IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ソニー・インタラクティブエンタテインメント エルエルシーの特許一覧

特表2022-517457感情認識機械を定義するための方法及びシステム
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-03-09
(54)【発明の名称】感情認識機械を定義するための方法及びシステム
(51)【国際特許分類】
   G06N 20/00 20190101AFI20220302BHJP
   G06N 3/02 20060101ALI20220302BHJP
【FI】
G06N20/00
G06N3/02
【審査請求】有
【予備審査請求】未請求
(21)【出願番号】P 2021505376
(86)(22)【出願日】2020-12-17
(85)【翻訳文提出日】2021-02-04
(86)【国際出願番号】 US2020065680
(87)【国際公開番号】W WO2021127225
(87)【国際公開日】2021-06-24
(31)【優先権主張番号】16/718,071
(32)【優先日】2019-12-17
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】518187455
【氏名又は名称】ソニー・インタラクティブエンタテインメント エルエルシー
(74)【代理人】
【識別番号】100105924
【弁理士】
【氏名又は名称】森下 賢樹
(72)【発明者】
【氏名】ガルテン、アルビー
(57)【要約】
【解決手段】知的エージェントを訓練するための方法であって、性格マトリクスを作成することと、認知バイアスマトリクスを性格マトリクスと組み合わせることと、組み合わせられた認知バイアスマトリクス及び性格マトリクスに基づいて、状況に対する行動関数を生成することと、を含む、方法を開示する。
【選択図】図1
【特許請求の範囲】
【請求項1】
知的エージェントを訓練するための方法であって、
a)性格マトリクスを作成することと、
b)認知バイアスマトリクスを前記性格マトリクスと組み合わせることと、
c)前記組み合わせられた認知バイアスマトリクス及び性格マトリクスに基づいて、状況に対する行動関数を生成することと、
を含む、方法。
【請求項2】
前記性格マトリクスは、マイヤーズ・ブリッグス・タイプ指標に対応するパラメータを少なくとも含む、請求項1に記載の方法。
【請求項3】
前記性格マトリクスは、ビッグファイブ性格特性に対応するパラメータを含む、請求項1に記載の方法。
【請求項4】
前記性格マトリクスは、1つまたは複数の伝記的パラメータを少なくとも含む、請求項1に記載の方法。
【請求項5】
前記1つまたは複数の伝記的パラメータは、場所的、歴史的、文化的、または教育的パラメータを含む、請求項4に記載の方法。
【請求項6】
前記行動関数は、分類された人的交流データから構成され、前記人的交流データは、前記性格マトリクスのパラメータに基づいて分類される、請求項1に記載の方法。
【請求項7】
前記行動関数は、前記分類された人的交流データで訓練されたニューラルネットワークによって生成され、前記ニューラルネットワークの訓練は、前記性格マトリクスによって変更される、請求項6に記載の方法。
【請求項8】
知的エージェントを使用するための方法であって、
a)状況を把握することと、
b)組み合わせられた認知バイアスマトリクス及び性格マトリクスに基づいた行動関数を前記状況に適用して、前記状況への反応を生成することと、
を含む、方法。
【請求項9】
前記状況を把握することは、自然言語処理データで訓練されたニューラルネットワークを少なくとも使用することを含む、請求項8に記載の方法。
【請求項10】
前記自然言語処理データは、ユーザの質問に対する少なくとも1つの事前に答えられた回答を含む、請求項9に記載の方法。
【請求項11】
前記行動関数は、前記ニューラルネットワークによって決定された回答を変更する、請求項9に記載の方法。
【請求項12】
前記性格マトリクス及び前記認知バイアスマトリクスは、少なくとも大きさ及び重みを含む、請求項8に記載の方法。
【請求項13】
c)前記反応の成功の指示を監視すること
をさらに含む、請求項8に記載の方法。
【請求項14】
成功の指示を監視することは、マシンビジョンまたは音声分析を使用して感情的心理を特定することを含む、請求項13に記載の方法。
【請求項15】
成功の指示を監視することは、ユーザの反応の遅延、同じトピックへ戻ること、前記ユーザの否定性、または前記ユーザの怒りを監視することを含む、請求項13に記載の方法。
【請求項16】
反応の成功の前記指示を使用して、前記認知バイアスマトリクスまたは前記性格マトリクスを調整することをさらに含む、請求項13に記載の方法。
【請求項17】
前記状況を把握することは、マシンビジョンまたは物体認識からの視覚情報を使用することを含む、請求項8に記載の方法。
【請求項18】
前記行動関数は、分類された人的交流データで訓練されたニューラルネットワークによって適用され、前記ニューラルネットワークの訓練は、前記性格マトリクスによって変更される、請求項8に記載の方法。
【請求項19】
プロセッサと、
前記プロセッサに結合されたメモリと、
前記メモリに組み込まれた非一時的命令と、
を備え、前記非一時的命令は、実行されると、前記プロセッサに方法を実行させ、前記方法は、
a)状況を把握することと、
b)組み合わせられた認知バイアスマトリクス及び性格マトリクスに基づいた行動関数を前記状況に適用して、前記状況への反応を生成することと、
を含む、知的エージェントシステム。
【請求項20】
コンピュータ可読媒体に組み込まれた非一時的命令であって、実行されると、コンピュータに方法を実装させ、前記方法は、
a)状況を把握することと、
b)組み合わせられた認知バイアスマトリクス及び性格マトリクスに基づいた行動関数を前記状況に適用して、前記状況への反応を生成することと、
を含む、非一時的命令。
【発明の詳細な説明】
【技術分野】
【0001】
本開示の態様はエキスパートシステムに関し、より詳細には、本開示の態様は、より優れた行動複製のための心理学的情報及び社会学的情報を用いたエキスパートシステム及び機械学習の開発に関する。
【背景技術】
【0002】
知能システムは、機械とネットワークサービスとが連携することを意味するものであるが、人間よりも優れた、聴覚、視覚、及びその他の感覚の手がかりを捉え、覚え、比較する能力を有することができる。
【0003】
視覚から始めると、カメラ技術は、人間が見ることができる全てのものを知能システム(IS)が見ることができるレベルまで向上しており、さらにはそれ以上であり、すなわち、背後、上方、下方、遠距離、ほぼ無光、人間の目には不可視であるが、一部の動物には検知できる赤外線及び紫外線などの周波数範囲である。実際に、ISは、X線、マイクロ波、電波などの他の電磁波を見ることができる。人間が何を見ているかを理解するために、ISは人間の視覚の限界を知り、自分が人間だったら何を見ているかを考えるが、必要であれば他のデータが利用可能であり、超人的な視覚(及び見たものの超人的な記憶及び精度)が作り出される。
【0004】
聴覚に関して、高解像度のバイノーラル録音は人間が聞いているものを既に非常によく模倣しているが、なぜそこで止まるだろうか?演奏から個々の音またはステムを分離できるシステムが開発中であり、それによってISは、聴覚環境の個々の要素について観察を行うことが可能になる。
【0005】
味覚及び嗅覚についてはどうか?「1982年以来、匂い及び風味を検出及び認識できる、電子鼻と一般に呼ばれる技術を開発するための研究が行われてきた。」それ以来、MITのAndreas Mershin及びShuguang ZhangがNano-NoseでDARPA賞を受賞したことで、嗅覚認識がどのように機能するかがよりよく理解され、作業は大幅に前進した。
【0006】
触覚で物体を識別する能力は、人間の感知のコア機能の1つである。BioTac触覚センサは、「弾性コンプライアンス、触感、熱特性に基づいて、人間の知覚と同等の性能で、場合によってはそれ以上で、物体を判別及び識別する能力」を有する。
【0007】
スタンフォード大学のYilun Wang、Michal Kosinskiは2017年に調査を実施し、それによって、顔画像から性的指向を人間の対照群よりも高い精度で検出するディープニューラルネットワークの能力が実証された。
【0008】
一部のシステムは今や、人間よりも高い精度で、感情及び行動の手がかりを読み取ることができるようになった。マサチューセッツ工科大学の感情コンピューティングラボの科学者らは、Paul Ekman及びWallace V Friesenが1980年代に開発した感情顔面動作符号化システム(EMFACS:Emotion Facial Action Coding System)から進化したが、さらに大きく進展している「感情認識人工知能(artificial emotional intelligence)」の販売を開始した。
【0009】
この状況において、本開示の態様が生じる。
【図面の簡単な説明】
