IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社東京精密の特許一覧

<>
  • 特許-表面性状測定装置 図1
  • 特許-表面性状測定装置 図2
  • 特許-表面性状測定装置 図3
  • 特許-表面性状測定装置 図4
  • 特許-表面性状測定装置 図5
  • 特許-表面性状測定装置 図6
  • 特許-表面性状測定装置 図7
  • 特許-表面性状測定装置 図8
  • 特許-表面性状測定装置 図9
  • 特許-表面性状測定装置 図10
  • 特許-表面性状測定装置 図11
  • 特許-表面性状測定装置 図12
  • 特許-表面性状測定装置 図13
  • 特許-表面性状測定装置 図14
  • 特許-表面性状測定装置 図15
  • 特許-表面性状測定装置 図16
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2025-05-09
(45)【発行日】2025-05-19
(54)【発明の名称】表面性状測定装置
(51)【国際特許分類】
   G01B 5/20 20060101AFI20250512BHJP
   G01B 5/28 20060101ALI20250512BHJP
【FI】
G01B5/20 Z
G01B5/28
【請求項の数】 4
(21)【出願番号】P 2023113684
(22)【出願日】2023-07-11
(62)【分割の表示】P 2019201540の分割
【原出願日】2019-11-06
(65)【公開番号】P2023126360
(43)【公開日】2023-09-07
【審査請求日】2023-08-07
(73)【特許権者】
【識別番号】000151494
【氏名又は名称】株式会社東京精密
(74)【代理人】
【識別番号】100140992
【弁理士】
【氏名又は名称】松浦 憲政
(74)【代理人】
【識別番号】100170069
【弁理士】
【氏名又は名称】大原 一樹
(74)【代理人】
【識別番号】100128635
【弁理士】
【氏名又は名称】松村 潔
(74)【代理人】
【識別番号】100083116
【弁理士】
【氏名又は名称】松浦 憲三
(72)【発明者】
【氏名】森井 秀樹
【審査官】國田 正久
(56)【参考文献】
【文献】特許第7314473(JP,B2)
【文献】特開2018-138894(JP,A)
【文献】特開平07-248224(JP,A)
【文献】特開平11-257905(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01B 5/00-5/30
(57)【特許請求の範囲】
【請求項1】
接触子と、
前記接触子が取り付けられるアームと、
前記アームの揺動支点において、弾性部材を用いて前記アームを揺動可能に支持するアーム支持部と、
前記アームに付勢力を与えることにより前記アームを介して前記接触子に対して測定力を付与する測定力付与部と、
前記アームを介して前記接触子の変位を検出する検出部と、
前記測定力付与部の設定値と前記測定力との相関関係が記憶される相関関係記憶部と、
前記相関関係に基づき前記測定力を設定する測定力設定部と、
を備える表面性状測定装置。
【請求項2】
測定条件に応じた前記相関関係が記憶されていない場合に、前記測定条件に応じた前記相関関係を生成する相関関係生成部を備える請求項1に記載の表面性状測定装置。
【請求項3】
前記相関関係記憶部は、前記相関関係を更新する請求項1又は2に記載の表面性状測定装置。
【請求項4】
前記相関関係の更新情報を記憶する更新情報記憶部を備える請求項3に記載の表面性状測定装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は相関関係生成方法、測定力調整方法及び表面性状測定装置に関する。
【背景技術】
【0002】
接触式の表面性状測定用の検出器において、被測定物に接触する接触子、接触子を支持するアーム、アームを揺動可能に支持する揺動支持軸及びアームの揺動変位を検出するセンサを備えるテコ式検出器が広く用いられる。テコ式検出器において、接触子を被測定物へ押し当てる測定力を付与するために、コイルばね等の弾性体が用いられる。測定力は、測定力調節機構を用いて調整される。測定力は設定精度が課題となっていた。
【0003】
特許文献1は、被測定物に接触子を接触させて測定を実施する接触型内径測定器が記載されている。同文献に記載の装置は、揺動支点において揺動可能に支持された測定用アームの一端に接触子を備え、検出器を用いて他端の変位を検出する。同装置に具備されるアームの揺動支点は十字バネを用いて構成される。かかる構成は、測定力が一定で高精度の測定を可能としている。
【先行技術文献】
【特許文献】
【0004】
【文献】特開平11-257905号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、装置ごとに機械的な個体差が存在する場合、測定力付与機構の設定が同一であっても、実際に被測定物に付与される測定力が異なる可能性がある。そのために、装置ごとに測定力付与機構の設定と測定力との相関関係を実際に測定する必要がある。アーム及び接触子等が交換可能な場合にも、同様の課題が存在している。
【0006】
