IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ケーエルエー−テンカー コーポレイションの特許一覧

<>
  • 特表-非円形瞳を有する検査システム 図1
  • 特表-非円形瞳を有する検査システム 図2
  • 特表-非円形瞳を有する検査システム 図3
  • 特表-非円形瞳を有する検査システム 図4
  • 特表-非円形瞳を有する検査システム 図5A
  • 特表-非円形瞳を有する検査システム 図5B
  • 特表-非円形瞳を有する検査システム 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-03-04
(54)【発明の名称】非円形瞳を有する検査システム
(51)【国際特許分類】
   G03F 1/84 20120101AFI20220225BHJP
   G03F 1/24 20120101ALI20220225BHJP
   G01N 21/956 20060101ALI20220225BHJP
【FI】
G03F1/84
G03F1/24
G01N21/956 A
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2021539928
(86)(22)【出願日】2020-01-09
(85)【翻訳文提出日】2021-08-25
(86)【国際出願番号】 US2020012817
(87)【国際公開番号】W WO2020150061
(87)【国際公開日】2020-07-23
(31)【優先権主張番号】62/793,027
(32)【優先日】2019-01-16
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】16/258,118
(32)【優先日】2019-01-25
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】500049141
【氏名又は名称】ケーエルエー コーポレイション
(74)【代理人】
【識別番号】110001210
【氏名又は名称】特許業務法人YKI国際特許事務所
(72)【発明者】
【氏名】クヴァーメ ダモン
(72)【発明者】
【氏名】シ ルイ-ファン
(72)【発明者】
【氏名】ワク ダニエル
(72)【発明者】
【氏名】ジョ スンヒョン ジョシュア
(72)【発明者】
【氏名】イー シン ロリ
【テーマコード(参考)】
2G051
2H195
【Fターム(参考)】
2G051AA51
2G051AA56
2G051AB02
2G051BA05
2G051BB01
2G051BB07
2G051CA02
2G051CA03
2G051CB01
2G051CB05
2G051CC07
2H195BA10
2H195BD02
2H195BD11
2H195BD12
2H195CA11
2H195CA22
(57)【要約】
検査システムであり、極端紫外(EUV)光を生成するよう構成された照明源と、照明瞳分布に対応するオフ軸入射角域内で標本にそのEUV光を差し向ける照明光学系と、撮像瞳分布に対応する集光角域内でその入射EUV光に応じ標本からもたらされる光を集める集光光学系と、集光光学系により集められた光のうち少なくとも一部分を受け取るよう構成された検出器と、を有する。更に、照明瞳分布の中心を、標本上での第1方向に沿ったオフ軸入射角に対応させ、照明瞳分布及び撮像瞳分布のうち少なくとも一方を非円形とし、その非円形の第1方向沿いサイズをその第1方向に対し垂直な第2方向に沿ったサイズより短くする。
【特許請求の範囲】
【請求項1】
極端紫外(EUV)光を生成するよう構成された照明源と、
1個又は複数個の照明光学系であり、当該1個又は複数個の照明光学系の瞳面における照明瞳分布に対応する入射角域内で標本に前記EUV光を差し向けるよう構成されており、その照明瞳分布の中心がその標本上での第1方向に沿ったオフ軸入射角に対応する1個又は複数個の照明光学系と、
1個又は複数個の集光光学系であり、当該1個又は複数個の集光光学系の瞳面における撮像瞳分布に対応する集光角域内で、前記入射EUV光に応じ前記標本からもたらされる光を集光するよう構成されており、その撮像瞳分布の中心がその標本上での第1方向に沿ったオフ軸集光角に対応しており、前記照明瞳分布及び前記撮像瞳分布のうち少なくとも一方が、第1方向沿いサイズの方がその第1方向に対し垂直な第2方向に沿ったサイズよりも短い非円形である、1個又は複数個の集光光学系と、
前記1個又は複数個の集光光学系による集光光のうち少なくとも一部分を受け取るよう構成された検出器と、
を備える検査システム。
【請求項2】
請求項1に記載の検査システムであって、前記照明瞳分布及び前記撮像瞳分布のうち前記少なくとも一方が楕円形であり、その長軸が前記第2方向に沿っている検査システム。
【請求項3】
請求項1に記載の検査システムであって、前記撮像瞳分布が非円形である検査システム。
【請求項4】
請求項3に記載の検査システムであって、前記検出器上における前記集光光の標本化分解能が、第1方向及び第2方向沿いで均一である検査システム。
【請求項5】
請求項3に記載の検査システムであって、前記検出器が、ある短辺長及び長辺長を呈する複数個の長方形画素を有し、その長辺長が前記集光光の第1方向沿い標本化を担い、短辺長がその集光光の第2方向沿い標本化を担う検査システム。
【請求項6】
請求項3に記載の検査システムであって、
前記複数個の画素が複数個の正方形画素を備え、前記1個又は複数個の集光光学系が、第1方向に沿い集光光に関し前記検出器上で第1倍率を提供し、当該1個又は複数個の集光光学系が、第2方向に沿い集光光に関し当該検出器上で第1倍率とは異なる第2倍率を提供する検査システム。
【請求項7】
請求項3に記載の検査システムであって、前記検出器上における前記1個又は複数個の集光光学系の点拡がり関数のサイズが、第1方向及び第2方向に沿いその検出器の約4.88画素分に相当する検査システム。
【請求項8】
請求項5に記載の検査システムであって、照明瞳分布が円形である検査システム。
【請求項9】
請求項5に記載の検査システムであって、照明瞳分布が非円形である検査システム。
【請求項10】
請求項1に記載の検査システムであって、前記照明瞳分布が非円形である検査システム。
【請求項11】
請求項10に記載の検査システムであって、前記撮像瞳分布が円形である検査システム。
【請求項12】
請求項10に記載の検査システムであって、前記撮像瞳分布が非円形である検査システム。
【請求項13】
請求項12に記載の検査システムであって、前記検出器上における前記集光光の標本化分解能が、第1方向及び第2方向沿いで均一である検査システム。
【請求項14】
請求項1に記載の検査システムであって、前記照明源からの照明が、約130nm未満の波長を含んでいる検査システム。
【請求項15】
請求項1に記載の検査システムであって、前記照明源が、
広帯域プラズマ照明源を備える検査システム。
【請求項16】
請求項1に記載の検査システムであって、
フォトマスク検査システムを構成する検査システム。
【請求項17】
請求項1に記載の検査システムであって、
ウェハ検査システムを構成する検査システム。
【請求項18】
照明ビームを生成するよう構成された照明源と、
1個又は複数個の照明光学系であり、当該1個又は複数個の照明光学系の瞳面における照明瞳分布に対応する入射角域内でフォトマスクに前記照明ビームを差し向けるよう構成されており、その照明瞳分布の中心がそのフォトマスク上での第1方向に沿ったオフ軸入射角に対応する1個又は複数個の照明光学系と、
1個又は複数個の集光光学系であり、当該1個又は複数個の集光光学系の瞳面における撮像瞳分布に対応する集光角域内で、前記入射照明ビームに応じ前記フォトマスクからもたらされる光を集光するよう構成されており、その撮像瞳分布の中心がそのフォトマスク上での第1方向に沿ったオフ軸集光角に対応しており、前記照明瞳分布及び前記撮像瞳分布のうち少なくとも一方が、第1方向沿いサイズの方が第1方向に対し垂直な第2方向に沿ったサイズよりも短い非円形である、1個又は複数個の集光光学系と、