【0010】
本発明の教示は、添付図面と併せて以下の詳細な説明を考察することによって容易に理解することができる。
【0011】
図1】本開示の態様によるISの構成要素の概略図である。
図2】本開示の態様による一連のレイヤとしての人間の行動の概略図である。
図3】本開示の態様によるマイヤーズ・ブリッグス性格タイピングの連続体を示すブロック図である。
図4】本開示の態様によるビッグファイブ性格特性の概略図である。
図5】本開示の態様による状況ベースラインならびに感覚入力及び感覚出力を示すブロック図である。
図6】本開示の態様による発達フィルタのパラメータの概略図である。
図7】本開示の態様による関係性フィルタの要素の例示的な図である。
図8】本開示の態様による行動マスクの要素の例示的な図である。
図9】本開示の態様による行動関数を含むメンタルスタックの例示的な図である。
図10】本開示の態様による行動関数の詳細な要素を示す図である。
図11】本開示の態様による、DNAから行動に基づいて観察された関数までの完全なスタックを示すブロック図である。
図12】本開示の態様による、ベースラインペルソナと知能システムの個々のインスタンスとの間のつながりを示す図である。
図13】本開示の態様による、行動バイアスの、様々なフィルタ及びマスクへのマッピングを示すブロック図である。
図14】本開示の態様による、エキスパートシステムを使用して行動バイアスまたは認知バイアスをマッピングする方法を示す図である。
図15】本開示の態様による性格ベースラインを構成するレイヤを示すブロック図である。
図16】本開示の態様によるMBTIの重み付けを示す表である。
図17】本開示の態様による文化レイヤを示すブロック図である。
図18】本開示の態様による行動収集を示すブロック図である。
図19】本開示の態様による、状況ベースラインを行動バイアスにマッピングして状況バイアスのセットを作成する方法を示すブロック図である。
図20】本開示の態様による、心理学的パラメータを行動バイアスにマッピングしてそれぞれに重み付けを与えることを示すブロック図である。
図21】本開示の態様による、状況に対するISインスタンスの行動バイアスマトリクス構成の一実施例を示す表である。
図22】本開示の態様による、バイアスを各ISの状況環境に帰属させることを示すブロック図である。
図23】本開示の態様による性格マトリクスの実施例を示す表である。
図24】本開示の態様によるベースライン性格マトリクスの代替ビューを示す表である。
図25】本開示の態様による行動データのキャプチャ及び分析を示すブロック図である。
図26】本開示の態様による社会的分類のビューを示すブロック図である。
図27】本開示の態様による完全な性格マトリクスを構成するパラメータのテーブル表示である。
図28】本開示の態様による性格を記述するために使用されるマトリクスのラベルなしの行列表示である。
図29A】本開示の態様による知能システムで使用するためのリカレントニューラルネットワークの簡略化されたノード図である。
図29B】本開示の態様による知能システムで使用するための展開されたリカレントニューラルネットワークの簡略化されたノード図である。
図29C】本開示の態様による、知能システムで使用するための畳み込みニューラルネットワークの簡略図である。
図29D】本開示の態様による、知能システムの開発におけるニューラルネットワークを訓練するための方法のブロック図である。
図30】本開示の態様による、知能システムにおける敵対的生成ニューラルネットワークの訓練を示すブロック図である。
図31】本開示の態様による知的エージェントシステムのブロック図である。
【発明を実施するための形態】
【0012】
以下の詳細な説明は、例示を目的として多くの具体的な詳細を含むが、当業者の誰でも、以下の詳細に対する多くの変形及び改変が本発明の範囲内にあることを認識する。したがって、以下に説明する本発明の例示的な実施形態は、特許請求する発明に対する一般性を失うことなく、かつ特許請求する発明に限定を課すことなく説明する。
【0013】
序論
機械はまだ人的交流の技術をマスターしていない。多くのチャットボットが不揃いにユーザを欺いているが、機械とのコミュニケーションは、反復的で、論理的で、明らかに人間的でないことが多い。人間は通常、合理的に行動しない。我々は何十もの認知バイアスを有する。しかしながら、これらの行動は「予想通りに不合理」である。知能機械が人間と同じように「非合理的に」行動するのを止めるものはない。
【0014】
行動経済学の分野では、限定合理性、プロスペクト理論、異時点間の選択、ナッジ理論、行動ファイナンス、行動ゲーム理論の領域で多くの研究が行われてきた。これらの理論が進化し、より決定的なものになるにつれて、知能機械が経済的意思決定を行う場合に人間と同じように振る舞うことを妨げるものはない。あるいは、ISで増強された人間が非合理的でなくなることを妨げるものはない。
【0015】
本開示の態様はいくつかの構成要素に分解され得、これらは統合されると、知能システムすなわちISを定義及び構築するための完全なシステムを提供する。そのようなISは、デバイス、ネットワーク、ストレージ、データ構造、処理、アルゴリズム、入力、出力、及び様々な人工知能技術、たとえば、限定はしないが、ディープニューラルネットワーク、畳み込みニューラルネットワーク、リコンビナントニューラルネットワーク、エキスパートシステム、敵対的生成ネットワーク、訓練及び/または推論を用いた人工ニューラルネットワークのうちの一部または全部で構成される。目標は、単純なチャットボットから完全なヒューマノイドロボットまでのインスタンスを含むISに、より人間のように振る舞うよう教えることである。そのために、心理学的、社会学的、及び身体的な人間の反応と、知能システム(IS)がそれらを模倣できる方法とを評価することにする。
【0016】
この問題は、いくつかの構成要素に分解され得る。図1を見ると、IS100は人間が受け取るのと同じ入力、すなわち、視覚102、聴覚103、触覚104、味覚105、及び嗅覚106を記録101し得ることがわかる。次に、ISはこれらの入力を、究極的にはほぼリアルタイムで分析し、反応を計算108し、触覚、音声生成、及びロボット工学を使用して反応を実行109し得る。ISによって構築された反応は、他の人間によって人間と区別不可能なように人間の反応を模倣することができ、場合によっては、さらにいっそう共感的(またはマキャヴェリ的)である必要がある。本開示の多くは、これらの理解及び反応の社会的側面及び心理学的側面に対処する。最後に、どのようにこれらのシステムを使用して仮想環境を生成し、現実の世界と反応するのだろうか?高レベルのアーキテクチャについてもう少し掘り下げてみよう。
【0017】
入力
入力をもう少し詳しく見ると、知能システム(機械とネットワークサービスとが連携することを意味する)は、人間よりも優れた、聴覚、視覚、及びその他の感覚の手がかりを捉え、覚え、比較する能力を有することができる。
【0018】
視覚
視覚102から始めると、確実にカメラ技術は、人間が見ることができる全てのものをISが見得るレベルまで向上しており、本開示のいくつかの態様では、それ以上である。すなわち、背後、上方、下方、遠距離、ほぼ無光、人間の目には不可視であるが、一部の動物には検知できる赤外線及び紫外線などの周波数範囲である。実際に、ISは、X線、マイクロ波、電波などの他の電磁波を(そのようなセンサを使用して)見得る。人間が何を見ているかを理解するために、ISは人間の視覚の限界を知り、人間である場合に何を見ているかを考えるようにプログラムされるが、必要であれば他のデータが利用可能であり、超人的な視覚(及び見たものの超人的な記憶及び精度)が作り出される。マシンビジョン及び/または物体認識を使用して、ISは、人間を含む物理世界の物体を検出及びカテゴリ化して、現実的な人間の反応を定式化することが可能であり得る。
【0019】
聴覚
聴覚103に関して、高解像度のバイノーラル録音は、人間が何をどのように聞いているかを既に非常によく模倣している。本開示の態様によれば、ISは音をオブジェクトとして記録し得、これは、Dolby Atmosのようなシステムが音声を個別のオブジェクトとして再生するのと同様であり、General Harmonics、Celemony、Red Pill及びSonyなどの企業から他のシステムが開発されており、これらはステレオまたはサラウンドフィールドから音をキャプチャして個々の要素に分離することができる。たとえば、限定はしないが、ISまたはISで支援された人間は、交響曲を聴いており、第1バイオリンのみまたはフレンチホルンのみを聴きたい場合があり、ISはそれらの楽器のみを分離し、現実世界を実質的に(独立成分分析(ICA)などのスペクトル分解法を用いて)詳細な調整が可能なレコーディングスタジオに変えることができる。いくつかの実施形態では、ISはヒト生物学に統合され得、人間はコンサート中に「フレンチホルンがもう少し大きかったらいいのに」と単純に考える場合があり、あなた(またはあなたのサイボーグ構成部分)は「ミックスを変える」ことができる。この統合により、人は聞いたもの全てを覚えることができるだけでなく、それを別のミックスで聞き返すことができる。