本発明はこのような事情に鑑みてなされたもので、低コストの簡易な測定力の調整を実施し得る、相関関係生成方法、測定力調整方法及び表面性状測定装置を提供することを目的とする。
【課題を解決するための手段】
【0007】
上記目的を達成するために、次の発明態様を提供する。
【0008】
第1態様に係る相関関係生成方法は、接触子を具備するアームが、揺動支点において板状弾性部材を用いて揺動可能に支持され、揺動支点を挟んで接触子とは反対側のアームの部分に、測定力付与部を用いて付勢力を与えることによりアームを介して接触子に対して測定力を付与し、接触子の変位を検出する表面性状測定における相関関係生成方法であって、接触子をワークに非接触にした状態で、付勢力に対応する測定力付与部の設定値を変化させながらアームを介して接触子の変位を検出する検出工程と、変位の検出値と板状弾性部材の物性値とに基づき、変位を検出した際に接触子に付与される測定力を算出する算出工程と、算出工程の算出結果に基づき、測定力付与部の設定値と測定力との相関関係を作成する作成工程と、を含む相関関係生成方法である。
【0009】
第1態様によれば、接触子を非接触として、複数の測定力付与機構の設定値について接触子の変位を検出する。接触子の変位の検出結果から揺動支点においてアームを支持する板状弾性部材の物性値を用いて、測定力付与機構の設定値に対する接触子に付与される測定力との相関関係を導出する。これにより、測定力を実測する測定装置等を必要とせず、低コストの簡易な、測定力調整に適用される相関関係を生成し得る。
【0010】
測定力の調整という概念は、測定力の初期設定及び測定力が設定された後の構成等の概念を含み得る。
【0011】
第2態様は、第1態様の相関関係生成方法において、相関関係は、測定力をFmeas、板状弾性部材の曲げこわさをB、アームにおける変位検出位置の検出値をD、板状弾性部材の長さをL、揺動支点から変位検出位置までの距離をLarm、揺動支点から接触子までの距離をLtipとして、Fmeas=B×D/(L×Larm×Ltip)を用いて導出される測定力が適用される構成としてもよい。
【0012】
第2態様によれば、板状弾性部材の曲げこわさB、接触子の変位の検出値D、板状弾性部材の長さL、揺動支点からアームにおける変位検出位置までの距離Larm及び揺動支点から接触子までの距離Ltipを用いて、接触子の変位の検出値Dから測定力Fmeasを導出し得る。
【0013】
第3態様に係る測定力調整方法は、第1態様に記載された相関関係生成方法で作成された相関関係を用いて測定力を調整する測定力調整方法であって、測定力の値を入力する入力工程と、相関関係を参照して、測定力の値に対応する測定力付与部の設定値を決定する決定工程と、決定工程で決定された測定力付与部の設定値に基づき、測定力付与部を動作させて、接触子に対して付与する測定力を調整する調整工程と、を含む測定力調整方法である。
【0014】
第3態様によれば、第1態様に記載の相関関係を用いた測定力の調整が可能である。
【0015】
第4態様は、第3態様の測定力調整方法において、複数の相関関係から測定条件に応じた相関関係を選択する相関関係選択工程を含む構成としてもよい。
【0016】
第4態様によれば、測定条件に応じた測定力の調整を実施し得る。
【0017】
第5態様に係る表面性状測定装置は、接触子と、接触子が取り付けられるアームと、アームの揺動支点において、板状弾性部材を用いてアームを揺動可能に支持するアーム支持部と、揺動支点を挟んで接触子とは反対側のアームの部分に付勢力を与えることによりアームを介して接触子に対して測定力を付与する測定力付与部と、アームを介して接触子の変位を検出する検出部と、測定力付与部の設定値と測定力との相関関係が記憶される相関関係記憶部と、を備え、相関関係は、接触子をワークに非接触にした状態で、付勢力に対応する測定力付与部の設定値を変化させながら接触子の変位を検出し、変位の検出値と板状弾性部材の物性値とに基づき、変位を検出した際に接触子に付与される測定力を算出し、算出結果に基づき生成された測定力付与部の設定値と測定力との相関関係が適用される表面性状測定装置である。
【0018】
第5態様によれば、第1態様に記載の相関関係を用いた測定力の調整が可能である。
【発明の効果】
【0019】
本発明によれば、接触子を非接触として、複数の測定力付与機構の設定値について接触子の変位を検出する。接触子の変位の検出結果から揺動支点においてアームを支持する板状弾性部材の物性値を用いて、測定力付与機構の設定値に対する接触子に付与される測定力との相関関係を導出する。これにより、測定力を実測する測定装置等を必要とせず、低コストの簡易な、測定力調整に適用される相関関係を生成し得る。
【図面の簡単な説明】
【0020】
図1図1は実施形態に係る真円度測定装置の全体構成図である。
図2図2図1に示す真円度測定装置の機能ブロック図である。
図3図3図1に示す真円度測定装置に適用される測定力調整方法の手順を示すフローチャートである。
図4図4はテコ式検出器の概念図である。
図5図5図1に示す真円度測定装置に適用される検出器の構成例を示す模式図である。
図6図6は測定力付与機構の設定値と変位センサの検出値との関係を示す模式図である。
図7図7は板バネが発生させる回転モーメントの詳細説明図である。
図8図8は板バネが発生させる測定力計算の説明図である。
図9図9は接触子に作用する測定力算出の説明図である。