前記1個又は複数個の集光光学系による集光光のうち少なくとも一部分を受け取りその受光光に係る一通り又は複数通りの検出信号を生成するよう構成された検出器と、
を備えるフォトマスク検査システム。
【請求項19】
請求項18に記載のフォトマスク検査システムであって、前記照明ビームのスペクトルが極端紫外(EUV)光を含んでいるフォトマスク検査システム。
【請求項20】
請求項19に記載のフォトマスク検査システムであって、前記照明源からの照明が、約130nm未満の波長を含んでいるフォトマスク検査システム。
【請求項21】
請求項18に記載のフォトマスク検査システムであって、前記照明源が、
広帯域プラズマ照明源を備えるフォトマスク検査システム。
【請求項22】
請求項18に記載のフォトマスク検査システムであって、前記照明瞳分布及び前記撮像瞳分布のうち前記少なくとも一方が楕円形であり、その長軸が前記第2方向に沿っているフォトマスク検査システム。
【請求項23】
請求項18に記載のフォトマスク検査システムであって、前記撮像瞳分布が非円形であるフォトマスク検査システム。
【請求項24】
請求項23に記載のフォトマスク検査システムであって、前記検出器上における前記集光光の標本化分解能が、第1方向及び第2方向沿いで均一であるフォトマスク検査システム。
【請求項25】
請求項23に記載のフォトマスク検査システムであって、前記検出器が、ある短辺長及び長辺長を呈する複数個の長方形画素を有し、その長辺長が前記集光光の第1方向沿い標本化を担い、短辺長がその集光光の第2方向沿い標本化を担うフォトマスク検査システム。
【請求項26】
請求項23に記載のフォトマスク検査システムであって、
前記複数個の画素が複数個の正方形画素を備え、前記1個又は複数個の集光光学系が、第1方向に沿い集光光に関し前記検出器上で第1倍率を提供し、当該1個又は複数個の集光光学系が、第2方向に沿い集光光に関し当該検出器上で第1倍率とは異なる第2倍率を提供するフォトマスク検査システム。
【請求項27】
請求項23に記載のフォトマスク検査システムであって、前記検出器上における前記1個又は複数個の集光光学系の点拡がり関数のサイズが、第1方向及び第2方向に沿いその検出器の約4.88画素分に相当するフォトマスク検査システム。
【請求項28】
請求項25に記載のフォトマスク検査システムであって、照明瞳分布が円形であるフォトマスク検査システム。
【請求項29】
請求項25に記載のフォトマスク検査システムであって、照明瞳分布が非円形であるフォトマスク検査システム。
【請求項30】
請求項18に記載のフォトマスク検査システムであって、前記照明瞳分布が非円形であるフォトマスク検査システム。
【請求項31】
請求項30に記載のフォトマスク検査システムであって、前記撮像瞳分布が円形であるフォトマスク検査システム。
【請求項32】
請求項30に記載のフォトマスク検査システムであって、前記撮像瞳分布が非円形であるフォトマスク検査システム。
【請求項33】
請求項32に記載のフォトマスク検査システムであって、前記検出器上における前記集光光の標本化分解能が、第1方向及び第2方向沿いで均一であるフォトマスク検査システム。
【請求項34】
1個又は複数個の照明光学系の瞳面における照明瞳分布に対応する入射角域内で、標本に極端紫外(EUV)光を差し向け、但しその照明瞳分布の中心をその標本上での第1方向に沿ったオフ軸入射角に対応させ、
1個又は複数個の集光光学系の瞳面における撮像瞳分布に対応する集光角域内で、前記入射EUV光に応じ前記標本からもたらされる光を集め、但しその撮像瞳分布の中心をその標本上での第1方向に沿ったオフ軸集光角に対応させ、前記照明瞳分布及び前記撮像瞳分布のうち少なくとも一方を、第1方向沿いサイズが第1方向に対し垂直な第2方向に沿ったサイズよりも短い非円形とし、
前記1個又は複数個の集光光学系により集められた光のうち少なくとも一部分に基づき、前記標本の画像を、検出器で以て生成する検査方法。
【発明の詳細な説明】
【技術分野】
【0001】
(技術分野)
本件開示は総じて検査システムに関し、より具体的には、極端紫外照明による検査システムに関する。
【背景技術】
【0002】
(関連出願への相互参照)
本願では、「非円形瞳を有する検査システム」(INSPECTION SYSTEM WITH NON-CIRCULAR PUPIL)と題しDamon Kvamme、Rui-fang Shi、Daniel Wack、Sseunhyeun Jo及びXin Yeを発明者とする2019年1月16日付米国仮特許出願第62/793027号に基づき米国特許法第119条(e)の規定による利益を主張するので、参照によりその全容を本願に繰り入れることとする。
【0003】
検査システムは、半導体の製造及び計量にて重要な品質制御計測を担うものであり、一般に、これに限られるものではないがフォトマスク(例.レティクル)、未パターニングウェハ、パターニング済ウェハ等の諸部材を検査するのに用いることができる。通常、検査システムに望まれるのは、高忠実度低雑音画像をもたらせること、ひいては製造プロセスや製品性能に影響しかねない注目欠陥を分解・解像しうることである。
【0004】
例えば、フォトマスク検査システムによりフォトマスクを検査する際用いられる照明源を、それらフォトマスクの画像に基づくフィーチャ(外形特徴)の作成に際しリソグラフィシステムにて用いられる光源と、同一の又は実質的に同様なスペクトルを有するものにすることで、それらマスクをもとに作成される集積回路に影響しかねない欠陥を分解・解像することが可能となる。しかしながら、かつてなく小さなサイズのフィーチャを求める声により駆り立てられ、リソグラフィシステム,検査システム双方で用いられる波長が相応に短縮されてきている。とりわけ、リソグラフィシステム及び検査システム向けに常用されている極端紫外(EUV)光では、照明源(例.EUV光源),検査システム双方の設計に関わる顕著な問題が現れており、通常は、それによって、照明源の輝度、システムコスト並びにその光学システムの複雑度の間にトレードオフが課されることとなる。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】米国特許第8711346号明細書
【特許文献2】米国特許第8785082号明細書
【特許文献3】米国特許第8842272号明細書
【発明の概要】
【発明が解決しようとする課題】
【0006】
従って、望ましいのは、甚だしい複雑度及び関連コストを負わされることなく高忠実度画像が提供され且つ効率的な光源照明利用が実現される、検査システム及び方法を提供することである。
【課題を解決するための手段】
【0007】
本件開示の1個又は複数個の例証的実施形態に従い検査システムが開示される。ある例証的実施形態に係るシステムは、極端紫外(EUV)光を生成する照明源を有する。また、ある例証的実施形態に係るシステムは、ある入射角域内で標本にそのEUV光を差し向ける照明光学系を有するもの、特にその入射角域をその1個又は複数個の照明光学系の瞳面における照明瞳分布に対応させ、その照明瞳分布の中心をその標本上での第1方向に沿ったオフ軸入射角に対応させたものである。また、ある例証的実施形態に係るシステムは、ある集光角域内でその入射EUV光に応じその標本からの光を集める1個又は複数個の集光光学系を有するもの、特にその集光角域を当該1個又は複数個の集光光学系の瞳面における撮像瞳分布に対応させたものである。また、ある例証的実施形態では、その撮像瞳分布の中心を、その標本上での第1方向に沿ったオフ軸集光角に対応させる。また、ある例証的実施形態では、それら照明瞳分布及び撮像瞳分布のうち少なくとも一方を非円形とし、その非円形の第1方向沿いサイズを、その第1方向に対し垂直な第2方向に沿ったサイズよりも短くする。また、ある例証的実施形態に係るシステムは、当該1個又は複数個の集光光学系により集められた光のうち少なくとも一部分を受け取る検出器を有する。
【0008】