【0020】
味覚及び嗅覚
電子鼻は、人間が認識する匂い及び味に加え、犬などの他の動物が認識する匂い及び味を認識し得る。異なる人間は異なる匂い及び味に対して異なる反応を有するが、あなたの匂いの感じ方と比べた私の匂いの感じ方を知ることは(「smell」は動詞として使用)、厳密には機械学習データ分析の問題である。これは単に識別の問題であるので、クオリアは関与しないことに留意されたい。ISは確実に、異なる文化または異なる個人が好む食品の味及び匂いを理解するように学習し得る。実際に、ISが適切なハードウェアを使用して食べ物を食べる(咀嚼して飲み込む)としたら、食感も知る(というよりメモリに記憶する)ことができる。エネルギーのために食物を消化する必要は必ずしもない(ただし、そう設計することはできる)。しかしながら、機械は、人間または任意の特定の人間として、飲食物の味わいの細かい点を全て理解するように(というよりそう理解しているように外部の人が感じるよう)訓練することができる。ISインスタンスを有するJonathan Goldの機械をレストランが雇って、メニュー選びを支援することができる。あるいは、レストランのチェーンは、適切な訓練及びハードウェアを有するISコックを使用して、顧客の好みに基づいて調味料を動的に調整することができる。
【0021】
触覚
触覚で物体を識別する能力は、人間の感知のコア機能の1つである。タッチセンサを使用して、初期接触、接触位置、スリップ、曲率半径、及びエッジを検出すると共に、未知の場所にある未知の特性を有する物体を巧みに扱えるようにする3軸力を決定し得る。他の感覚と同様に、本開示の目的のために、受け取り及び提供の両方の高解像度のタッチが時間の経過と共にもっと利用できるようになると想定する。
【0022】
行動分析
本開示の核心は、我々の存在の心理面及び感情面に関係している。人間は、他の人間の感情の状態及び傾向を認識するのがかなり得意である。人は、誰かが怒っているのか幸せなのか、または何十もの他の感情を見分けることができる。他人の感情及び傾向の分析は、人々が言ったことだけでなく、ボディランゲージを読むこと、微妙な表情を含む表情、声色及び声の高さ、匂いならびに身体的観察、たとえば、紅潮した肌、鳥肌、涙などにも基づいている。これに対する人の解釈は、自身の経験、先入観、及び予想によって幾分色づけされる。被害妄想的な人々は、他人が自分を陥れようと躍起になっていると考えるが、ある人の予想を他の人の行動に、一般的には環境に対応付けるはるかに多くの微妙なバージョンがある。本開示では、どのようにしてISが人間と同等以上に感情及び行動の傾向を理解できるかを見ていく。
【0023】
本開示の態様によれば、ISは、ISと交流している人の感情、たとえば、悲しみ、喜び、怒り、共感、または軽薄を考慮し得る。さらに、本開示の態様によるISは、テレビ、看板、ショールームウィンドウでの販売、価格変更、または群衆の行動などの他の入力とやりとりし、それらから継続的に学習し得る。
【0024】
感情入力に反応する前に、ISはそれらを読み取って「理解」できなければならない。本開示は、感情を読み取るプリミティブに焦点を合わせていない。代わりに、本開示の態様は、全ての要素を収集し、それらが環境の心理学及び社会学に関して何を意味するかを分析するが、他の技術を使用して基本的なプリミティブをキャプチャすることができると想定する。
【0025】
反応
本開示の態様によれば、ISは所与の感情入力に対して適切な反応を示し得る。入力と入力を取り巻く周囲環境とに応じて、ISは感情で、たとえば共感、怒り、軽蔑、集団思考で反応し得る。いくつかの実施態様では、ISは、たとえば、購入、販売、または掃除もしくは料理などの行動の決定によって、入力及び周囲環境に反応し得る。知能機械が身体的な微細な手がかり(顔の表情及び他のボディランゲージ、匂い、接触など)で感情を読み取るように教えられると、知能デバイス(ロボットなど)は、人間が共感や軽蔑などを体験できるように、顔の表情、匂い、汗などの身体的行動を模倣するように教えることができる。
【0026】
ISとの食事デート。彼女/彼は食べ物の味及び匂いを理解し、人の知っている好みすら考慮して、適切に反応することができる。ボリュームのある食事の終わりに、彼女/彼は、満腹で、無気力で、酔って、性的に興奮して振る舞うことができる。
【0027】
人間は通常、合理的に行動しない。我々は何十もの認知バイアスを有する。しかしながら、これらの行動は「予想通りに不合理」である。知能機械が人間と同じように「非合理的に」行動するのを止めるものはない。
【0028】
妥当な、さらには非常に妥当で共感的な(または、あまり理想的ではないが、操作的な)反応を行うために必要なステップを解剖する。図2に示すように、人間の行動は一連のレイヤと見なされ得る。感覚分析エンジン200への入力はいくつかある。まず、上述のように感覚記録201がある。環境因子202もあるが、これについては後で十分に説明する。反応計算203を構築するために必要な他の重要な要素は、我々の一般的な行動を形作る性格要素204である。次いで、行動マスク205は、我々が自分を他人に表現するときにかぶるマスクと、様々なビットまたはバイトをフィルタで除去して出力から取り除くことを指すコンピュータプログラミングにおけるマスクとの両方を指す。その後、行動関数206について、数学的な意味での関数を使用して論じ、入力のセットに作用して、所望の出力を生成するが、それらを心理学的な意思決定に適用するアルゴリズムまたは操作のセットが得られる。
【0029】
状況ベースライン
状況ベースラインは、ISが任意の状況または交流に持ち込む基本的な性格の構造である。状況ベースラインには3つの構成要素があり、1つ目は基本性格タイプまたは性格要素である。人間の場合、これらは主に遺伝及び幼児期の結果であり、人間の基本的な視点を表していることが多い(たとえば、虐待された子供は、典型的には、信用することを学ばなくなる)。人間の反応能力を複製するという観点からの次の発展的なレイヤは、発達フィルタ(Developmental Filter)である。発達フィルタは、我々の基本的な性格の上にある文化的及び社会的なオーバーレイである。これは、家族、コミュニティ、友人などを含み得る、我々の社会的及び文化的環境によって決定される。3つ目の要素は関係性フィルタ(Relationship Filter)である。これらは、コンテキストに基づいて我々に作用するフィルタである。これは、現在の場所及び人々との既存の関係性を反映している。
【0030】
本明細書で使用する場合、基本性格要素とは、基本的な人間の特性を定量化及び分析したものを指す。これらの特性には間違いなく遺伝要素があり、将来的には、遺伝要素は間違いなく、基本性格要素の分析に影響を与える。いくつかの実施形態では、基本性格要素は、基本性格分析のための心理学的(及びデータ)アプローチに限定される。代替の実施形態では、遺伝的形質及び素因さえも考慮に入れられ、そのような遺伝的形質は、遺伝的地図と、遺伝暗号マーカーに起因する特定の性格特性の可能性とを使用して適用され得る。
【0031】
当技術分野の任意の性格モデリングシステムが、基本性格要素に使用され得る。たとえば、限定はしないが、性格タイプは通常、2つの異なるモデルのいずれかを使用する心理学の文献に記載されている。1つのモデルはマイヤーズ・ブリッグス性格タイピングであり、これはユングの元型に基づいており、図3に示すように、性格を2値の16個の組み合わせに分解する。
外向性301->内向性302
感覚303->直観304
思考305->感情306
判断307->知覚308
【0032】
他の一般的な性格分析ツールは、ビッグファイブ性格特性または5因子モードであり、これは元々はErnest Tupes及びRaymond Christalの研究に基づいており、後にJ.M.Digman及びLewis Goldbergによって進められ、全ての性格特性の背後にある基本構造を表すと一部では信じられている。
【0033】
図4に示すように、ビッグファイブ性格特性400は一般的に次のように記述される。
- 経験への開放性(独創的/好奇心旺盛vs.一貫性/用心深い)401
- 誠実性(効率的/組織的vs.気楽/不注意)402
- 外向性(社交的/精力的vs.孤独/控え目)403
- 協調性(友好的/思いやりvs.挑戦的/孤立)404
- 神経症傾向(敏感/神経質vs.安定/自信)405
【0034】
他の多くの性格の連続体(continuum)があり、これには観相学者による以下の特性研究が含まれる。これらには、限定はしないが、以下が含まれる。
【0035】
マキャヴェリズム:多くの場合、不誠実な行為によって、他人の行動を操る個人を指す。マキャヴェリズムは金と権力に興味があることが多く、これを求めて他人を実利的に利用する。
【0036】
達成欲求:達成欲求が強い人々は、多くのことを成し遂げ、高い基準の卓越性を自分に設定することを望む。彼らは遠い目標のために粘り強く懸命に働くことができる。
【0037】
認知欲求:認知欲求が強い人々は、物事を理解することにやりがいがあると感じ、これを求めてかなりの認知努力を進んで行う。そのような個人は、学ぶこと、及び新しいことを理解しようとする過程を楽しむ。