図10図10は測定力付与機構の設定値に対する変位センサの検出値を示すグラフである。
図11図11は測定力付与機構の設定値に対する測定力を示すグラフである。
図12図12はアームの揺動支点に適用される板バネの模式図である。
図13図13はアームの揺動支点に適用される十字バネの模式図である。
図14図14は付け替え式の接触子を備える検出部の模式図である。
図15図15は接触子の形状等が異なる検出部の模式図である。
図16図16はアームに対する接触子の取付角度が相違する場合の模式図である。
【発明を実施するための形態】
【0021】
以下、添付図面に従って本発明の好ましい実施の形態について詳説する。本明細書では、同一の構成要素には同一の参照符号を付して、重複する説明は適宜省略する。
【0022】
[真円度測定装置]
〔真円度測定装置の全体構成〕
図1は実施形態に係る真円度測定装置の全体構成図である。同図に示す真円度測定装置10は、円柱形状のワーク9の真円度を測定する。被測定物のワーク9は、円板形状及び円筒形状等を適用し得る。
【0023】
真円度測定装置10は、ベース11を備える。ベース11は真円度測定装置10の各部を支持する支持台である。支持台は基台と同義である。真円度測定装置10は、テーブル13を備える。テーブル13は載物台と呼ばれる場合がある。
【0024】
テーブル13は、円盤状であり、ベース11の上面に取り付けられる。テーブル13は、テーブル13の中心を通り、かつ、上下方向に延びる回転軸22の位置において、ベース11を用いて回転可能に支持される。テーブル13は、水平方向の基準面に対して平行となるように、基準面に対する傾きが調整される。
【0025】
ここで、本明細書のおける上方向という用語は鉛直上方向を表す。また、下方向という用語は鉛直下方向を表す。
【0026】
テーブル13の上面はワーク9が載置される。ワーク9は、測定対象部分の形状中心が回転軸と一致するように、テーブル13の上面に載置される。図1には、円柱形状のワーク9における外周面が測定対象部分であり、円柱の中心軸がテーブル13の回転軸22と一致するようにワーク9が載置される例を示す。
【0027】
真円度測定装置10は、モータ14を備える。モータ14は、ベース11の内部に配置される。モータ14の回転軸は、駆動伝達機構を介してテーブル13の回転軸と連結される。モータ14は、回転軸22を回転中心として、テーブル13を回転動作させる。駆動伝達機構は、ギアを含み得る。なお、駆動伝達機構の図示を省略する。
【0028】
真円度測定装置10は、コラム15、キャリッジ16、水平アーム17及び検出器18を備える。コラム15は、ベース11の上面であり、水平方向におけるベース11の側方側に配置される。コラム15は上下方向に延びる柱である。
【0029】
キャリッジ16は、コラム15を用いて昇降可能に支持される。キャリッジ16は、水平アーム17が水平方向に移動可能に取り付けられる。水平アーム17の先端部は、検出器18が取り付けられる。
【0030】
検出器18は、接触子18A及び変位センサを備える。なお、図1では変位センサの図示を省略する。変位センサは、符号18Bを用いて図2に図示する。検出器18は、符号Aを用いて示す方向に沿って移動する接触子18Aの変位を検出する。検出器18は、接触子18Aの変位を表す検出信号を出力する。検出信号は制御装置19へ送信される。
【0031】
検出器18は、測定力付与機構を備える。測定力付与機構は、測定力の設定値に対応する測定力を接触子18Aへ付与する。なお、図1では、測定力付与機構の図示を省略する。測定力付与機構は符号56を用いて図2に図示する。
【0032】
真円度測定装置10は、制御装置19を備える。制御装置19は、表示装置19A及び入力装置19Bが接続される。表示装置19Aは液晶ディスプレイ等のディスプレイ装置を適用し得る。入力装置19Bは、キーボード及びマウスを適用し得る。タッチパネル方式のディスプレイ装置を表示装置19Aに適用して、表示装置19Aと入力装置19Bとを兼用してもよい。
【0033】
〔制御装置の説明〕
図2図1に示す真円度測定装置の機能ブロック図である。制御装置19は、検出信号取得部40及び信号処理部42を備える。検出信号取得部40は、検出器18から送信される検出信号を取得する。検出信号取得部40は、検出信号記憶部44を用いて検出結果を記憶する。信号処理部42は、検出器18の検出信号を用いてワーク9の測定結果を生成する。信号処理部42は、測定結果記憶部46を用いて測定結果を記憶する。
【0034】
制御装置19は、表示制御部48を備える。表示制御部48は、表示装置19Aを制御する。信号処理部42は、測定結果を表す電気信号を表示制御部48へ送信する。表示制御部48は、測定結果を表す電気信号を表示装置19Aに適用される表示信号へ変換し、表示信号を表示装置19Aへ送信する。表示装置19Aは、表示制御部48から送信された表示信号が表す検出器18の測定結果を表示する。
【0035】
制御装置19は、測定力付与制御部50、測定力設定部52及びテーブル記憶部54を備える。測定力付与制御部50は、検出器18に具備される測定力付与機構56の動作を制御する。測定力設定部52は、測定力付与機構56の制御パラメータである測定力を設定する。
【0036】