本件開示の1個又は複数個の例証的実施形態に従いフォトマスク検査システムが開示される。ある例証的実施形態に係るシステムは、照明ビームを生成する照明源を有する。また、ある例証的実施形態に係るシステムは、ある入射角域内でフォトマスクにその照明ビームを差し向ける1個又は複数個の照明光学系を有するもの、特にその入射角域をその1個又は複数個の照明光学系の瞳面における照明瞳分布に対応させ、その照明瞳分布の中心をそのフォトマスク上での第1方向に沿ったオフ軸入射角に対応させたものである。また、ある例証的実施形態に係るシステムは、ある集光角域内でその入射照明ビームに応じそのフォトマスクからの光を集める1個又は複数個の集光光学系を有するものであり、特にその集光角域を当該1個又は複数個の集光光学系の瞳面における撮像瞳分布に対応させたものである。また、ある例証的実施形態では、その撮像瞳分布の中心を、そのフォトマスク上での第1方向に沿ったオフ軸集光角に対応させる。また、ある例証的実施形態では、それら照明瞳分布及び撮像瞳分布のうち少なくとも一方を非円形とし、その非円形の第1方向沿いサイズを、その第1方向に対し垂直な第2方向に沿ったサイズよりも短くする。また、ある例証的実施形態に係るシステムは、当該1個又は複数個の集光光学系により集められた光のうち少なくとも一部分を受け取りその受光光に係る一通り又は複数通りの検出信号を生成するよう構成された、検出器を有する。
【0009】
本件開示の1個又は複数個の例証的実施形態に従い検査方法が開示される。ある例証的実施形態に係る方法は、ある入射角域内で標本に極端紫外(EUV)光を差し向けるもの、特にその入射角域を1個又は複数個の照明光学系の瞳面における照明瞳分布に対応させ、その照明瞳分布の中心をその標本上での第1方向に沿ったオフ軸入射角に対応させるものである。また、ある例証的実施形態に係る方法は、ある集光角域内でその入射EUV光に応じその標本からもたらされる光を集めるもの、特にその集光角域を1個又は複数個の集光光学系の瞳面における撮像瞳分布に対応させたものである。また、ある例証的実施形態では、その撮像瞳分布の中心を、その標本上での第1方向に沿ったオフ軸集光角に対応させる。また、ある例証的実施形態では、それら照明瞳分布及び撮像瞳分布のうち少なくとも一方を非円形とし、その非円形の第1方向沿いサイズを、その第1方向に対し垂直な第2方向に沿ったサイズよりも短くする。また、ある例証的実施形態に係る方法では、当該1個又は複数個の集光光学系により集められた光のうち少なくとも一部分に基づき、その標本の画像を検出器で以て生成する。
【0010】
理解し得るように、前掲の概略記述及び後掲の詳細記述は共に専ら例示的且つ説明的なものであり、特許請求の範囲記載の発明を必ずしも限定するものではない。添付図面は、明細書に組み込まれてその一部を構成するものであり、本発明の諸実施形態を描出しており、また概略記述と相俟ち本発明の諸原理を説明する働きを有している。
【0011】
本件技術分野に習熟した者(いわゆる当業者)であれば、以下の如き添付図面を参照することで、本件開示の多数の長所をより良好に理解できよう。
【図面の簡単な説明】
【0012】
図1】本件開示の1個又は複数個の実施形態に係り、オフ軸な照明及び集光を行う検査システムの概念図である。
図2】本件開示の1個又は複数個の実施形態に係り、検査及びリソグラフィ向けの円形な照明及び撮像瞳分布のプロット図である。
図3】本件開示の1個又は複数個の実施形態に係り、形状が異なる二通りの検査向け照明瞳分布を描いたプロット図である。
図4】本件開示の1個又は複数個の実施形態に係り、形状が異なる二通りの検査向け撮像瞳分布を描いたプロット図である。
図5A】正方形画素を有する検出器の概念的上面図である。
図5B】長方形画素を有する検出器の概念的上面図である。
図6】標本検査方法にて実行される諸ステップを描いたフロー図である。
【発明を実施するための形態】
【0013】
以下、添付図面に描かれている被開示主題を詳細に参照する。ある種の実施形態及びその具体的特徴との関連で本件開示を具体的に図示及び記述してある。本願中で説明される諸実施形態は限定ではなく例証であると把握されるべきである。いわゆる当業者には直ちに察せられるべきことに、本件開示の神髄及び技術的範囲から離隔することなく形態及び細部に様々な改変及び修正を施すことができる。
【0014】
本件開示の諸実施形態は、照明瞳及び撮像瞳のうち少なくとも一方が非円形分布であるオフ軸な照明及び/又は集光を取り入れた検査システム及び方法、特にその入射面内方向におけるその非円形分布の空間的拡がり(例.サイズ)が入射面外方向でのそれより小さいものを指向している。
【0015】
例えば、検査システムでは一般に、照明光学系の数値開口に対応する入射角域で以て標本を照明すること、並びに集光光学系の数値開口に対応する集光角域内でその標本から集光することができ、またその集光光学系の数値開口が照明光学系のそれと同じであることもそうでないこともある。それら入射角域,集光角域はそれぞれ照明瞳面,撮像瞳面における分布に対応している。従って、オフ軸照明システムのことを、照明及び/又は撮像瞳分布の主光線(又は略中心)がその標本の法線(例.標本法線)に対しあるオフ軸角を呈するものとして、特徴付けることができる。
【0016】
本件開示の付加的諸実施形態は、これに限られるものではないが約120ナノメートル(nm)未満の波長を含むそれ等、EUV光を用いる検査を指向している。例えば、リソグラフィ及び/又は検査用EUV光源によって、これに限られるものではないが13.5nm、7nm等の波長を中心とする光を生成することができる。本願での認識によれば、EUV光による検査には様々な設計上の懸念が入り込む。例えば、EUV光はほぼ全ての素材により強く吸収されるため、EUVシステムには通常は反射型部材のみが設けられ、多くの場合それらがかすめ入射角にて配置される。従って、EUV撮像システムの動作は反射モード、即ち撮像光に標本からの反射及び/又は散乱光が含まれるモードとなろう。更に、EUV撮像システムでは、入射光の入射角域と標本を撮像するのに用いられる集光光域とに重なりが生じないよう、照明瞳分布と撮像瞳分布が非重複とされるので、以下詳述の如く付加的な制約が課されることとなろう。
【0017】
本願での認識によれば、検査システムは、通常、円形の照明瞳分布及び撮像瞳分布を呈するよう設計されるものであり、そうすることで、典型的な光学的構成で以て標本上の方向によらず一定な画質(例.分解能、信号強度、雑音レベル等)を提供することができる。しかしながら、オフ軸検査システムにてそうした構成にすると、利用可能な数値開口の全域を利用することができず、結局はそのシステム性能が制約されることとなろう。
【0018】
本件開示の付加的諸実施形態は非円形照明瞳分布で以て標本を照明すること、但しその非円形照明瞳の空間的拡がりを(例.標本法線とオフ軸照明光及び/又は集光光とにより定まる)入射面内の方向にて入射面外の方向でのそれより小さくすることを指向している。ここで注記されることに、照明瞳分布のサイズ及び形状は、通常、システム性能に関わるトレードオフが平衡するよう設計される。例えば、(照明エタンデュ即ち照明光子のスループットに関わる)照明瞳分布のサイズを縮小することで、所望の欠陥信号を、ラインエッジ粗さの悪影響を道連れにして増やすことができる。更に、実際のところ、標本法線を基準とした入射角が増加するにつれ標本の反射率は低下しうるので、照明の数値開口を制限することが望ましいであろう。非円形照明瞳で以て標本を照明することによって、所望の照明エタンデュを保ちつつ、(例.入射面内の)指定方向に沿い照明光の数値開口に制限を施すことができる。この構成によれば、非円形照明瞳での照明により、円形照明瞳での照明に比し高い性能を、光学系をより大型、複雑又は高コストなものとすることなく実現することができる。
【0019】
本件開示の付加的諸実施形態は非円形撮像瞳分布で以て標本から集光すること、但しその非円形撮像瞳の空間的拡がりを入射面内の方向にて入射面外の方向でのそれより小さくすることを指向している。例えば、入射面に対し垂直な方向に拡がる非円形アパーチャにより、円形撮像瞳分布内での集光に比し付加的な標本からの散乱光を、光学系をより大型、複雑又は高コストなものとすることなく捉えることができる。