【0038】
権威主義:権威主義者は厳格な社会的階層を信じており、その中で、彼らは上の者に対して完全に従順であり、部下の完全な服従を期待する。規則の遵守に厳格であるので、権威主義的な性格は、不確実なことに非常に不快感を覚える。
【0039】
ナルシシズム:自己陶酔的な性格は、高いレベルの虚栄心、思い上がり、及び利己主義をもたらすほど強い自己愛を有する。自己陶酔的な個人は、他人に共感したり、他人に感謝したりするのに問題があることが多い。
【0040】
自尊心:自分を前向きに評価する傾向。自尊心とは、自分が他人よりも優れているということではなく、単に自分が価値のある人であると信じることを意味する。
【0041】
楽観主義:将来の前向きな結果を期待する傾向。楽観的な人々は良いことが起こることを期待しており、そのため、より良い結果がもたらされることが多い。
【0042】
無感情症:自分の感情を認識してラベル付けすることができないこと。これらの個人は、他人の感情を認識することも困難である。
【0043】
誤解のないように言うと、これらの性格特性は傾向である。それらは決定的(または「規範的」)ではない。そのため、マイヤーズ・ブリッグスの用語でのISTJは、ショッピングカートを二重チェックする可能性がENFPよりも、おそらく80%高い。これらの傾向は、ISが様々な社会的状況でどのように反応するかに対して、基本レベルで影響を与える。いくつかの実施形態では、ISの基本的な性格は、基本性格要素を軸として使用して、複数の軸に沿った連続体上に設定され得る。たとえば、限定はしないが、「Chris?」という名前のISエンティティを作成していると仮定する。我々は性別及び性的嗜好を選択し得、その理由は、性格に影響があるためであるが、それだけではない。マイヤーズ・ブリッグスを1つの基本性格アプローチとして使用すると、たとえば、Chrisが75%外向的、25%内向的、43%感覚、57%直観、27%思考、73%感情、及び48%判断、52%知覚であると判断し得る。同様のパラメータを5因子アプローチに使用することができる。Chrisは、経験への開放性の尺度が38%、誠実性の尺度が72%、外向性の尺度が81%、神経症傾向の尺度が22%であり得る。別の実施形態では、我々が作成する性格は、マキャヴェリズム、達成欲求、認知欲求、権威主義、ナルシシズム、自尊心、楽観主義、無感情症などの他の連続体に沿った尺度、及び観相学者に知られているその他のもの、または行動のAI分析の結果として発見されるその他のものを有し得る。
【0044】
これら全てが基本性格タイプ500になり、これは図5に示すように状況ベースライン501の一部である。この完全な状況ベースライン501は、ISがその瞬間の関係に持ち込むものである。基本性格タイプ以外に2つの構成要素がある。第一に、人々が育った環境が行動に影響を与えるという、発達フィルタ502である。これは、生まれてからの人の発達に影響した可能性のある全てのものを含み、たとえば、家族との関係、その人が育った文化、政治情勢、さらには天気である。人々は、周囲の人々及び物事との関係の影響も受けるという、関係性フィルタ503である。これは、その人が話している相手、及びその人と相手との歴史を含む。たとえば、関係性の効果は、他人との交流が、オフィス、行楽地、誰かの家などのうちのいずれで行われるかに依存し得る。
【0045】
いくつかの実施態様では、性格タイプの表現は、16個の基本性格構成要素を有し、それぞれに2つの因子が関連付けられ得る。因子1)は、ISが一方側または他方側にどれだけ強いかに基づく100%までの尺度での各性格要素の大きさであり、たとえば、74%内向的、25%自己陶酔的、17%判断、49%マキャヴェリ的などである。因子2)は、所与の状況における16個の性格構成要素のそれぞれの重要性の重みであり、たとえば、目下の課題に対して、ナルシシズム、思考、または経験への開放性がどれほど重要か、などである。しかしながら、本開示の態様は、そのような実施態様に限定されない。
【0046】
次いで、この状況ベースラインは、視覚505、聴覚506、嗅覚507、味覚508、及び触覚509の感覚入力504の影響を受ける。次いで、これらの入力は感情読み取りフィルタ510によって読み取られ、これはベースライン認知反応511を生成する。次いで、これらの反応は、行動関数アルゴリズム512に供給され、これは次いで感覚出力513を生成する。
【0047】
発達フィルタ
本開示の態様によれば、ISは人間の行動を模倣するように設計され得、そうするためにISの履歴が作成され得る。脚本家が脚本を書く場合、彼らは一般的に「バイブル」を持っており、これにはキャラクターを作り上げたものが記載されている。脚本はキャラクターが生まれた場所を全く参照しない場合があるが、アイオワの農場で育ったのか、マンハッタンのタウンハウスで育ったのかを知ることは、キャラクターの振る舞い方に、ひいては役者のそのキャラクターの演じ方に大きく影響する。同様に、発達フィルタは、ISのキャラクターバイブルである。たとえば、幸せな結婚は、不幸な結婚とは大きく異なって行動に影響し、不幸だった1回目の結婚の後の幸せな2回目の結婚ではさらに異なる。
【0048】
図6に示すように、発達フィルタ600に影響する因子は、いくつかの主要なバケットに分解され得る。幼少期の発達602は、家族の要素(規模、兄弟、親など)、教育、経済状況、健康などといったもので構成される。次は、現在の関係歴603に関するデータであり、また、教育データ604、職歴605、及びその分野の専門家によって関連があると判定される任意数の他の因子606を追跡することもできる。
【0049】
本開示の態様によれば、知能システムは、様々な種類の人工知能(深層学習、畳み込みニューラルネットワーク、敵対的生成ネットワークなど)を使用して訓練され得、それらに他の機械の学習を実質的に瞬時に与えて、理解の深さが指数関数的に成長するようにすることができる。任意数のIS間の交流は、人間の歴史からの実際の交流と比較され、微調整され得る。テスターは、ISに他の性格を選択して動作させ、性能の違いを確認し得る。全ての人間を完全に正確に表現する必要はなく、少数の文書化された人的交流の歴史で十分であり得ることに留意されたい。
【0050】
関係性フィルタ
次は、図7に示すように、IS700と、それがやりとりしている人701または人々702及び場所703、704、705との関係性である。この空間では多くの心理学的分析が行われてきた。本開示の態様によれば、技術的関係性データのコーパスが、心理学的調査から生成され得る。心理学的調査では、たとえば、限定はしないが、以下の質問に回答する。部下ではなく上司と関わる場合にどのように感じるか(これは基本性格タイプの影響を受け、すなわち、プロトコルを順守する人か、それとも平等主義者か)?他の家族の成員についてはどうか?遺伝(たとえば、少しも一緒に育っておらず、会っただけの親戚)についてどう感じるか?環境についてはどうか?オフィス環境で最も快適か、それともバーまたは誰かの家でもっとリラックスするか?話し相手が小柄であるか、または太っている人の場合に、優越感を抱いたり、気取ったりするか?しっかりとアイコンタクトを取るか?身体的な手がかりにどれくらい敏感か?環境の雑音についてはどうか?いくつかの実施態様では、調査は、各問題の感じ方に関する重み及び大きさを決めるように調査対象者に求める質問を含み得る。他の実施形態では、重み及び大きさは、人間によって回答された心理学的調査集から統計的に作成される。
【0051】
行動マスク
任意の行動反応には、無数の反応が存在する。同じ状況でも、人によって反応が異なる。影響を受ける可能性のある領域のいくつかを図8に示す。IS801は人802との関係を有し、これには、仕事上の関係、ロマンチックな魅了、知的興味または趣味の愛好、育った場所、家族環境が育てていたもの、既往歴、関係歴、心理タイプ及び傾向、といったものが含まれる。
【0052】
任意の特定のISは、特定の反応をマスクで除外するように設計される必要がある。ISは暴力をマスクで除外するように設計されるべきであり、ただし、他者の保護あるいは正当防衛の場合を除くが、それでも害を及ぼすことはない。これらの関係性フィルタまたは行動マスクは、生活歴に基づいた一般的な傾向であり、背景及び遺伝に基づいて包括的である。一部の背景は最近のものであり得、一部はより古く、より内面的で、より基本的であり得る。
【0053】
行動関数