テーブル記憶部54は、測定力付与機構56の設定値と接触子に付与される測定力との相関関係を示す測定力設定テーブル58が記憶される。測定力付与制御部50は、測定力設定部52の設定値に基づき、測定力付与機構56の動作を制御する。なお、実施形態に示すテーブル記憶部54は相関関係記憶部の一例に相当する。測定力付与機構56の動作制御の詳細は後述する。
【0037】
制御装置19は、駆動制御部60を備える。駆動制御部60は、駆動機構62の制御パラメータに基づき駆動機構62の動作を制御する。駆動機構62は、図1に示すモータ14、キャリッジ16を動作させるモータ及び水平アーム17を動作させるモータを含み得る。
【0038】
制御装置19は、入力部64を備える。入力部64は入力装置19Bから送信される入力信号を取得する。入力部64は入力信号に対応する情報を制御装置19の各部へ送信する。例えば、入力装置19Bを用いて制御パラメータの設定値が入力される場合、入力部64は取得した入力信号に対応する制御パラメータを該当する制御部へ送信する。
【0039】
制御装置19は、プログラム記憶部66を備える。プログラム記憶部66は、真円度測定装置10及び制御装置19に適用される各種のプログラムが記憶される。プログラムの一例として、接触子に対して付与される測定力の調整に使用される測定力調整プログラムが挙げられる。
【0040】
〔制御装置のハードウェア構成〕
制御装置19は、コンピュータを適用し得る。制御装置19は、以下に説明するハードウェアを用いて、規定のプログラムを実行して真円度測定装置10の機能を実現する。各制御部のハードウェアは、各種のプロセッサを適用し得る。プロセッサの例として、CPU(Central Processing Unit)が挙げられる。CPUはプログラムを実行して各種処理部として機能する。
【0041】
図3図1に示す真円度測定装置に適用される測定力調整方法の手順を示すフローチャートである。測定力設定工程S10では、図2に示す測定力設定部52は、ワーク9の測定に適用される測定力を設定する。なお、実施形態に記載の測定力設定工程S10は測定力の値を入力する入力工程の一例に相当する。実施形態に記載のワーク9の測定は表面性状測定の一例に相当する。
【0042】
測定力は、ワーク9の規格、測定精度及び接触子18A等の測定条件に応じて決められる。測定力設定部52は、ワーク9の測定に適用される測定条件に基づき、測定力を設定する。測定力設定工程S10の後に測定力設定情報取得工程S12へ進む。なお、実施形態に記載の測定力の設定は測定力の値の入力の一例に相当する。
【0043】
測定力設定情報取得工程S12では、測定力付与制御部50は測定力設定工程S10において設定される測定力の入力情報を取得する。測定力設定情報の例として、測定力付与機構56の設定値が挙げられる。測定力付与機構56の設定値は符号Sを用いて図6に示す。測定力設定情報取得工程S12の後に動作パラメータ読出工程S14へ進む。
【0044】
動作パラメータ読出工程S14では、測定力付与制御部50は測定力設定テーブル58から測定力設定情報に対応する動作パラメータを読み出す。動作パラメータ読出工程S14の後に動作パラメータ設定工程S16へ進む。
【0045】
動作パラメータ設定工程S16では、測定力付与制御部50は、動作パラメータ読出工程S14において読み出した測定力付与機構56の動作パラメータを設定する。動作パラメータ設定工程S16の後に測定付与機構動作工程S18へ進む。なお、実施形態に記載の動作パラメータ読出工程S14及び動作パラメータ設定工程S16は、決定工程の構成要素の一例に相当する。
【0046】
測定付与機構動作工程S18では、測定力付与制御部50は動作パラメータ設定工程S16において設定された動作パラメータに基づき測定力付与機構56を動作させる。測定付与機構動作工程S18の後に調整完了確認工程S20へ進む。
【0047】
調整完了確認工程S20では、測定力付与制御部50は測定力付与機構56の調整が完了したか否かを判定する。測定力付与制御部50は測定力付与機構56の位置を検出する位置センサの検出結果に基づき測定力付与機構56の調整が完了したか否かを判定してもよい。
【0048】
調整完了確認工程S20において、測定力付与制御部50が測定力付与機構56の調整が完了していないと判定する場合はNo判定となる。Noの場合は測定付与機構動作工程S18へ進み、調整完了確認工程S20においてYes判定となるまで、測定付与機構動作工程S18及び調整完了確認工程S20をくり返し実施する。
【0049】
一方、調整完了確認工程S20において、測定力付与制御部50が測定力付与機構56の調整が完了したと判定する場合はYes判定となる。Yes判定の場合は、測定力付与制御部50は、測定力調整方法を終了させる。
【0050】
なお、実施形態に示す測定付与機構動作工程S18及び調整完了確認工程S20は、調整工程の構成要素の一例に相当する。
【0051】
図2に示すテーブル記憶部54が複数の測定力付与機構56を記憶する場合、ワーク9の測定条件に応じて測定力設定テーブル58を切り替えるテーブル切替工程を実施してもよい。かかる態様において、ワーク9の測定条件を取得する測定条件取得工程を実施した後に、テーブル切替工程を実施し得る。
【0052】
制御装置19は、測定値調整に適用される測定力設定テーブル58の識別情報を表示装置19Aに表示させてもよい。すなわち、測定値調整に適用される測定力設定テーブル58の識別情報を表示する測定力設定テーブル識別情報表示工程を実施してもよい。
【0053】