【0020】
本願での認識によれば、撮像システムの分解能が部分的には集光光の数値開口に依存するので、非円形撮像瞳分布は、方向の違いによる分解能の違いにつながりうる。本件開示の更なる諸実施形態は、非円形な撮像瞳分布としつつも均一な画像分解能を提供することを指向している。幾つかの実施形態によれば、1個又は複数個の集光光学系により検出器上へのアナモルフィック変倍を行うことができる。この構成によれば、相異なる方向(例.入射面沿い方向とその入射面に対し垂直な方向)に沿った集光光の倍率を異ならせることができるので、正方形画素を有する典型的な検出器により、その撮像光を均一に標本化することが可能となる。幾つかの実施形態によれば、検出器を、長方形画素を有する設計とすることができる。この構成によれば、非円形な撮像瞳分布であることによる数値開口の差異を、画素の寸法の差異により補償することができる。
【0021】
図1は、本件開示の1個又は複数個の実施形態に係りオフ軸な照明及び集光を行う検査システム100の概念図である。
【0022】
実施形態に係る検査システム100は、照明ビーム104を生成する照明源102を有している。照明ビーム104には、これに限られるものではないが紫外(UV)、極端紫外(EUV)、深紫外(DUV)、真空紫外(VUV)輻射等を初め、一通り又は複数通りの指定波長の光を含めることができる。例えば、照明ビーム104のスペクトルのうち少なくとも一部分を、約120ナノメートル未満の波長を有するものとすることができる。また例えば、照明ビーム104のスペクトルのうち少なくとも一部分を、これに限られるものではないが13.5nm、7nm等、半導体製造に適したリソグラフィ装置に係る波長を有するものとすることができる。
【0023】
照明源102は、光学照明ビーム104を生成するのに適し本件技術分野にて既知な何れの種類の照明源であってもよい。実施形態の一つは、照明源102が広帯域プラズマ(BBP)照明源を有するものである。この構成によれば、照明ビーム104に、プラズマにより放射された輻射を含めることができる。例えば、BBP照明源102を、これは必須ではないが1個又は複数個のポンピング光源(例.1個又は複数個のレーザ)を有するものとし、ガス塊内への集束によりそのガスにエネルギを吸収させるようそれを構成することで、輻射を放射するのに適したプラズマを生成又は維持することができる。更に、そのプラズマ輻射のうち少なくとも一部分を照明ビーム104として利用することができる。
【0024】
別の実施形態によれば、照明源102を、一通り又は複数通りの指定波長にて輻射を放射しうる1個又は複数個のレーザを有するものと、することができる。
【0025】
更に、照明源102にて生成される照明ビーム104を、どのような時間プロファイルを有するものとしてもよい。例えば、照明源102にて、連続照明ビーム104、パルス照明ビーム104、或いは変調照明ビーム104を生成することができる。
【0026】
また、実施形態における照明源102は、照明路108を介し標本106に照明ビーム104を差し向ける。その照明路108には、照明ビーム104を標本106上に差し向け、集束させ及び/又は整形するのに適した、1個又は複数個の照明光学系110を設けることができる。例えば、その照明光学系110を、1個又は複数個のレンズ、1個又は複数個の集束素子等を有するものとすることができる。更に、その照明光学系110を、照明ビーム104を差し向け及び/又は集束させるのに適し本件技術分野にて既知な、反射性、透過性又は吸収性光学素子の何らかの組合せを、有するものとすることができる。例えば、その照明光学系110を、これに限られるものではないが平坦鏡、湾曲鏡(例.楕円面鏡、放物面鏡等)等、短波長光(例.EUV光等)を差し向け及び/又は集束させるのに適した反射型光学系を有するものと、することができる。
【0027】
照明光学系110は、更に、照明ビーム104を整形し及び/又は標本106上での照明ビーム104の入射角域(例.照明瞳分布)を制御するのに適した、1個又は複数個の付加的照明路部材を有するものとすることができる。それら照明路部材の例としては、これに限られるものではないが1個又は複数個のアパーチャ、1個又は複数個のアポダイザ、1個又は複数個のホモジナイザ、1個又は複数個のディフューザ、1個又は複数個のポラライザ、1個又は複数個のフィルタ等があろう。
【0028】
また、実施形態では標本106が標本ステージ112上に配置される。標本ステージ112が、その検査システム100内で標本106を位置決めし及び/又は走査するのに適した何れの装置を有していてもよい。例えば、標本ステージ112を、直線並進ステージ、回動ステージ、ティップ/ティルトステージ等の何らかの組合せを有するものとしてもよい。
【0029】
また、実施形態に係る検査システム100は、標本106に発する光(例.集光光116)を集光路118経由で捉えるよう構成された、検出器114を有している。集光路118には、これに限られるものではないが、標本106からの輻射を集める1個又は複数個の集光光学系120を設けることができる。例えば、検出器114にて受け取る集光光116が、集光光学系120経由で標本106から(例.鏡面反射、拡散反射等により)反射又は散乱されてきた光であってもよい。また例えば、検出器114にて受け取る集光光116が、照明ビーム104に応じ標本106にて生成された光(例.照明ビーム104の吸収に係るルミネッセンス等)であってもよい。集光光学系120は、集光光116を差し向け及び/又は集束させるのに適し本件技術分野にて既知な、反射性、透過性又は吸収性光学素子の何らかの組合せを有するものとすることができる。例えば、集光光学系120を、これに限られるものではないが平坦鏡、湾曲鏡(例.楕円面鏡、放物面鏡等)等、短波長光(例.EUV光等)を差し向け及び/又は集束させるのに適した反射型光学系を有するものと、することができる。
【0030】
検出器114は、標本106から受け取った集光光116を計測するのに適し本件技術分野で既知な何れの種類の検出器で構成してもよい。検出器114の例としては、これに限られるものではないがCCD型検出器、TDI式検出器、光電子増倍管(PMT)、アバランシェフォトダイオード(APD)等があろう。また、ある実施形態によれば、検出器114を、標本106に発する輻射の波長を識別するのに適した分光検出器を有するものと、することができる。
【0031】
集光路118には、更に、これに限られるものではないが1個又は複数個のアパーチャ、1個又は複数個のアポダイザ、1個又は複数個のポラライザ、1個又は複数個のフィルタ等を初め、標本106からの集光光116を差し向け及び/又は整形する何個かの付加的集光路部材を、設けることができる。ある実施形態では、それら集光路部材により、その内輪で標本106から集光される角度域(例.撮像瞳分布)が形成される。
【0032】
また、実施形態に係る検査システム100はコントローラ122を有している。また、実施形態におけるコントローラ122は、記憶媒体126(例.メモリ)上で保持されているプログラム命令を実行するよう構成された1個又は複数個のプロセッサ124を有している。この構成にて、コントローラ122に備わる1個又は複数個のプロセッサ124により、本件開示の随所に記載の様々な処理ステップの何れを実行してもよい。
【0033】
コントローラ122を構成する1個又は複数個のプロセッサ124には、本件技術分野で既知なあらゆる処理素子が含まれうる。その意味で、当該1個又は複数個のプロセッサ124には、アルゴリズム及び/又は命令を実行するよう構成されたあらゆるマイクロプロセッサ型デバイスが含まれうる。ある実施形態によれば、当該1個又は複数個のプロセッサ124を、デスクトップコンピュータ、メインフレームコンピュータシステム、ワークステーション、イメージコンピュータ、並列プロセッサ、或いはプログラムを実行するよう構成された他の何らかのコンピュータシステム(例.ネットワーク接続されたコンピュータ)で構成することができ、またそのプログラムを、本件開示の随所に記載の如く検査システム100を動作させるよう構成することができる。更なる認識によれば、語「プロセッサ」は、非一時的記憶媒体126から得たプログラム命令を実行する処理素子を1個又は複数個有するデバイス全てが包括されるよう、広義に定義することができる。
