、供給手段の開口の形状は、
図6に示すように、例えばスリット形状など、大きく開口した供給口111eであってもよい。
【0047】
以上詳述したように、供給手段が1つの開口(ノズル)のみの場合には、成膜室107の内部が加熱されているため、成膜室107の側面から内部に向けてミストが指数関数的に減少していく。一方、成膜室107の側面に設けられた、相対する方向にミストを供給する少なくとも1対の供給手段を用いる場合には、ミストの流れ(速度)が基板110上で相殺され、結果的に基板上の広範囲に渡って高密度のミストを導入することが可能となる。これにより、基板上に均一な膜厚かつ高い成膜速度で成膜することができる。
【0048】
(原料溶液)
原料溶液は、ミスト化が可能な材料を含んでいれば特に限定されず、無機材料であっても、有機材料であってもよい。金属又は金属化合物が好適に用いられ、ガリウム、鉄、インジウム、アルミニウム、バナジウム、チタン、クロム、ロジウム、ニッケル及びコバルトから選ばれる1種又は2種以上の金属を含むものを使用できる。
前記原料溶液は、上記金属をミスト化できるものであれば特に限定されないが、前記原料溶液として、前記金属を錯体又は塩の形態で、有機溶媒又は水に溶解又は分散させたものを好適に用いることができる。錯体の形態としては、例えば、アセチルアセトナート錯体、カルボニル錯体、アンミン錯体、ヒドリド錯体などが挙げられる。塩の形態としては、例えば、塩化金属塩、臭化金属塩、ヨウ化金属塩などが挙げられる。また、上記金属を、臭化水素酸、塩酸、ヨウ化水素酸等に溶解したものも塩の水溶液として用いることができる。
【0049】
また、前記原料溶液には、ハロゲン化水素酸や酸化剤等の添加剤を混合してもよい。前記ハロゲン化水素酸としては、例えば、臭化水素酸、塩酸、ヨウ化水素酸などが挙げられるが、なかでも、臭化水素酸またはヨウ化水素酸が好ましい。前記酸化剤としては、例えば、過酸化水素(H2O2)、過酸化ナトリウム(Na2O2)、過酸化バリウム(BaO2)、過酸化ベンゾイル(C6H5CO)2O2等の過酸化物、次亜塩素酸(HClO)、過塩素酸、硝酸、オゾン水、過酢酸やニトロベンゼン等の有機過酸化物などが挙げられる。
【0050】
さらに、前記原料溶液には、ドーパントが含まれていてもよい。前記ドーパントは特に限定されない。例えば、スズ、ゲルマニウム、ケイ素、チタン、ジルコニウム、バナジウム又はニオブ等のn型ドーパント、又は、銅、銀、スズ、イリジウム、ロジウム等のp型ドーパントなどが挙げられる。ドーパントの濃度は、例えば、約1×1016/cm3~1×1022/cm3であってもよく、約1×1017/cm3以下の低濃度にしても、約1×1020/cm3以上の高濃度としてもよい。
【0051】
(基板)
基板110は、成膜可能であり膜を支持できるものであれば特に限定されない。前記基板110の材料も、特に限定されず、公知の基板を用いることができ、有機化合物であってもよいし、無機化合物であってもよい。例えば、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド、フッ素樹脂、鉄やアルミニウム、ステンレス鋼、金等の金属、シリコン、サファイア、石英、ガラス、酸化ガリウム等が挙げられるが、これに限られるものではない。基板の厚さは、特に限定されないが、好ましくは、10~2000μmであり、より好ましくは50~800μmである。
基板110の大きさは特に限定されないが、大面積になるほど膜厚が不均一になりやすいので、本発明の効果が顕著となる。したがって、本発明は、基板面積が100mm2以上のものを用いることが好ましく、直径が2~8インチ(50~200mm)あるいはそれ以上の基板を用いることもできる。
【0052】
次に、以下、
図1を参照しながら、本発明に係る製造方法の一例を説明する。
まず、原料溶液104aをミスト発生源104内に収容し、基板110をホットプレート108上に直接又は成膜室107の壁を介して設置し、ホットプレート108を作動させる。次に、流量調節弁103a、103bを開いてキャリアガス源102a、102bからキャリアガスを成膜室107内に供給し、成膜室107の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量と希釈用キャリアガスの流量をそれぞれ調節する。次に、ミスト発生工程として、超音波振動子106を振動させ、その振動を、水105aを通じて原料溶液104aに伝播させることによって、原料溶液104aをミスト化させてミストを生成する。次に、搬送工程として、ミストは、キャリアガスによって供給管109を経て、成膜室107の側面に設けられ、かつ、相対する方向にミストを供給する少なくとも1対の供給手段111へと搬送される。次いで、ミスト供給工程として、ミストは前記少なくとも1対の供給手段111から成膜室107内に導入される。さらに成膜工程として、ミストは成膜室107内でホットプレート108の熱により熱反応して、基板110上に成膜される。ここで、成膜室107内のガスは、基板110の上方に設けられた排気口112から外部へと排気されてもよい。このようにしてミストの供給を行うことで、成膜室107内に導入されたミストは、基板110上の広範囲に渡って高密度となるので、膜厚の面内分布を改善するとともに成膜速度も高めることができる。