ここでは、図9に高レベルで示すように、前述のレイヤ、すなわち、基本性格要素900、発達フィルタ901、関係性フィルタ902、及び行動マスク903を取り上げ、これらを目下のタスク反応905のためのオペレータとして使用する。タスクは、たとえば、限定はしないが、会話で質問に答えること、何かを言ったばかりの人を見ること、商品を購入するか否かを決めること、第一希望が利用できない場合に別のレストランもしくは時間または日付を選ぶこと、買い物袋の代わりを提供すること、または基本的には人間が今日行い得る任意の反応、とすることができる。重要な質問の1つは、「反応がどの程度人間的であって欲しいか」である。人間は合理的な行為者ではなく、本開示の態様によれば、ISは非合理性を模倣するように構成され得る。たとえば、限定はしないが、誰かが動揺しているが、それについてできることはないと仮定する。もしかすると、その人は飛行機に乗り遅れたばかりで、今や結婚式に時間通りに行くことができない。合理的な行為者は、それについてできることはなく、全ての選択肢が検討済みであり、最善の方法は謝罪文を送ることである、と言うかもしれない。しかしながら、人間の行為者は、次のようにと言うかもしれない。「なんてことだ!大変残念だ!助ける方法を何か思いつくか考えよう。まず、時間内にそこにたどり着く別の方法があるかを確認しよう。」適切な小休止及びより多くの同情の後、「翌朝彼らが新婚旅行に向けて出発するときにあなたが現れて別れを告げるのと、単にメモまたはテキストを送るのと、どちらを好むと思うか?」と言うかもしれない。重要なのは、人間は結果と同じくらい過程を大切にするということである。したがって、ISは、過程の意識を与えるための適切な行動関数レイヤ904のパラメータを提供することによって、人間の反応を模倣するように設計され得る。
【0054】
別の実施例として、ある人が店舗で時計の価格を聞いていると仮定する。人間は「アンカリング」として知られている認知バイアスの影響を受けやすい。一実施例として、1つのアイテムの価格が非常に高い場合に、他のアイテムが実際にはまだ高価であっても、より手頃に見えるようになる。行動関数レイヤ904内に適切なマスクまたはフィルタを有するISは、以下で論じるように、人間のバイアスで反応するように開発され得る。
【0055】
人間は認知バイアスで満ちており、これらは彼らを人たらしめているものの一部である。人間は、選択を行ったり価値を決定したりする前に全ての要因を合理的に分析していると信じているが、実際には、最初に感じたものが心に残っており、将来の感じ方及び判断が影響を受ける。もう1つの認知バイアスは「作話」である。人々は自分に嘘をついているときはわかると信じているが、無意識に形成されたアイデアから我々が受ける絶え間ないナッジングに気づかない。行動心理学は、少なくとも以下の名付けられたバイアスを実証した研究で満ちている。
【0056】
プライミング、作話、後知恵バイアス、テキサスの名射手の誤謬、先延ばし、正常性バイアス、内観、利用可能性ヒューリスティック、傍観者効果、ダニング=クルーガー効果、アポフェニア、ブランド忠誠心、権威に訴える論証、無知に訴える論証、藁人形論法、人身攻撃の誤謬、公正世界誤謬、公共財ゲーム、最後通牒ゲーム、主観的承認、カルトの洗脳、集団思考、感情ヒューリスティック、ダンバー数、魂を売る、自己奉仕バイアス、スポットライト効果、第三者効果、カタルシス、同調、消去抵抗、超正常解発因、根本的な帰属の誤り、代表性ヒューリスティック、社会的手抜き、学習性無力感、アンカー効果、自己成就予言、瞬間の自己、コントロールの錯覚、一貫性バイアス、及び予断。
【0057】
これが一般的にどのように機能するかを示すには、非限定的な少数の簡単な実施例で十分である。ダニング=クルーガー効果の実施例を見てみよう。ダニング=クルーガー効果は、人々は自分の認知能力を実際よりも優れていると誤って評価する認知バイアスである。それは優越の錯覚の認知バイアスに関連しており、人々が自身の能力の欠如を認識できないことに由来する。学習補助として設計されたISの場合、ダニング=クルーガー効果などの認知バイアスを追加すると、ISがユーザにとってより親しみやすくなり、学習がより楽しくなり得る。たとえば、ある人がJava(登録商標)Scriptでプログラミングすることを学んでおり、全ての質問に回答することができる熟練プログラマがいると仮定する。しかしながら、(プログラミングを含めて)何かを学ぶことの喜びは発見の共有から来るので、これは面白くない。ダニング=クルーガー効果バイアスを有するISは、その人の純朴な熱意を共有する。これはどのタスクにも当てはまる。例として、限定としてではなく、バスケットボールを学ぶことを考える。a)常に全てのシュートを決める人と試合をすること、または、b)自分の欠点を痛感している人と試合をすること、の一方は面白くないであろう。フリースローまたはスラムダンクを決める実際のチャンスを冷静に計算できる機械よりも、能力の開発時に、少し人間的な励まし、及び共有された純朴な信念を得る方が楽しい。
【0058】
後知恵バイアスとは、既に発生したイベントを、そのイベントが発生する前に実際に予測するよりも、より容易に予測できたと人々が考える傾向を指す。この場合、完全な記憶及び認識を有するISは、イベントを正しく予測した頻度を正確に知っており、天気が悪天候に変わると言う。当然ながら、人間は、気温あるいは気圧の変化(「関節炎が痛み出している」)などを感じることに基づいて、予測を行う。明日は雨が降ると予測した人は、雨が降らないと、予測したことを忘れるが、雨が降ったら、思い出して「知っていた!」と言う。
【0059】
図10は、この時点までのスタック全体を示している。状況1000は、状況ベースライン(基本性格要素、発達フィルタ、及び関係性フィルタ)と、行動マスクとで構成され、これらは、プライミング、作話、正常性バイアスなどの行動関数1001でフィルタリングされ、反応1002を作成する。
【0060】
ISは次のように決定を下し得る。認知バイアスは関数として記述され得、たとえば:行動f(後知恵バイアス)=(軸#1でのプログラムされた経験度)(軸#2~nでのプログラムされた経験度)(各軸でのイベントの固有の予測可能性)。たとえば、船員の場合、プログラムされた経験度は、海辺の天気の軸での船員の経験、または砂漠での天気予測の船員の経験に関するものである。ISシステムの観点から、ISは「状況」、すなわち、その基本性格要素(マイヤーズ・ブリッグス、遺伝子構成、性別など)が、発達フィルタ(文化的及び社会的生い立ち)によって変更され、次いで関係性フィルタ(人々及び環境との長期的な関係)によってコンテキストに当てはめられ、さらに行動マスク(関わりのある人々との現在の関係、社会的階層など)によって変更されたもの、によってプライミングされている。これにより、行動f(後知恵バイアス)などの関数が作用する基本的なコンテキストが作成される。
【0061】
本開示の文脈内で知能システムを論じる際に、認知バイアス、行動バイアスを呼び出す方が理にかなっている。これらの行動バイアスを模倣するためのISの訓練については、後のセクションで論じる。
【0062】
機械学習を使用してISを訓練する方法を検討する前に、図11に示すようにスタック全体を高レベルで確認すると有意義である。我々の行動への最低レベルの入力はDNA1100である。DNAが性格にどのように影響するかは、IS専用に生成されるいくつかの因子、またはISのモデルになった人に関連する因子に依存する。DNA1100の真上にあるのは、初期発達1101に基づいてISがパターン化される方法である。初期発達で起こること(虐待、極度の貧困、完全なる愛など)は、人々を非常に深く、大抵は永続的に形作り、ISの性格にも影響がある。同じ時間枠に(そしてより少ない程度で継続して)、遺伝的因子と環境因子との組み合わせによって行動を制御する遺伝子調節1102がある。その上に、状況ベースライン1103を構成する要素があり、これはまず基本性格要素1104で構成され、続いて発達フィルタ1105及び関係性フィルタ1106で構成される。スタックをさらに上に登ると、行動マスク1107があり、これは行動バイアスを分析し1108、それらのバイアスを個人1109ならびに環境または行動及び選択1110に帰属(impute)させる。このデータ全てから、行動関数1111を使用して行動を作成することができる。この後、本システムが経験から学習し続けるときに、関数に基づく交流の結果が行動マスクにフィードバックされる。
【0063】
ペルソナ
各ISIには成長または発達の経路がある。この経路にはいくつかの重要なポイントがあるが、1つのポイントは、それが代替不可能になるポイントであり、すなわち、人間と初めて交流するときである。たとえば、限定はしないが、個人用(コンシェルジュ)カスタマーケア担当者である、Daleと呼ばれるISを考えることとする。Daleは、個々の顧客の完全なカスタマーケア履歴を、その顧客のあらゆるメーカーのデバイス全てにわたって知っている。Daleは、状況ベースラインを通じて形成された性格を有する。顧客は、いくつかの状況ベースラインから選択することができ、または性格プロファイルに基づいてそれらから1つを選択してもらうこともできる。ここで、今後は顧客とISとの交流に基づいて、性格が形成されることになる。1年後、Daleは、顧客が面白いと思うもの、顧客がおしゃべりを好むか、すぐに本題に入るのを好むか、そしてもちろん顧客の購入及びサポート履歴の全てを知ることになる。これは、その個々の顧客のためだけのペルソナである。別の人間の顧客が同じ状況ベースラインを有する担当者で始めた場合、その顧客の「Dale」ISのインスタンスは、長い間、同じままにはならない。ISがこの顧客と交流するとき、その関係は、Daleと最初の顧客との関係とは異なって発展する。本開示の目的のために、状況ベースラインを通じて形成されたペルソナ(すなわち、未使用の性格)を、本明細書ではベースラインペルソナと呼び、「人的交流によってカスタマイズされた」各ペルソナは、ISI(知能システムインスタンス)である。2人の顧客が結婚し、全てのデバイスと、個人用カスタマーケア契約とを共有する場合、それはサポートペルソナを共有する必要があるということを意味するわけではない。一方の配偶者のサポートペルソナは引き続きDaleであり、他方の配偶者は引き続きAlex(2人の配偶者が出会う前の他方の配偶者のサポートペルソナ)であるが、Dale及びAlexは両方とも、2人の配偶者の共有のデバイス履歴の全てにアクセスすることができるが、誰が電話をかけるかに応じて、DaleまたはAlexのいずれかが電話の相手になる。本開示の態様は、両方の配偶者がDaleとAlexの両方と共に電話会議に参加し、全員が同時に電話中となり、性格はおそらく自然に混ざり合う実施態様を含む。このようにして、ISは、あなたとあなたの妻とのために「強化された」カスタマーサポート体験を生み出す。