【0034】
記憶媒体126には、連携先の1個又は複数個のプロセッサ124により実行可能なプログラム命令を格納するのに適し本件技術分野で既知な、あらゆる格納媒体が含まれうる。例えば、記憶媒体126に非一時的記憶媒体を含めうる。また例えば、記憶媒体126に、これに限られないがリードオンリメモリ、ランダムアクセスメモリ、磁気又は光学記憶デバイス(例.ディスク)、磁気テープ、固体ドライブ等を含めうる。更に注記されることに、記憶媒体126を1個又は複数個のプロセッサ124と共に共通コントローラハウジング内に収容してもよい。ある実施形態によれば、記憶媒体126を、1個又は複数個のプロセッサ124及びコントローラ122の物理的な居所に対しリモートに所在させることができる。例えば、コントローラ122に備わる1個又は複数個のプロセッサ124が、ネットワーク(例.インタネット、イントラネット等)を介しアクセス可能なリモートメモリ(例.サーバ)に、アクセスするようにしてもよい。従って、上掲の記述は、本発明に対する限定事項としてではなく、単なる例証として解されるべきである。
【0035】
コントローラ122を、検査システム100の何らかの部材に、或いはその検査システム100外にある何らかの付加的部材に、可通信結合させてもよい。実施形態におけるコントローラ122は、これに限られるものではないが検出器114等の部材からデータを受け取るよう構成することができる。例えば、コントローラ122にて、生データ、処理済データ(例.検査結果)及び/又は部分処理済データをどのような組合せで受け取るようにしてもよい。また、実施形態におけるコントローラ122により、その受領データに基づき処理ステップを実行することができる。例えば、コントローラ122にて、これに限られるものではないが欠陥識別、分類、ソート等の欠陥検査ステップを実行することができる。
【0036】
更に、本件開示の随所に記載の諸ステップを、単一のコントローラ122により実行してもよいし、それに代え複数個のコントローラにより実行してもよい。加えて、コントローラ122を、共通コントローラハウジング内に収容され又は複数個のハウジング内に収容された1個又は複数個のコントローラを有するものとしてもよい。こうすることで、何らかのコントローラ又はコントローラコンビネーションを個別パッケージングして、検査システム100内への統合に適したモジュールにすることができる。例えば、コントローラ122を集中処理プラットフォームとして動作させることができる。また例えば、そのコントローラ122の諸部分がそれら検査ツールの何らかの組合せの態で実現され及び/又はそこに収容されるよう、コントローラ122を分散配置することができる。
【0037】
また、実施形態におけるコントローラ122により、検査システム100の何れの部材を(例.制御信号により)制御し及び/又はそれに指令するようにしてもよい。例えば、照明路108及び/又は集光路118の素子の何れの組合せを可調とすることもできる。この構成によれば、コントローラ122により、これに限られるものではないが照明又は撮像瞳分布等、照明コンディション又は撮像コンディションの何らかの組合せを修正することができる。
【0038】
検査システム100を、本件技術分野で既知な何れの種類の検査システムとして構成してもよい。更に、検査システム100を、これは必須ではないが、EUV光で以て標本106を調べるのに適したEUV検査システム100としてもよい。一実施形態に係る検査システム100はフォトマスク検査システムである。即ち、検査システムにより調べる標本106に、フォトマスク(例.レティクル)を含めることができる。別の実施形態では、検査システム100がEUVマスクブランク検査システムとして構成される。EUVベースマスクブランク検査については、2014年4月29日付で発行されたStokowski名義の特許文献1と、2014年7月22日付で発行されたXiong et al.名義の特許文献2とに概述されているので、参照により両者の全容を本願に繰り入れることにする。別の実施形態では、検査システム100がウェハ検査システム又はレティクル検査システムとして構成される。EUV撮像については、2014年9月23日付で発行されたWack名義の特許文献3に概述されているので、参照によりその全容を本願に繰り入れることにする。
【0039】
次に、図2図4を参照し、照明及び集光光に係る円形及び非円形の瞳分布(例.照明及び撮像瞳分布)について詳述する。図2図4の照明及び/又は撮像瞳分布は、これに限られるものではないが図1に描かれている検査システム100等の検査システムにより実現することができる。更に、図2図4の照明及び/又は撮像瞳分布は、これは必須ではないが、EUV検査に適したものとすることができる。
【0040】
本願での認識によれば、フォトマスクの検査と、フォトマスクによるリソグラフィとを、これは必須ではないが、別々の照明及び/又は撮像瞳分布により実行することができる。例えば、瞳分布の中心点(例.主光線角に対応するそれ)、サイズ及び/又は形状の選択により、スループット(例.エタンデュ)、コヒーレンス等の間のトレードオフを取り入れ、用途の違いによりそれらを違えることができる。更に、同じ用途(例.検査、リソグラフィ等)に係る照明瞳分布及び撮像瞳分布を、同じ特性(例.瞳分布のサイズ及び/又は形状)を有するものにも、そうでないものにもすることもできる。
【0041】
更に、本願での認識によれば、検査システム及び/又はリソグラフィシステムの数値開口(例.入射又は集光光の最大角)は、通常、制限されうる。例えば、検査システムの数値開口は、システム構成諸部材(例.照明光学系110、集光光学系120等)の物理的サイズや集束力により制限されうる。また例えば、標本106(又はその標本106上の被覆)の反射率は角度の関数として変化しうるので、カットオフ角を超えての照明及び/又は集光は非効率及び/又は非現実的となりうる。
【0042】
更に、検査システムに係る照明瞳分布を標本106に係るカットオフ角より内側に所在させることで、光(例.照明ビーム104)の効率的利用を確と行えるようにすることが、望ましかろう。しかしながら、実際のところ、撮像瞳分布の方が照明瞳分布よりも柔軟に設計することができる。例えば、カットオフ角より外側への照明の利用は非効率的なものとなろう。けれども、撮像瞳分布内には、反射光(例.入射光とは逆側だが同角度の光)と、広い角度域にて標本106から発せられうる散乱光とが、双方共入りうる。従って、撮像瞳分布を拡げ反射光の角度を超えた角度に対応させることで、捉えられる光信号を増やすこと及び生成される画像の信号対雑音比を高めることができる。更に、撮像瞳分布の拡がりは、一般に、性能を低下させることなく、標本106に係るカットオフ角を超えた広がりにすることができる。
【0043】
図2は、本件開示の1個又は複数個の実施形態に係り、標本106(例.フォトマスク)の検査及びリソグラフィ向けの円形な照明瞳分布及び撮像瞳分布のプロット図200である。図2中、0なる角度はそのフォトマスクに係る表面法線を表しており、0からの距離はその表面法線を基準とした入射角及び/又は集光角を表しており、θ,θはそのフォトマスクを基準としたアジマス角を表している。更に、θ及びθは、それぞれ標本平面(例.標本106の表面、表面法線に対し垂直な平面等)におけるX方向,Y方向に対応付けることができる。具体的には、図2には検査(例.検査システム100によるそれ)向けの照明瞳分布202及び撮像瞳分布204、並びにリソグラフィ向けの照明瞳分布206及び撮像瞳分布208が記されている。即ち、図2には、検査及びリソグラフィの両装置にてフォトマスクの撮像に用いられる入射照明及び集光光に係る光錐が描かれている。更に、図2ではフォトマスク被覆カットオフ角210が約14度であることが描かれ、そのことが0なる角度(表面法線)を中心とする円で表されている。