制御装置19は、新たな測定力設定テーブル58を生成してもよい。すなわち、動作パラメータ読出工程S14において、アームの種類及びアームの取付方向等の測定条件に合致する測定力設定テーブル58が存在しない場合において、接触子202が被測定物210と非接触の状態において、測定力の設定値ごとに変位センサ208の検出値を読み出し、変位センサ208の検出値から測定力を算出し、新たな測定力設定テーブル58を作成するテーブル作成工程を実施し得る。
【0054】
なお、実施形態に示すテーブル作成工程は、相関関係作成工程の一例に相当する。実施形態に示す測定力の設定値ごとは、測定力の設定ごとの一例に相当する。かかる態様によれば、新たな測定条件に対する測定力調整の実施が可能となる。
【0055】
制御装置19は、複数の測定力設定テーブル58を備える場合に、測定条件に応じて測定力設定テーブル58を選択するテーブル選択工程を実施し得る。なお、実施形態に示すテーブル選択工程は、相関関係選択工程の一例に相当する。かかる態様によれば、測定条件に応じた測定力の調整を実施し得る。
【0056】
[一般的なテコ式検出器の説明]
図4はテコ式検出器の概念図である。テコ式検出器100は、接触子102、アーム104、測定力付与機構106及び変位センサ108を備える。テコ式検出器100は、被測定物110へ接触子102を接触させ、接触子102と被測定物110とを相対的に操作させ、被測定物110の表面の凹凸を検出する。接触子102は図1に示す接触子18Aに対応する。被測定物110はワーク9に対応する。
【0057】
図4に示すアーム104は接触子102を先端に保持する。アーム104は揺動支点112を用いて揺動可能に支持される。揺動支点112に付された矢印線は、アーム104の揺動方向を表す。
【0058】
測定力付与機構106は、アーム104に付勢力を与えることにより、被測定物110へ接触子102を押し当てる測定力を調整する。測定力付与機構106は、測定力を発生させるコイルバネ114等の弾性体を備える。コイルバネ114の一端はアーム104と連結される。コイルバネ114の他端は昇降機構と接続される。測定力付与機構106に付された矢印線は、コイルバネ114の他端の移動方向を表す。なお、昇降機構の図示を省略する。
【0059】
変位センサ108は、アーム104の基端位置である変位検出位置116の変位を検出する。テコ式検出器100は、変位センサ108の検出結果を表す出力信号を出力する。被測定物110へ付与される測定力は、測定力付与機構106を用いて設定され、調整されるが、測定力の設定精度は、被測定物110の表面性状を測定する測定精度を確保するための課題となっている。
【0060】
なお、説明の都合上、図4には接触子102の先端が下向きとなる態様を例示したが、図4に示すテコ式検出器は、図1に示す検出器18と同様に、接触子102の先端が水平方向を向く態様及び接触子102の先端が上向きとなる態様でもよい。図5に示す検出器200等についても同様である。
【0061】
〔本実施形態に係る真円度測定装置に適用される検出器の構成例〕
図5図1に示す真円度測定装置に適用される検出器の構成例を示す模式図である。検出器200は、接触子202、アーム204、測定力付与機構206、変位センサ208を備える。測定力付与機構206はコイルバネ214を備える。
【0062】
図5に示す接触子202は図1に示す接触子18Aに対応する。被測定物210はワーク9に対応する。符号212はアーム204の揺動支点を表す。符号216はアーム204の変位検出位置を表す。
【0063】
図5には、アーム204の基端を変位検出位置216とする態様を適用したが、変位検出位置216は、揺動支点212について接触子202と反対側のアーム204の任意の位置を適用し得る。
【0064】
検出器200は、アーム204を揺動可能に支持する支持部材に板バネ220が適用される。板バネ220の中点が、アーム204の揺動支点212となる。アーム204に付した矢印線は、アーム204の揺動方向を表す。板バネ220は、アーム連結部材222を用いてアーム204と連結される。アーム204は、揺動支点212よりも接触子202の側の位置において、板バネ220と連結される。
【0065】
板バネ220は、フレーム連結部材224を用いて、変位センサ208を支持するフレーム226と連結される。検出器200は、測定力付与機構206の設定値と測定力との相関関係を用いて、規定の測定力を適用した被測定物210の測定を実施する。
【0066】
板バネ220の物性値を用いて、変位センサ208の検出値から測定力を算出し、測定力付与機構206の設定値と変位センサ208の検出値との相関関係が導出される。
【0067】
測定力付与機構206の設定値と測定力との相関関係は、図2に示す測定力設定テーブル58を適用し得る。なお、測定力付与機構206は、図2に示す測定力付与機構56に相当する。以下に、測定力の算出について詳細に説明する。
【0068】
なお、実施形態に示す板バネ220は板状弾性部材を用いてアームを支持するアーム支持部の構成要素の一例に相当する。また、実施形態に示す板バネ220は板状弾性部材の一例に相当する。更に、実施形態に記載の測定力付与機構206は、測定力付与部の一例に相当する。
【0069】
〔測定力付与機構の設定値と測定力との相関関係の導出の説明〕