【0064】
図12に示すデータ管理のための本開示の態様によれば、ベースラインペルソナのリポジトリ1200、またはベースラインペルソナをその場で作成するための要素が存在し、新しい状況ごとに、ISインスタンス1201が1つのベースラインペルソナから作成される。このインスタンスは、各交流の後に記憶及び更新することができ、または必要なときにいつでも、以前の交流のパラメータに基づいて動的に再作成することができる。いくつかの実施形態では、ISインスタンスは、待ち時間をなくすために限られた期間キャッシュされるが、それらが長期間オフラインであっても、中断したところから正確に再構成できるように、パラメータが記憶される。
【0065】
知能システムの訓練
これらの行動バイアスをキャプチャ及びカテゴリ化した後、「人間のように振る舞う」ときにそれらを模倣するように、機械学習(ディープニューラルネット、機械学習、CNN、RNN、GANなど)が実装され得る。図13を見ると、基本性格1300の他のレイヤの一部、すなわち、発達フィルタ、関係性フィルタ、及び行動マスクについては、上記で論じている。人間の認知行動をマッピングする際の次のレイヤは、行動バイアスをマッピングすることである。人間のように振る舞うようISを訓練するために、取られ得るステップがいくつかある。行動収集1301は、認知バイアス1302に関して我々が有する知識に基づいて、心理学者によって構築されたエキスパートシステムから始まる。これは、人間の世界と人間/ISの仮想世界との両方で観察可能な行動データ1303によって拡張され、強化され、大部分が置き換えられる。観察可能な行動データは、人間の世界での会話を観察することによって生成され得る。認知バイアス及び心理学的プロファイルのモデルに基づいて、特定の会話設定で人がどのように反応するかについての予想があり、反応がモデルと異なる場合、モデルが更新される。この状況では、会話設定は、既知の心理学によって、人間同士の会話を受動的に観察することを通じて生成され得、または人間とISとの間の会話を通じて能動的に生成され得る。ISは既知の心理学的プロファイルを有する人間に対してトピックを提供するか、またはそれについて話し合い、予測される反応に基づいて人間の反応を評価し得る。予測されたモデルは、実際の人間の反応に基づいて更新され得る。次に、行動分析が認知バイアスにマッピングされる1304。結果として得られる行動バイアスを使用して、(上記の全てのレイヤに基づいて)ISが特定のタイプの個人である場合にどのように反応するか1305、また、それらが異なる行動及び選択にどのように適用されるか1306を帰属させる。個々の行動予想1305と環境選択1306との組み合わせは、ISの行動バイアス1307を作成する関数として適用される。関数1308の挙動及び動作は観察され得、その学習は観察可能な行動データ1303にフィードバックされる。ISのインスタンスが機能すると、それらはGAN(敵対的生成ネットワーク)を使用して相互に訓練を開始し、進化を続けることができる。
【0066】
一般的なニューラルネットワーク訓練
本開示の態様によれば、ISシステムは、いくつかの異なるタイプのニューラルネットワークのうちの1つまたは複数を含み得、多くの異なるレイヤを有し得る。限定ではなく例として、分類ニューラルネットワークは、1つまたは複数の畳み込みニューラルネットワーク(CNN)、リカレントニューラルネットワーク(RNN)、及び/または動的ニューラルネットワーク(DNN)からなり得る。
【0067】
図29Aは、ノード2920のレイヤを有するRNNの基本形態を示しており、各ノードは、活性化関数S、1つの入力重みU、回帰性隠れノード遷移重みW、及び出力遷移重みVによって特徴付けられる。活性化関数Sは、当技術分野で知られている任意の非線形関数であり得、双曲線正接(tanh)関数に限定されない。たとえば、活性化関数Sは、シグモイド関数またはReLu関数であり得る。他のタイプのニューラルネットワークとは異なり、RNNは、レイヤ全体に対して1セットの活性化関数及び重みを有する。図29Bに示すように、RNNは、時間TからT+1へ進む、同じ活性化関数を有する一連のノード2920と見なされ得る。したがって、RNNは、前の時間Tの結果を現在の時間T+1に供給することによって、過去の情報を保持する。
【0068】
いくつかの実施形態では、畳み込みRNNが使用され得る。使用され得る別のタイプのRNNは、長短期記憶(LSTM)ニューラルネットワークであり、これはメモリブロックをRNNノードに、入力ゲート活性化関数、出力ゲート活性化関数、及び忘却ゲート活性化関数と共に追加し、その結果、ネットワークが幾らかの情報をより長期間保持できるようになるゲートメモリがもたらされ、これは、引用により本明細書に組み込まれているHochreiter & Schmidhuber “Long Short-term memory” Neural Computation 9(8):1735-1780 (1997)で説明されている。
【0069】
図29Cは、本開示の態様による、CRNNなどの畳み込みニューラルネットワークの例示的なレイアウトを示している。この図では、畳み込みニューラルネットワークは、高さ4単位及び幅4単位のサイズを有し、合計面積が16単位になる入力2932に対して生成される。図示した畳み込みニューラルネットワークは、高さ2単位及び幅2単位のサイズでスキップ値1のフィルタ2933と、サイズ9のチャネル2936とを有する。図29Cでは明確さのため、チャネルの第1列とそれらのフィルタウィンドウとの間の接続2934のみを示している。しかしながら、本開示の態様は、そのような実施態様に限定されない。本開示の態様によれば、分類2929を実装する畳み込みニューラルネットワークは、任意数の追加のニューラルネットワークノード層2931を有し得、任意のサイズの追加の畳み込み層、全結合層、プーリング層、最大プーリング層、局所コントラスト正規化層などの層タイプを含み得る。
【0070】
図29Dに見られるように、ニューラルネットワーク(NN)の訓練は、NNの重みの初期化2941から始まる。一般に、初期重みはランダムに分散している必要がある。たとえば、tanh活性化関数を使用するNNは、-1/√nから1/√nの間に分散するランダムな値を有する必要があり、ここで、nはノードへの入力の数である。
【0071】
初期化後、活性化関数及びオプティマイザが定義される。次いで、特徴ベクトルまたは入力データセット2942がNNに提供される。異なる特徴ベクトルのそれぞれは、NNによって既知のラベルを有する入力から生成され得る。同様に、NNには、既知のラベリングまたは分類を有する入力に対応する特徴ベクトルが提供され得る。次いで、NNは、特徴または入力に対してラベルまたは分類を予測する2943。予測されたラベルまたはクラスは、既知のラベルまたはクラス(別名、グラウンドトゥルース)と比較され、損失関数は、全ての訓練サンプル2944にわたって、予測とグラウンドトゥルースとの間の合計誤差を測定する。限定ではなく例として、損失関数は、クロスエントロピー損失関数、二次コスト、三重項対照関数、指数コストなどであり得る。目的に応じて、複数の異なる損失関数が使用され得る。限定ではなく例として、分類器を訓練するために、クロスエントロピー損失関数が使用され得、一方、事前訓練された埋め込みを学習するために、三重項対照関数が採用され得る。次いで、損失関数の結果を使用し、また、適応勾配降下法によるバックプロパゲーションなどの、ニューラルネットワーク用の知られている訓練方法を使用して、NNが最適化及び訓練される2945。各訓練エポックにおいて、オプティマイザは、訓練損失関数(すなわち、合計誤差)を最小化するモデルパラメータ(すなわち、重み)を選択しようとする。データは、訓練サンプル、検証サンプル、及びテストサンプルに分けられる。
【0072】
訓練中、オプティマイザは訓練サンプルに関して損失関数を最小化する。各訓練エポックの後、検証サンプルに対して、検証損失及び精度を計算することによりモードが評価される。大きな変化がない場合、訓練を停止することができ、結果的に得られる訓練されたモデルを使用して、テストデータのラベルを予測し得る。
【0073】