【0044】
図2図4には、総じて、標本106のθ方向沿いオフ軸照明及び撮像が描かれている。本願既述の通り、入射面を基準として標本のオフ軸照明及び撮像を特徴付けることが役立ちうる。例えば、入射面を、表面法線と、入射光及び/又は集光光の中心光線とにより、定義することができる。本願での認識によれば、現実のシステムでは入射光及び/又は集光光が錐として表される(例.数値開口の範囲と関連付けられる)ので、入射面をその錐内の光線毎に定義することができる。とはいえ、本件開示の明瞭さという目的からすれば、入射面(例.相互作用面)を、どのような用途(例.検査、リソグラフィ等)向けであれ、照明ビーム104に係る中心光線に基づき定義した方がよい。例えば、図2図4に係る入射面は、表面法線と、角度空間におけるθ方向(又は標本106上でのX方向)とにより、形成された平面と考えることができる。更に、図2図4に描かれている通り、検査向け撮像瞳分布204は、これは必須ではないが入射面内に中心取りすることができる。
【0045】
更に、本願での認識によれば、通常、ビーム(例.照明ビーム104)の分布はステップ関数として表すことができず、一般には裾を有する分布となりうる。加えて、ビームには「ホットスポット」即ち不整が入り込みうる。従って、照明及び/又は撮像瞳分布の中心を本件技術分野で既知な何らかの技術により特定するのがよい。例えば、瞳分布の中心を、これに限られるものではないが強度ピークの所在個所や加重強度分析を踏まえ特定することができる。
【0046】
図2及び図4では、リソグラフィ向けの照明瞳分布206及び撮像瞳分布208が、(例.光の照明及び/又は集光の錐を表す)円形分布とされている。更に、照明瞳分布206の直径は約8度、中心はθ方向に沿い+約6度のところであり、撮像瞳分布208の直径は約9度、中心はθ方向に沿い-約6度のところである。このように、リソグラフィ向けの照明瞳分布206及び撮像瞳分布208により、θ方向に沿いほぼ対称なオフ軸照明及び集光であり、その撮像瞳分布が照明瞳分布よりわずかに大きなそれを、表すことができる。更に、本例では、リソグラフィ向けの照明瞳分布206,撮像瞳分布208双方がそのフォトマスクのカットオフ角210より内側にある。
【0047】
とはいえ、理解し得るように、これに限られるものではないがそれら分布のサイズ、形状、向き及び位置等、リソグラフィ向けの照明瞳分布206及び撮像瞳分布208の特性を提示したのは専ら例証のためであり、限定として解されるべきではない。更に、照明瞳分布206をリソグラフィ向け撮像瞳分布208と同じサイズ、形状、向き等にする必要はない。
【0048】
また、図2によれば、標本106の検査に係る照明瞳分布202及び/又は撮像瞳分布204も円形とすること、ひいては照明光及び/又は集光光の錐を円錐とすることができる。実施形態では、図2に描かれている通り、照明瞳分布202の中心点(例.主光線角に対応するそれ)がθ方向に沿い約7.5度のところ、直径が約13度とされているので、検査向け照明瞳分布202をカットオフ角210の縁沿いに所在させると共に、そのカットオフ角210の内側に丸ごと収めることができる。また、実施形態では、同じく図2に描かれている通り、検査向け撮像瞳分布204の中心点(例.主光線角に対応するそれ)がθ方向に沿い-約9度のところ、直径が約19度とされている。従って、検査向け撮像瞳分布204の拡がりを、部分的にカットオフ角210を超える拡がりにすることができる。本願既述の通り、検査向け撮像瞳分布204を検査向け照明瞳分布202より大きなサイズとすることで、反射光に加えフォトマスクからの散乱光を捉えることが可能となる。
【0049】
次に、図3及び図4を参照し、非円形な照明及び撮像瞳分布それぞれにつき詳述する。
【0050】
図3は、本件開示の1個又は複数個の実施形態に係り形状が異なる二通りの検査向けの照明瞳分布を描いたプロット図300である。例えば、図3には非円形照明瞳分布302、並びに図2にて描出した検査向け照明瞳分布202及び検査向け撮像瞳分布204が記されている。
【0051】
これに限られるものではないが、図3の非円形照明瞳分布302等の非円形照明瞳分布とすることで、検査システム100の柔軟な設計を容易に行うことが可能となり、ひいては諸光学部材のサイズ、複雑度及び/又はコストを増大させることなく円形照明瞳分布に比し感度及び/又はスループットを高めることが可能となる。例えば、照明光学系110に1個又は複数個の光学素子(例.鏡、集束素子等)を設けオフ軸構成の態で構成すること、ひいては照明ビーム104が直交入射角にて入射しないようにすることができる。即ち、照明光学系110を、各素子の入射角に基づき、照明ビーム104の投射サイズを容れうるようサイズ設定することができる。更に、光学部材の多くは、製造及び/又はコスト上の懸念を踏まえ円形寸法で以て作成される。従って、実際のところ、入射面に対し垂直な方向に沿い照明ビーム104の諸部分を整形することで、入射面に対し垂直な方向に沿い非円形照明瞳分布302を提供することができ、それによって、1個又は複数個の照明光学系110上にありさもなければ用いられなかったエリアを利用することが可能となる。
【0052】
更に、非円形照明瞳分布302の拡がりが、そのフォトマスク上で入射面外にある方向にて(例.θ方向に沿い)、入射面内にある方向(例.θ方向沿い)でのそれより遠くに及んでいるので、諸光学部材のサイズ、複雑度及び/又はコストを増大させることなく、撮像瞳分布のサイズ、所在個所又は形状の修正を容易に行うことができる。
【0053】
例えば、図3に描かれている通り、非円形照明瞳分布302はθ方向に沿い拡がっているので、照明ビーム104の上々なエタンデュ即ちスループットを保ちつつ、θ方向沿い数値開口を削減することができる。このθ方向沿い数値開口削減により、検査向け撮像瞳分布204の位置を、図3にてシフト撮像瞳分布304と示されている通り、表面法線の方へとシフトさせることが可能になる。従って、そのシフト撮像瞳分布304により、直交入射付近の角度でフォトマスク(より一般的には標本106)の反射率が高まる用途での性能を、高めることができる。更に、図示しないが、シフト撮像瞳分布304のサイズを大きくすることで、標本から更なる光(例.散乱光)を集めることが可能になる。
【0054】
また例えば、図示しないが、非円形照明瞳分布のサイズ、ひいてはそれに係るエタンデュを、検査システム100のサイズ、複雑度及び/又はコストを増大させることなく増大させることができる。
【0055】
図4は、本件開示の1個又は複数個の実施形態に係り形状が異なる二通りの検査向け撮像瞳分布を描いたプロット図400である。具体的には、図4には非円形撮像瞳分布402、並びに図2にて描出したリソグラフィ向け照明瞳分布206及び検査向け撮像瞳分布204が記されている。
【0056】
これに限られるものではないが、図4の非円形撮像瞳分布402等の非円形撮像瞳分布とすることで、検査システム100の柔軟な設計を容易に行うことが可能となり、ひいては諸光学部材のサイズ、複雑度及び/又はコストを増大させることなく円形撮像瞳分布に比し感度及び/又はスループットを高めることが可能となる。例えば、集光光学系120に1個又は複数個の光学素子(例.鏡、集束素子等)を設けオフ軸構成の態で構成すること、ひいては集光光116が直交入射角にて入射しないようにすることができる。即ち、集光光学系120を、標本から光を集める角度域に基づき、集光光116の投射サイズを容れうるようサイズ設定することができる。更に、光学部材の多くは、製造及び/又はコスト上の懸念を踏まえ円形寸法で以て作成される。従って、実際のところ、入射面に対し垂直な方向に沿い集光光116の諸部分を整形することで非円形照明瞳分布302を提供することができ、それによって、1個又は複数個の集光光学系120上にありさもなければ用いられなかったエリアを利用することが可能となる。
【0057】