図6は測定力付与機構の設定値と変位センサの検出値との関係を示す模式図である。以下の手順に従って、測定力付与機構206の設定値Sごとの変位センサ208の検出値を検出する検出工程を実施する。図6では測定力付与機構206の設定値Sを模式的に図示する。まず、接触子202を自由状態にする。すなわち、接触子202を図5に示す被測定物210に対して非接触状態とする。
【0070】
次に、測定力付与機構206の設定値Sを決定する。設定値Sは、測定力付与機構206に具備される昇降機構の基準位置に対する移動距離とする。基準位置に対して昇降機構を上昇させる場合の移動距離を正の値とし、基準位置に対して昇降機構を下降させる場合の移動距離を負の値とする。測定力付与機構206に付した矢印線は、昇降機構の上昇を表す。
【0071】
設定値Sに応じた板バネ220の反力がアーム204に作用し、板バネ220が発生させる回転モーメントと、測定力付与機構206が発生させる回転モーメントとがつり合い、アーム204の揺動が静止する。
【0072】
なお、図6に示すアーム204の揺動支点212よりも先端側の位置に付した矢印線は、板バネ220が発生させる回転モーメントを表す。アーム204の揺動支点212を挟んで接触子202と反対側のアームの部分である、アーム204におけるコイルバネ214の連結位置204Bに付した矢印線は、測定力付与機構206が発生させる回転モーメントを表す。図7及び図9についても同様である。
【0073】
板バネ220が発生させる回転モーメントは、アーム204における板バネ220の連結位置204Aに作用する力のモーメントである。測定力付与機構206が発生させる回転モーメントは、アーム204におけるコイルバネ214の連結位置204Bに作用する力のモーメントである。
【0074】
アーム204の揺動が静止した状態における変位センサ208の検出値Dを取得する。板バネ220の物性値を用いて、変位センサ208の検出値Dから測定力付与機構206の設定値Sに対応する板バネ220の反力を算出する。板バネ220の反力から板バネ220が発生させる力に対応する接触子202に対して付与する測定力の算出が可能である。
【0075】
測定力付与機構206の設定値Sを変えて、複数の測定力付与機構206の設定値Sについて測定力を算出する。算出結果に基づき測定力付与機構206の設定値Sと測定力との相関関係を導出する。なお、実施形態に記載の測定力の算出は算出工程の一例に相当する。実施形態に記載の相関関係生成の手順は、相関関係生成方法の一例に相当する。以下に、測定力の算出について詳細に説明する。
【0076】
図6に実線を用いて図示した接触子202及びアーム204は、測定力付与機構206の設定値Sがゼロを除く任意の値の場合を表す。同図に一点鎖線を用いて図示した接触子202及びアーム204は、測定力付与機構206の設定値Sがゼロの場合を表す。測定力付与機構206の設定値Sがゼロの場合の変位センサ208の検出値Dを基準値とする。以下の説明では、基準値をゼロとする。変位センサ208の検出値Dは、アーム204の変位検出位置216の変位が適用される。
【0077】
アーム204の変位検出位置216の変位は、測定力付与機構206の設定値Sがゼロの場合のアーム204の変位検出位置216の位置に対する距離が適用される。アーム204の変位検出位置216の変位はミリメートル等の距離を表す単位が用いられる。
【0078】
符号Pは、板バネ220の反力を表す。反力Pは、アーム204における板バネ220の連結位置204Aに作用する。符号Fmfは、コイルバネ214が発生させる力を表す。コイルバネ214が発生させる力Fmfは、アーム204に対して角度φをなす。
【0079】
符号Lは、アーム204の長手方向に沿う板バネ220の長さを表す。板バネ220の長さLは、板バネ220の弾性変形が可能な部分の長さであり、板バネ220の非変形状態における長さが適用される。板バネ220の長さLは固定値である。
【0080】
〔板バネが発生させる回転モーメントの計算〕
図7は板バネが発生させる回転モーメントの詳細説明図である。符号Larmは、アーム204の揺動支点212から変位検出位置216までの距離である。符号θは、測定力付与機構206の設定値Sがゼロの場合のアーム204に対する、測定力付与機構206の設定値Sが任意の値の場合のアーム204の角度である。
【0081】
板バネ220の反力が発生させる回転モーメントは、板バネ220の長さL及び板バネ220の反力Pを用いて、(L/2)×Pと表される。なお、計算の都合上、アームの揺動支点212を板バネ220の中点とした。板バネ220の中点は、板バネ220における弾性変形可能な部分の中点である。
【0082】
〔板バネが発生させる測定力の計算〕
図8は板バネが発生させる測定力計算の説明図である。板バネ220の基端220Aからの距離がxの位置における変位δ(x)は、δ(x)=(P×L×x)/[(6×B)×{3-(x/L)}]と表される。
【0083】
ここで、板バネ220が発生させる力Pは、図7に示す板バネ220の反力Pと大きさが同一であり、板バネ220の反力Pと反対方向を向く。Bは曲げこわさであり、B=(b×t×E)/{12×(1-ν)}と表される。
【0084】
bは、板バネ220の幅である。板バネ220の幅は、板バネ220の長さLの方向と直交する幅方向における板バネ220の全長である。tは板バネ220の厚みである。Eは板バネ220のヤング率である。νは板バネ220のポアソン比である。