【実施例】
【0053】
以下、実施例を挙げて本発明について詳細に説明するが、これは本発明を限定するものではない。
【0054】
(実施例1)
まず、
図1を参照しながら、本実施例で用いた成膜装置101を説明する。成膜装置101は、キャリアガスを供給するキャリアガス源102aと、キャリアガス源102aから送り出されるキャリアガスの流量を調節するための流量調節弁103aと、希釈用キャリアガスを供給する希釈用キャリアガス源102bと、希釈用キャリアガス源102bから送り出される希釈用キャリアガスの流量を調節するための流量調節弁103bと、原料溶液104aが収容されるミスト発生源104と、水105aが収容された容器105と、容器105の底面に取り付けられた超音波振動子106と、成膜室107と、ミスト発生源104から成膜室107までをつなぐ石英管の供給管109と、成膜室107の外部に設けたホットプレート108とを備えている。基板110は成膜室107内の載置部113に設置され、ホットプレート108で加熱される。
【0055】
本実施例では、供給手段111として、成膜室107の側面の基板110の表面と略同じ高さの位置に、基板110表面と略平行な流れを形成するように、1対の開口部を設け、成膜室107の上部であって載置部113の上方に排気口112を設けた成膜装置を用いた。
【0056】
成膜は、以下のようにして行った。
まず、原料溶液の作製を行った。臭化ガリウム0.1mol/Lの水溶液を調整し、さらに48%臭化水素酸溶液を体積比で10%となるように含有させ、これを原料溶液104aとした。
【0057】
上述のようにして得た原料溶液104aをミスト発生源104内に収容した。次に、基板110として直径8インチ(200mm)のc面サファイア基板を、成膜室107内のホットプレート108に隣接する載置部113に設置し、ホットプレート108を作動させて温度を500℃に昇温した。
次に、流量調節弁103a、103bを開いてキャリアガス源102a、102bからキャリアガスを成膜室107内に供給し、成膜室107の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量を20L/minに、希釈用キャリアガスの流量を60L/minにそれぞれ調節した。なお、キャリアガスとして酸素を用いた。
【0058】
次に、超音波振動子106を2.4MHzで振動させ、その振動を、水105aを通じて原料溶液104aに伝播させることによって、原料溶液104aをミスト化してミストを生成した。このミストを、キャリアガスによって供給管109を経て成膜室107内に導入した。そして、大気圧下、500℃の条件で、成膜室107内でミストを熱反応させて、基板110上にコランダム構造を有する酸化ガリウム(α-Ga2O3)の薄膜を形成した。成膜時間は30分とした。
【0059】
基板110上に形成した薄膜について、測定箇所を基板110上の面内の17点として、段差計を用いて膜厚を測定し、平均膜厚、成膜速度、標準偏差を算出した。
その結果、平均膜厚5.2μm、成膜速度10.4μm/hr、標準偏差0.4μmであった。
【0060】
(実施例2)
供給手段111として、
図3に示すように成膜室107の側面に2対の開口部111a、111bを設けたこと以外は、実施例1と同じ条件で成膜を行った。
その結果、平均膜厚5.4μm、成膜速度10.8μm/hr、標準偏差0.2μmであった。
【0061】
(比較例)
供給手段として、成膜室の側面に供給口を1箇所のみ設けたものを用いたこと以外は、実施例1と同じ条件で成膜を行った。
その結果、平均膜厚3.5μm、成膜速度7.0μm/hr、標準偏差0.9μmであった。
【0062】
実施例1、2及び比較例の結果を、表1にまとめた。
【0063】
【0064】
実施例1、2と比較例との比較より、成膜室の側面に、相対する方向にミストを供給する1対又は2対の供給手段を設けることにより、膜厚の標準偏差が大幅に改善し、膜厚の面内分布の飛躍的な改善がみられた。また、平均膜厚も実施例1、2の方が大きくなっており、成膜速度を高くでき、原材料の利用効率の改善効果もみられることがわかった。
【0065】
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
【符号の説明】
【0066】
101…成膜装置、 102a…キャリアガス源、
102b…希釈用キャリアガス源、 103a…流量調節弁、
103b…流量調節弁、 104…ミスト発生源、 104a…原料溶液、
105…容器、 105a…水、 106…超音波振動子、 107…成膜室、
108…ホットプレート、 109…供給管、 110…基板、
111…供給手段、 111a、111b、111c、111d、111e…開口部、
112…排気口、 113…載置部、 114…ミスト供給方向、 116…発振器、
120…ミスト化部、 130…キャリアガス供給部。