例えば、非円形撮像瞳分布402の拡がりが、θ方向沿いにて、θ方向沿いでのそれより遠くに及んでいるので、検査向け撮像瞳分布204に比しサイズ又は複雑度(及びそれに関わるコスト)を加増させることなく、標本106から付加的な光(例.散乱光)を捉えることが可能となる。例えば、図4に描かれている領域404にて、散乱光を(例.集光光116として)集光することができる。別の実施形態によれば、図示しないが、カットオフ角210を超えないようθ方向に沿い非円形撮像瞳分布のサイズを設定することができる。
【0058】
更に、本願既述の通り、非円形撮像瞳分布を非円形照明瞳分布(例.非円形照明瞳分布302)と組み合わせることができる。この構成によれば、照明,撮像双方に亘り非円形分布の利点を結合させることができる。例えば、図3の非円形照明瞳分布302を図4の非円形撮像瞳分布402と組み合わせることができる。更に、図示しないが、(例.撮像瞳分布304に関し記述した通り)θに沿い非円形撮像瞳分布402をシフトさせることで、表面法線付近にあり標本106に発する集光光116を増やすことができる。
【0059】
非円形瞳分布は総じて何れの非円形形状でもよい。例えば、図3図4中の非円形照明瞳分布302,非円形撮像瞳分布402は、それぞれ、その長軸が(例.表面法線と照明瞳分布の中心にある光線とを含む入射面に対し垂直な)θ方向に沿う楕円形を呈するものとして、描かれている。実施形態によっては、非円形照明瞳分布302及び/又は非円形撮像瞳分布402を任意の非円形形状とすることができる。
【0060】
更に、非円形瞳分布は、これに限られるものではないが1個又は複数個のアパーチャ等、検査システム100の構成部材の何らかの組合せを用いて形成することができる。例えば、非円形照明瞳分布(例.図4中の非円形照明瞳分布302)を、照明路108上の1個又は複数個のアパーチャにより形成することができる。また例えば、非円形撮像瞳分布(例.図3中の非円形撮像瞳分布402)を、集光路118上の1個又は複数個のアパーチャにより形成することができる。
【0061】
本願での認識によれば、撮像システムの分解能は集光光116の数値開口に部分的に依存する。その関係で、非円形撮像瞳分布(例.図3中の非円形照明瞳分布302)は、θ方向沿いのそれに比したθ方向沿い分解能の違いにつながりうる。例えば、検査システム100で以て生成された画像の特定方向沿い分解能(例.標本化分解能)は、これに限られるものではないが、その方向沿いでの集光光116の数値開口、その方向沿いでの倍率、その方向沿いでの検出器114の画素サイズ等の要因に依拠したものになりうる。
【0062】
幾つかの実施形態に係る検査システム100では、非円形照明瞳分布及び非円形撮像瞳分布のうち少なくとも一方がもたらされ、更には複数通りの方向(例.θ方向及びθ方向)に亘り分解能が一定(又はほぼ一定)とされる。
【0063】
ある実施形態によれば、検査システム100の検出器114に備わる画素を、相直交する二通りの方向に沿った長さが相異なる長方形画素とすることで、それら二通りの方向に沿い均一な画像分解能を提供することができる。この構成によれば、それら相直交する二通りの方向に沿った画素長間の違いにより、非円形撮像瞳に係る数値開口及び/又は倍率の違いを補償することができる。
【0064】
図5A図5Bは、それぞれ正方形画素,長方形画素を有する検出器114の概念的上面図である。例えば、図5Aに描かれている通り、検出器114を、相直交する二通りの方向に沿い均一な長さ504の正方形画素502を有するものと、することができる。また例えば、図5Bに描かれている通り、検出器114を、短辺長506及び長辺長508を呈する長方形画素502を有するものと、することができる。
【0065】
一実施形態に係る検査システム100は、入射面外の方向における拡がりが入射面内の方向におけるそれより大きい非円形撮像瞳(例.図4に描かれている非円形撮像瞳分布402)と、図5Bに描かれている通り長方形画素502を有する検出器114とを、有するものである。例えば、図2図4に係る入射面を、表面法線(角度が0)とθ方向とにより定義することができる。更に、検出器114の画素502の向きを、短辺長506がθ方向沿い、長辺長がθ方向沿いとなる向きにすることができる。加えて、非円形撮像瞳分布402のサイズと、画素502のサイズ(例.短辺長506及び/又は長辺長508)とを共最適化することで、θ方向,θ方向双方に沿い一定な標本化を行うことが可能となる。例えば、非円形撮像瞳分布402のθ方向沿いサイズ及びθ方向沿いサイズを、既知の画素寸法(例.短辺長506及び/又は長辺長508)に基づき制御することで、θ方向,θ方向双方に沿い集光光116の一定な標本化を行うことが可能となる。
【0066】
ある実施形態によれば、検査システム100の集光路118にてアナモルフィック変倍を行うことができる。例えば、θ方向沿い倍率をθ方向沿い倍率と異ならせることができる。この構成によれば、θ及び/又はθ方向沿い倍率をスケーリングすることで、既知の画素寸法(例.短辺長506及び/又は長辺長508)に基づきθ方向,θ方向双方に沿い集光光116に関し一定の画像分解能(例.標本化分解能)を提供することが可能となる。
【0067】
更に、検査システム100にてアナモルフィック変倍を行うに当たり、どのようなサイズ又は形状の画素を有するどのような種類の検出器114を利用してもよい。一実施形態に係る検査システム100は、入射面外の方向における拡がりが入射面内の方向におけるそれより大きい非円形撮像瞳(例.図4に描かれている非円形撮像瞳分布402)と、図5Aに描かれている通り正方形画素502を有する検出器114と、アナモルフィック変倍を行う集光光学系120とを、有するものである。
【0068】
検査システム100(例.集光光学系120、検出器114等)にて、集光光116をどのような分解能で標本化してもよい。一実施形態に係る検査システム100では、集光光学系120の点拡がり関数(PSF)を基準として、ある指定された標本化分解能を提供する。例えば、検出器114上の画素502のサイズと、集光光学系120により提供される倍率とを共最適化することで、PSFのサイズを基準としてある指定個数の画素を提供することが可能となる。本願での認識によれば、PSFを基準とした標本化分解能により、検査システムにおける設計トレードオフ間のバランスを表すことができる。この構成によれば、指定された標本化分解能により指定されたバランスをもたらし、それにより臨界的な標本化を行うことができる。例えば、標本化分解能を高めることで、一般に、画質(例.画像忠実度)を改善できる反面、標本化時間を長くしひいては動作スループットを増加させることもできる。更に、標本化分解能を高めるには倍率を高めることが必要となりえ、それにより集光光学系120の複雑度及びコストの増大、及び/又は、収差が生じうる。一実施形態に係る検査システム100は集光光学系120のPSFに亘り約4.88個の画素502、即ち臨界的な標本化と見なせるそれを設けるものである。但し、ご理解頂けるように、4.88なる値は専ら例証目的で提示したものであり、限定として解されるべきではない。大略、検査システム100にてどのような指定性能水準に係るどのような標本化分解能を提供してもよい。
【0069】
更に、実際のところ、PSFは円形でないことがあるし、別々の方向(例.θ方向及びθ方向、標本上でのX方向及びY方向等に対応するそれ)沿いで別々のサイズを呈することがある。そうした構成では、数値開口の範囲、倍率、並びに画素502の諸方向沿いサイズを個別指定することで、指定性能水準を実現することができる。
【0070】
本願での認識によれば、非円形撮像瞳と複数通りの方向に亘り一定な分解能(例.アナモルフィック変倍と正方形画素502若しくは長方形画素502との何らかの組合せで以て得られるそれ)とを有する検査システム100は、円形撮像瞳を有する検査システム100と同じ要領又はほぼ同じ要領で動作させることができる。例えば、もたらされる画像についての画像分析及び/又は処理を、ほとんど又は全く変形を伴わずに、同一又は実質同一の技術を用い、実行することができる。従って、本願記載の非円形撮像瞳の利点を、サイズ、複雑度又はコストの顕著な増大無しで得ることができる。