【0085】
板バネ220の基端220Aからの距離がxの位置における検出器200のアーム角度θ(x)は、θ(x)={δ(x+dx)-δ(x)}/dxと表される。すなわち、検出器200のアーム角度θ(x)は、δ(x)をxについて微分した、dδ(x)/dxである。検出器200のアーム角度θ(x)は、板バネ220の長さLをパラメータとして、θ(L)=(P×L)/(2×B)と表される。
【0086】
ここで、図8に示す検出器200のアーム角度θ(x)は、図7に示す角度θである。図8では一点鎖線を用いてアーム204を模式的に示す。一方、アーム204の揺動支点212から変位センサ208までの距離Larm及び検出器200の検出値Dを用いて、θの正接は、tan(θ)=D/Larmと表される。
【0087】
微小角度近似を適用し、tan(θ)=θとして、上記の数式をPについて解き、P(D)=(2×B×D)/(L×Larm)と求められる。板バネ220が発生させる力Pは、検出器200の検出値Dをパラメータとする関数として表される。
【0088】
上記P(D)において、板バネ220の曲げこわさB及び板バネ220の長さLは、板バネ220の物性値として規定される。また、アーム204の揺動支点212から変位センサ208までの距離Larmは、アーム204の機械的仕様に基づき規定される。
【0089】
〔接触子に作用する測定力の計算〕
図9は接触子に作用する測定力算出の説明図である。アーム204における揺動支点212から接触子202の位置までの距離をLtipとし、接触子202に作用する測定力をFmeasとする。
【0090】
測定力付与機構206が発生させる回転モーメントは、(L/2)×P=B×D/(L×Larm)と表される。測定力付与機構206が発生させる回転モーメントは、Fmeas×Ltipとつり合う。すなわち、接触子202に作用するFmeasは、Fmeas(D)=B×D/(L×Larm)と表される。
【0091】
〔測定力設定テーブルの説明〕
図10は測定力付与機構の設定値に対する変位センサの検出値を示すグラフである。同図に示すグラフの横軸は測定力付与機構206の設定値Sであり、縦軸は変位センサ208の検出値Dである。
【0092】
測定力付与機構206の設定値Sは、図5等に示すコイルバネ214を移動させる移動機構の動作パラメータを適用し得る。移動機構がパルスモータ等の制御型モータを具備する場合、制御パラメータはコイルバネ214の移動距離に対応するパルス数を適用し得る。
【0093】
測定力付与機構206の設定値Sを変えて、複数の設定値Sについて変位センサ208の検出値Dを測定する。測定値を表すプロットに対して線形補間及びデータの外挿等の処理を施し、図10に示すグラフが生成される。
【0094】
図11は測定力付与機構の設定値に対する測定力を示すグラフである。図11に示すグラフの横軸は、図10に示すグラフと同様に、測定力付与機構206の設定値Sである。図11に示すグラフの縦軸は、接触子202に作用する測定力Fmeasである。測定力Fmeasの単位はミリニュートンである。
【0095】
図11に示すグラフは、Fmeas(D)=B×D/(L×Larm×Ltip)について、図10に示す変位センサ208の検出値Dを適用して導出し得る。図11に示すグラフは、図2に示す測定力設定テーブル58の一例である。図2に示す測定力付与制御部50は、測定力設定テーブル58を参照して、測定力設定部52を用いて設定された測定力Fmeasに対応する測定力付与機構206の動作パラメータとして、測定力付与機構206の設定値Sを読み出し、測定力付与機構206の設定値Sに基づき、測定力付与機構206を動作させる。
【0096】
〔測定力設定テーブル作成の望ましい実施形態〕
〈外挿〉
測定力付与機構206の設定値Sに対する変位センサ208の検出値Dを検出する際に、変位センサ208の検出値Dが検出範囲外となる測定力付与機構206の設定値Sが存在し得る。かかる場合は、図10に示すグラフにおけるプロットを外挿して、検出範囲外となる変位センサ208の検出値Dに対応する測定力付与機構206の設定値Sを補間し得る。プロットの外挿は、多項式近似等の公知の近似法を適用し得る。
【0097】
〈線形特性〉
測定力付与機構206の設定値Sに対する測定力Fmeasは線形特性を有する。これにより、プロットの外挿の精度を高めることができる。ここでいう線形は、厳密な線形に限定されない。非線形であっても線形と同様の作用効果が得られる実質的な線形を適用してもよい。
【0098】
〈測定力設定テーブルの更新〉
測定力設定テーブル58は、真円度測定装置10の初期状態において生成し、記憶し得る。測定力設定テーブル58は、検出器200の状態及び被測定物110に応じて更新し得る。ここでいう更新は、既存のテーブルを書き替える態様及び既存のテーブルを残し、かつ新たなテーブルを追加する態様のいずれも含み得る。
【0099】
測定力設定テーブル58を更新した場合、更新情報を記憶する態様が好ましい。すなわち、真円度測定装置10は測定力設定テーブル58の更新情報を記憶する更新情報記憶部を備え得る。更新情報は、更新日時等の情報を含み得る。
【0100】
〔板状弾性部材の説明〕
図12はアームの揺動支点に適用される板バネの模式図である。図12に示す単板状板バネ300は、平板形状を有する単板から構成される。図5等に示す板バネ220は、図12に示す単板状板バネ300が適用される。