このように、ニューラルネットワークを、既知のラベルまたは分類を有する入力で訓練して、それらの入力を識別及び分類し得る。同様に、NNは、説明した方法を使用して、既知のラベルまたは分類を有する入力から特徴ベクトルを生成するように訓練され得る。
【0074】
敵対的生成NNの訓練
図30に示すように、敵対的生成NN(GAN)レイアウトを訓練するには、2つのNNが必要である。2つのNNは互いに対向して設定され、第1のNN3002は、ソース反応3001及びターゲット反応3005から合成ソース反応3005を生成し、第2のNNは、反応3006をターゲット反応3004またはそれ以外のいずれかとして分類する。第1のNN3002は、第2のNN3006によって行われた分類に基づいて訓練される3008。第2のNN3006は、分類がターゲット反応3004を正しく識別したか否かに基づいて訓練される3009。以下、生成NNまたはGNNと呼ぶ第1のNN3002は、入力反応(z)を取得し、それらを表現G(z;θ)にマッピングする。
【0075】
以下、第2のNN3006を判別NNまたはDNNと呼ぶ。DNNは、ラベルなしのマッピングされた合成ソース反応3006、及びラベルなしの反応(x)セット3004を取得し、反応をターゲット反応セットに属するものとして分類することを試みる。DNNの出力は、反応がターゲット反応セット3004からのものである確率を表す単一のスカラーである。DNNはデータ空間D(x;θ)を有し、ここで、θはNNのパラメータを表す。
【0076】
敵対的生成NNの訓練中に使用されるNNのペアは、多層パーセプトロンであり得、これは上述の畳み込みネットワークに似ているが、各レイヤは全結合である。敵対的生成NNは、多層パーセプトロンに限定されず、CNN、RNN、またはDNNとして編成され得る。さらに、敵対的生成NNは、任意数のプーリング層またはソフトマックス層を有し得る。
【0077】
訓練中、GNN3002の目標は、DNNの結果の逆を最小化することである。換言すれば、GNNは、log(1-D(G(z))を最小化するように訓練される。訓練の初期に問題が発生し得、DNNはマッピングされた入力反応を高い信頼水準で拒否し、その理由は、それらがターゲット反応セットと大きく異なるためである。その結果、式log(1-D(G(z))はすぐに飽和し、学習は遅くなる。これを克服するために、学習の初期にはるかに強い勾配を提供し、ダイナミクスの不動点が同じであるlogD(G(z))を最大化することによって、Gが最初に訓練され得る。さらに、GANは、マッピング結果をさらに改善するために、サイクル一貫性損失関数を含むように変更され得、これは、本明細書に引用により組み込まれる、https://arxiv.org/pdf/1703.10593.pdf (30 Aug 2018)で入手可能な、Zhu et al. “Unpaired Image to Image Translation using Cycle-Consistent Adversarial Networks” ArXiv, ArXiv:1703.10593v5 [cs.CV]で論じられている。
【0078】
NN3006を訓練する際の目的は、訓練データセットに正しいラベルを割り当てる確率を最大化することである。訓練データセットは、マッピングされたソース反応及びターゲット反応の両方を含む。DNNは、訓練データセット内の各反応がターゲット反応セットに属する確率を表すスカラー値を提供する。したがって、訓練中、目標はlogG(x)を最大化することである。
【0079】
第1及び第2のNNは一緒になって、2人のプレーヤーのミニマックスゲームを形成し、第1のNN3002は第2のNN3006を欺くための反応を生成しようとする。ゲームの式は次のとおりである:
minmaxV(D,G)=Epdata(x)[logD(x)]+Epz(z)[log1-logD(G(z))
【0080】
NN及びDNNは、DNNを最適化したのちGNNを最適化して、段階的に訓練される。この処理は、判別器にさらなる改善が見られなくなるまで何度も繰り返される。これが発生するのは、訓練反応がマッピングされた入力反応pである確率が、訓練反応がソース反応pdataである確率と等しい場合である。換言すれば、p=pdataあるいはD(x)=1/2の場合である。一般的なニューラルネットワークについて上記で論じたものと同様に、GNN及びDNNは、ミニバッチ確率的勾配降下法、または互換性のあるニューラルネットワークを訓練するための他の任意の知られている方法を使用して訓練され得る。敵対的生成ニューラルネットワークの訓練及び編成のさらなる詳細については、https://arxiv.org/abs/1406.2661で利用可能なGoodfellow et al. “Generative Adversarial Nets” arXiv:1406.2661を参照されたい。
【0081】
エキスパートシステム
エキスパートシステムは、典型的には、前向き連鎖または後向き連鎖のいずれかを使用する。本開示の態様によれば、エキスパートシステムのいくつかの実施形態は、前向き連鎖を使用し得る。さらに、本開示の実施形態は、プロスペクト理論を使用し、エキスパートシステムの開発及び訓練を支援するために合成データセットを生成し得る。図14に示すように、最初は認知バイアスのセット1400がある。この分野は継続的に拡大しているが、現在47個の一般的なものがある:プライミング、作話、確証バイアス、後知恵バイアス、テキサスの名射手の誤謬、先延ばし、正常性バイアス、内観、利用可能性ヒューリスティック、傍観者効果、ダニング=クルーガー効果、アポフェニア、ブランド忠誠心、権威に訴える論証、無知に訴える論証、藁人形論法、人身攻撃の誤謬、公正世界誤謬、公共財ゲーム、最後通牒ゲーム、主観的承認、カルトの洗脳、集団思考、超正常解発因、感情ヒューリスティック、ダンバー数、魂を売る、自己奉仕バイアス、スポットライト効果、第三者効果、カタルシス、誤情報効果、同調、消去抵抗、社会的手抜き、透明性の錯覚、学習性無力感、身体化された認知、アンカー効果、注意、セルフ・ハンディキャッピング、自己成就予言、瞬間の自己、一貫性バイアス、代表性ヒューリスティック、予断、コントロールの錯覚、及び根本的な帰属の誤り。当業者によって知られているように、既知のバイアスの分野は現在拡大しており、十分なプログラミングによって任意数のバイアスが追加され得るので、上記のリストが限定なく提供されていることに留意されたい。これらのバイアスは、専門家によって確認される1401。次いで、(なおも専門家を使用して)各行動にベースライン値が割り当てられる1402。次いで、これらのベースライン値は、ベースラインバイアスのエキスパートシステム定量化のデータストア1403に記憶される。最終的に、これが完全に正確であるか否かは問題ではなく、その理由は、本システムは時間の経過と共に実際の行動からより多くを学習することになるためであるが、この処理を開始し、行動を見るためのレンズを我々に与えるためには、ベースラインが必要となる。
【0082】
エキスパートシステムの開発は、認知バイアスを決定し、それらを状況環境にマッピングし、各行動にベースライン値を割り当てること1402から始まる。たとえば、限定はしないが、アポフェニア(無関係なものの間につながり及び意味を誤って認識する傾向)に関するいくつかのベースライン数値を取得するために、心理学者は偶然の一致(たとえば、あなたが知っている誰かに遭遇する、または、あなたのクラスの人々があなたと同じ誕生日だと気付く)に注目し、最も一般的な100個の偶然の一致をリストする。次いで、心理学者は、統計的及び実験的データから、推定される驚きの程度に対する各イベントの可能性の重みを決定する。この統計的及び実験的データは、人間の被験者の調査または観察を通じて生成され得る。これらのマッピングはベースラインマッピングであり、いかなる個人の性格にも全く基づいておらず、典型的な予想される反応だけに基づいている。エキスパートシステムの良いところは、それらが自然に重み付けされて、結果が2値の結果に限定されないようになることである。たとえば、限定はしないが、故郷で休暇中に誰かに会うことを考えてみよう。社会的つながり、共通のメディア、共通の社会的行動、気候、及び休暇のスケジュールのために、共通の友達を共有している人に出くわすことはそれほど珍しいことではないかもしれないが、それはいつでも驚くようなことである。たとえば、ラスベガスの大規模なリゾートでは、春休み中に、30回の社会的交流に1回これが起こることを確率は示し得るが、人々は質問されると100回に1回起こるだろうと言う。したがって、この特定のアポフェニアのケースでは、3.33(100/30)の「過剰な尤度値(Over-likelihood Value)」が与えられる。いくつか(おそらく数十)のアポフェニアの実施例が収集され、最も一般的な状況でのアポフェニアベースラインのセットが実施例から生成される。これらは、他の行動バイアスベースラインデータの全てと共に記憶される。次いで、アポフェニアがある人間に当てはまる社会的状況にエキスパートシステムが遭遇した場合、エキスパートシステムはその状況に適切なベースラインを適用する。エキスパートシステムベースラインを定義する同様のアプローチを各行動バイアスに対して使用することができる。