【0071】
更に、本願での認識によれば、照明及び/又は撮像向けの非円形瞳を、標本106上での向きを問わず広範な欠陥種別の検査に、適したものにすることができる。
【0072】
一例として、様々な欠陥種別の欠陥に係る欠陥感度のモデルを、入射面内数値開口に対する入射面外数値開口の比(例.図2図4にて定義した方向を用いるならNAθY/NAθX)を高めつつ、ほぼ楕円形の撮像瞳分布を用い生成してみた。更に、各モデルを生成するのに、撮像瞳分布のみが修正を受ける(例.照明瞳分布が一定に保たれる)共通システムを用いてみた。標本106上のY方向(検査システム100のθに係るそれ)に沿った構造では、1.25なる数値開口比で約19%の検査感度上昇、1.5なる数値開口比で約32%の検査感度上昇、2なる数値開口比で約48%の検査感度が実現された。標本106上のX方向(検査システム100のθに係るそれ)に沿った構造では、1.25なる数値開口比で約12%の検査感度上昇、1.5なる数値開口比で約20%の検査感度上昇、2なる数値開口比で約27%の検査感度上昇が実現された。丸い欠陥では、1.25なる数値開口比で約19%の検査感度上昇、1.5なる数値開口比で約28%の検査感度上昇、2なる数値開口比で約48%の検査感度上昇が実現された。
【0073】
別例として、様々な欠陥種別の欠陥に係る欠陥感度のモデルを、ほぼ楕円形の照明瞳分布と共に、円形照明瞳と約1.37なる比NAθY/NAθXを有する照明瞳とを用い生成してみた。更に、各モデルを生成するのに、照明瞳分布のみが修正される(例.撮像瞳分布が一定に保たれる)共通システムを用いてみた。標本106上のY方向(検査システム100のθに係るそれ)に沿った構造では、1.37なる数値開口比で約3.6%の検査感度上昇が実現された。標本106上のX方向(検査システム100のθに係るそれ)に沿った構造では、1.37なる数値開口比で約0.4%の検査感度上昇が実現された。丸い欠陥では、1.37なる数値開口比で約1.4%の検査感度上昇が実現された。更に、1.37なる数値開口比で約10%の平均多層反射率上昇が実現された。
【0074】
図6は、標本検査方法600にて実行される諸ステップを描いたフロー図である。出願人が注記するところ、本願既述の諸実施形態及び実現テクノロジであり検査システム100の文脈に沿ったものが方法600に敷衍されるものと、解すべきである。とはいえ、更に注記されることに、本方法600はその検査システム100のアーキテクチャに限定されるものではない。
【0075】
実施形態に係る方法600は、照明瞳分布に基づき標本に光を差し向けるステップ602を有しており、ここでは、その照明瞳分布の中心を、その標本上での第1方向(例.標本上でのX方向であり図2図4に描かれているθに対応する方向)に沿ったオフ軸入射角に対応させている。その際、照明瞳分布を入射光の入射角域に対応付けることができる。
【0076】
標本に差し向けられる光は、どのような指定波長又は波長域を含むどのような指定スペクトルを有するものであってもよい。実施形態の一つは、標本に差し向けられる光に、EUV光のうち少なくとも一部分を含めたものである。従って、標本にEUV光を差し向けるのであれば、EUV光に適した光学部材(例.鏡、集束素子等)を組み込むことができる。
【0077】
また、実施形態に係る方法600は、その標本からの光であり撮像瞳分布に対応するものを集めるステップ604を有しており、ここでは、その撮像瞳分布の中心をその標本上での第1方向に沿ったオフ軸集光角に対応させ、且つ照明瞳分布及び撮像瞳分布のうち少なくとも一方を非円形としている。
【0078】
また、実施形態に係る方法600は、その集光光に基づきその標本の画像を生成するステップ606を有している。
【0079】
照明瞳分布及び撮像瞳分布の何れの組合せを非円形としてもよい。更に、非円形瞳分布の拡がりを、他の方向(例.標本上での第2方向であり第1方向に対し垂直な方向)に対し、第1方向沿いにて短い拡がりとしてもよい。
【0080】
例えば、非円形照明瞳分布とすることで、入射光及び/又は集光光に係る第1方向沿い数値開口(例.標本の表面法線と照明瞳分布の中心とにより定義される入射面内でのそれ)のチューニングを、容易に実現することができる。ある実施形態によれば、入射光に係る数値開口の範囲(例.第1方向に沿った照明瞳分布の拡がり)を、第1方向沿いで削減し他の方向にて増やすことができる。従って、入射光及び/又は集光光の第1方向沿い角度を、入射光のエタンデュを犠牲にすることなく、表面法線付近となるよう選択することができる。この構成によれば、連携する諸光学部材のサイズ、複雑度及び/又はコストを増大させることなく、円形照明瞳分布に比し性能を向上させることができる。
【0081】
また例えば、非円形撮像瞳分布とすることで、標本の画像を生成するため集光される散乱光の増量を容易に実現することができ、ひいては連携する諸光学部材のサイズ、複雑度及び/又はコストを増大させることなく円形照明瞳に比し信号強度を高め且つ画質を向上させることができる。
【0082】
幾つかの実施形態によれば、標本画像生成用検出器における画素サイズ、及び/又は、(例.ステップ604にて)標本からの光を集め(例.ステップ606にて)その標本の画像を生成する光学部材の倍率を調整し、その標本の画像の分解能を均一にすることができる。例えば、実際のところ、非円形撮像瞳分布では別々の方向に沿った分解能が別々のものになりうる。ある実施形態によれば、ステップ604及び606にて、アナモルフィック変倍及び正方形画素で以て標本を撮像することで、相直交する二通りの方向に沿った画像分解能を均一にすることができる。また、ある実施形態によれば、ステップ604及び606にて、均一な倍率及び然るべきサイズの長方形画素で以て標本を撮像することで、相直交する二通りの方向に沿った画像分解能を均一にすることができる。また、ある実施形態によれば、ステップ604及び606にて、アナモルフィック変倍及び然るべきサイズの長方形画素で以て標本を撮像することで、相直交する二通りの方向に沿った画像分解能を均一にすることができる。
【0083】
本願記載の主題は、ときに、他部材内に組み込まれ又は他部材に接続・連結された様々な部材を以て描出されている。ご理解頂けるように、それら描写されているアーキテクチャは単なる例示であり、実のところは、他の多くのアーキテクチャを実施し同じ機能を実現することが可能である。概念的には、どのような部材配置であれ同じ機能が実現されるなら、その部材配置は、実質的に「連携」することでその所望機能を実現しているのである。従って、本願中の何れの二部材であれ、ある特定の機能を実現すべく組み合わされているものは、その所望機能が実現されるよう互いに「連携」していると見なせるのであり、アーキテクチャや介在部材の如何は問われない。同様に、何れの二部材であれそのように連携しているものはその所望機能を実現すべく互いに「接続・連結され」又は「結合され」ているとも見ることができ、また何れの二部材であれそのように連携させうるものはその所望機能を実現すべく互いに「結合可能」であるとも見ることができる。結合可能、の具体例としては、これに限られないが、物理的に相互作用可能な及び/又は物理的に相互作用する諸部材、及び/又は無線的に相互作用可能な及び/又は無線的に相互作用する諸部材、及び/又は論理的に相互作用可能な及び/又は論理的に相互作用する諸部材がある。
【0084】
本件開示及びそれに付随する長所の多くについては上掲の記述により理解できるであろうし、開示されている主題から離隔することなく或いはその主要な長所全てを損なうことなく諸部材の形態、構成及び配置に様々な改変を施せることも明らかであろう。述べられている形態は単なる説明用のものであり、後掲の特許請求の範囲の意図はそうした改変を包括、包含することにある。更に、理解し得るように、本発明を定義しているのは別項の特許請求の範囲である。
図1
図2
図3
図4
図5A
図5B
図6
【国際調査報告】