【0101】
単板状板バネ300は、揺動側連結部材302を用いて一方の側が支持され、固定側揺動部材304を用いて他方の側が支持される。揺動側連結部材302は、図5等に示すアーム連結部材222に対応する。揺動側連結部材302は、図5等に示す接触子202及びコアが連結される。固定側揺動部材304は、フレーム連結部材224に対応する。固定側揺動部材304は、検出器200の本体側に接続される。
【0102】
図13はアームの揺動支点に適用される十字バネの模式図である。図13に示す十字バネ320は、図12に示す単板状板バネ300と比較して、回転軸受としての特性が改良されている。
【0103】
図13に示す十字バネ320は、揺動側連結部材322及び固定側揺動部材324を用いて支持される。揺動側連結部材322の機能は、図12に示す揺動側連結部材302と同様である。固定側揺動部材324の機能は、固定側揺動部材304と同様である。なお、図13に示す十字バネ320は板状弾性部材の一例に相当する。
【0104】
[作用効果]
〔変位センサ検出値のゼロ点校正〕
測定力付与機構206の設定値Sを変えながら変位センサ208の検出値Dを読み取る動作において、変位センサ208の検出値Dがゼロとなる測定力付与機構206の設定値Sを検出する。これにより、測定力Fmeasが中立となる測定力付与機構206の設定値Sを検出し得る。
【0105】
図14は付け替え式の接触子を備える検出部の模式図である。図15は接触子の形状等が異なる検出部の模式図である。図16はアームに対する接触子の取付角度が相違する場合の模式図である。
【0106】
図14に示すように測定の目的等に応じて接触子202Aを付け替える検出器200Aでは、接触子202の形状等に応じて、変位センサ208の検出値Dのゼロ点が変化する。本実施形態に示す測定力調整を実施しない場合は、接触子202Aの状態に対して、秤等の測定装置を用いて測定力Fmeasを直接測定する必要があった。
【0107】
図14に示す検出器200Aは、図5等に示す検出器200に対して、接触子202Aの付け替えが可能であり、接触子202Aの質量に応じて、接触子202に対する回転モーメントの変化が生じる。
【0108】
図15に示す検出器200Bは、図5等に示す検出器200に具備される接触子202に対して、形状及び質量が異なる検出器200Bを具備し、接触子202Bの質量及び形状に応じて、接触子202に対する回転モーメントの変化が生じる。
【0109】
図16に示す検出器200Cは、図5等に示す検出器200に具備される接触子202に対して、接触子202Cの取付角度が相違し、接触子202Cの取付角度に応じて、接触子202に対する回転モーメントの変化が生じる。
【0110】
図14に示す検出器200A、図15に示す検出器200B及び図16に示す検出器200Cは、図2に示す測定力設定テーブル58を用いて、測定力付与機構206の設定値Sに対する変位センサ208の検出値Dのゼロ点の校正が可能となる。
【0111】
〔測定力を直接測定する秤等の測定装置が不要〕
より低コスト、より簡易に測定力の調整及び校正が可能である。また、真円度測定装置10の設置場所における現場作業が可能であり、真円度測定装置10の実際の稼働環境において、正確な測定力の校正が可能である。また、常に最新の状態における測定力の校正値を利用し得る。これにより、真円度測定装置10の測定結果の再現性が高まり、測定の高精度化を実現し得る。
【0112】
〔検出器及び接触子等の個体差の影響の排除〕
検出器200及び接触子202の個体差が存在する場合、測定力付与機構206の設定値Sと測定力Fmeasとの相関関係を真円度測定装置10の個体ごとに管理する必要がある。また、個体管理の手間が必要であり、設定ミス等の発生が懸念される。
【0113】
これに対して、本実施形態に示す真円度測定装置10は、シリアルナンバー入力等の個体管理の手間が不要であり、設定ミス等の発生の抑制及び個体管理の処理期間の削減を実現し得る。
【0114】
〔応用例〕
本実施形態では、ワーク9の表面形状を測定する表面性状測定装置の一例として、ワーク9の真円度、真直度、平行度及び直角度等を測定する真円度測定装置10を例に挙げて説明したが、これに限らず、表面粗さ測定装置及び輪郭形状測定装置等の各種の表面性状測定装置であってもよい。
【0115】
以上説明した本発明の実施形態は、本発明の趣旨を逸脱しない範囲で、適宜構成要件を変更、追加、削除することが可能である。本発明は以上説明した実施形態に限定されるものではなく、本発明の技術的思想内で当該分野の通常の知識を有する者により、多くの変形が可能である。
【符号の説明】
【0116】
10…真円度測定装置、19…制御装置、19A…表示装置、48…表示制御部、50…測定力付与制御部、54…テーブル記憶部、56,206…測定力付与機構、58…測定力設定テーブル、66…プログラム記憶部、200,200A,200B,200C…検出器、202,202A,202B,202C…接触子、204…アーム、208…変位センサ、212…揺動支点、220…板バネ、222…アーム連結部材、224…フレーム連結部材、300…単板状板バネ、302,322…揺動側連結部材、304,324…固定側揺動部材、320…十字バネ
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16