【0083】
ベースライン性格の作成
ベースライン性格への影響を計算するには、まず、ベースライン性格の状態を表記する方法が必要である。そのために、一連のマトリクスが使用され、各マトリクスは、社会的または心理学的ドメイン内のいくつかの次元であり、各レイヤは、その下のレイヤに基づいて作用するマスクまたは関数である。図15は、性格ベースライン1500を構成する構成要素のブロック図を示している。DNA、RNA、性別、身体的属性、マイヤーズ・ブリッグス、5因子、性格特性で構成されるベースレイヤ1501、生い立ち、国、州、都市、地区、宗教、文化、家族構成などで構成される文化レイヤ1502、初期学習環境、育児、学習の焦点、教育、仕事経験などで構成される訓練レイヤ1503、国、町、物理的環境などで構成される一般環境レイヤ1504と、社会環境、天気、時刻、及びその他の関連因子で構成される特定環境レイヤ1505と、が存在する。
【0084】
各マトリクス内のデータの信頼性に関して、記述が完全に正確である必要はない。ある人がナルシシズムの尺度で13%であると記述されている場合、その数字は要点ではないので、それが正確な数字であるか否かは問題ではない。目的は性格の結果を得ることであり、そのため本システムは実際の行動結果に基づいて性格因子を定量化するように時間の経過と共に学習し、マトリクス、マスク、及び関数を構成する様々なパラメータの重み付けを時間の経過と共に調整する。訓練セットは、最初は、エキスパートシステムによって記述された行動分析である。エキスパートシステムは線形であり、前向き連鎖内の各リンクはその祖先から派生している。しかしながら、心理学体系には多くの因子があり、それらは必ずしも確定的ではない。代わりに、何百もの他の付随的な因子が、予測される各行動に関連付けられ得る。たとえば、限定はしないが、ナルシシズムの構成要素は以下であり得る。1)過剰なうぬぼれの感覚がある。2)権利意識があり、絶え間ない過度の賞賛を必要とする。3)正当な理由となる成果がなくても、優れていると認められることを期待する。4)成果及び才能を誇張する。5)成功、力、輝き、美しさ、または理想の相手についての空想で頭がいっぱいである。6)自分は優れており、同程度に特別な人々としか付き合うことができないと信じている。7)会話を独占し、劣っていると感じる人々をけなしたり、見下したりする。8)特別な引き立てと、自分の期待への絶対的な遵守とを期待する。9)欲しいものを得るために他人を利用する。10)他人の欲求及び感情を認識できない、または気が進まない。11)他人を妬み、他人が自分をうらやんでいると信じている。12)横柄または傲慢に振る舞って、思い上がった、自慢げな、見栄を張った印象を与える。13)何でも最上のものを持つことにこだわる。ある人がこれら全ての構成要素と強い関連性を有する場合、その人は確実にかなり自己陶酔的である。しかしながら、構成要素の半分が中程度である場合、まだおそらく自己陶酔的であるが、程度は低くなる。既知の心理学的プロファイルを有する人々に対して、この場合は13%自己陶酔的な人に対して、会話分析が実行され得る。最初に心理学者によって定義された手がかりのセットを使用して、これらの会話から典型的な反応及び手がかりが決定される。ナルシシズムの程度に関する決定に重きを置く、構築された原則のセットが、このようにして構築される。他の全ての心理学的構成要素についても同様のリストが作成される。13%のナルシシストに近い全ての既知の性格を観察して、その性格を構成する他の因子を特定し得、他の性格特性が見つかった場合、それらは逆にナルシシズムの尺度にマッピングされる。
【0085】
次に、因子のグループが、ニューラルネットワークの入力ベクトルとして使用され得る。行動のセットに対するラベルを予測する機械アルゴリズムを使用して訓練されたニューラルネットワークであって、そのラベルが性格測定の尺度に基づくニューラルネットワークを使用して、性格測定の尺度に基づいて因子のグループにラベル付けし得る。次いで、これらの因子を作成した言語(たとえば、元の訓練セット内のカテゴリ(cat))を使用して、どのような言語が心理学的定義に関するどの傾向を生成するかを決定する。それによって、様々な心理学的プロファイルに対応する言語を生成することができる。
【0086】
ベースレイヤ
ベースレイヤの最初の構成要素はDNAである。人間の包括的な幻影(simulacrum)は、人間の性格に影響する全てではないにしても多くの因子を含み、これは遺伝子構成を含む。本開示の態様によれば、ベースレイヤのDNAは、性格に影響する重要な既知の遺伝子配列として、または性格に影響する遺伝的に前もって定められた条件として表され得る。ベースレイヤのDNAに関する情報は、たとえば、限定はしないが、性格、たとえば、身体的性別及び性同一性、体型、協調、視力及び聴力、ならびに他の身体的プリミティブ、たとえば、心臓病または糖尿病の傾向に影響を与える因子であり得る。失読症及び左利きのような精神物理学的プリミティブもある。DNA因子は、ベースレイヤマトリクスの最初の次元であり得る。これらの遺伝子は、RNAによるそれらの転写及び調節に基づいて発現する場合と発現しない場合があるので、RNAはベースレイヤマトリクスの次の次元を形成する。RNAは時間の経過と共に異なって発現するので、主に人生の初期段階で動的な効果がある。さらに、初期段階では社会学的影響があり、授乳または睡眠訓練のような発達のごく初期段階のものもある。DNA及びRNAに関連するマトリクスの次元は、遺伝学者によって定義され得、DNAが性格にどのような影響を与えるかについての情報が増えるにつれて変化し得る。ごく初期の発達に関するマトリクスの次元は、幼児期専門の心理学者によって定義され得る。マトリクスの各エントリに重み付けする必要があることに留意されたい。この場合もやはり、この分野の専門家の意見に基づいた基本的な重み付けから始めることができるが、最終的な重み付け及びその性格への影響は、観察及び経験に基づいて時間の経過と共に更新される。ベースレイヤマトリクスの次の次元は、図16に示すような性格の連続体である。上記で論じたように、本開示の態様によるいくつかの実施態様では、外向性->内向性1601、感覚->直観1602、思考->感情1603、判断->知覚1604の軸に沿った重み付け1600のマトリクスにおけるマイヤーズ・ブリッグス・タイプ指標(MBTI)のパーセンテージは、ベースレイヤマトリクスの次元に1セットの数値を提供する。別の次元は、ビッグファイブ性格特性、すなわち、経験への開放性、誠実性、外向性、協調性、神経症傾向によるものであり得る。他の性格の連続体によって表されるもう1つの次元があり、たとえば、マキャヴェリズム、達成欲求、認知欲求、権威主義、ナルシシズム、自尊心、楽観主義、及び無感情症などである。これら全ての因子の組み合わせを使用して、ベースレイヤマトリクスを作成し得る。これは、最も基本的なレベルで性格を表現したものである。次のレイヤは文化レイヤである。
【0087】
文化レイヤ
文化レイヤは、ISがどのように育ったと考えられるかを捉えている。このレイヤは図17に示すようなISに関する背景情報、たとえば、限定はしないが、以下を含む。ISはどの国、州、都市、地区で育ったか1701?ISは都会または地方のどちらで育ったか1702?ISはどの宗教に入っているか1703?ISはどのような政治情勢で育ったか1706?ISはどのような文化で育ったか1704、また、どのような家族構成がその生い立ちの一部だったか1705。
【0088】
文化によって多くの多様性がある。「アジアの文化はより集団主義的であり、これらの文化の人々は外向的ではない傾向がある。中南米の文化の人々は、経験への開放性でより高いスコアを獲得する傾向があるが、ヨーロッパ人は神経症傾向でより高いスコアを獲得する。」これらの差異は全て文化レイヤによって捉えられ、ISの異なる性格に寄与する。
【0089】
文化が性格に与える影響の別の実施例として、集団主義的な文化(典型的には、アジア、アフリカ、及び南アメリカ)に住む人々は、個人の欲求よりも社会的調和、敬意、及びグループの欲求を尊重するが、個人主義的な文化(典型的には、北アメリカ、オーストラリア、ヨーロッパ)の人々は、より個人主義的な性格特性を示す。
【0090】
また、米国内には地域による性格の違いがあるようである。研究者らは米国の150万人を超える個人からの反応を分析し、3つの異なる地域的な性格クラスタを発見した。「友好的で慣習的である...、よりリラックスし、感情的に安定し、落ち着いており、そして創造的...、及び、ストレスを抱え、イライラしており、そして落ち込んでいる。」
【0091】
これらの文化的データは、マトリクスのレイヤケーキに適合する。本開示のいくつかの実施形態によれば、全ての都市及び村ならびに全ての家族が表される必要はない。性格を作成するのに十分な数の実施例だけが必要である。たとえば、限定はしないが、カスタマーケアISインスタンスを作成する場合、少数の代表的な背景だけで十分であり、たとえば、人口が200,000~1,000,000人の100個の米国の都市は、これはそのサイズの全ての米国の都市の代表的なサンプルであるが、必要ない。文化的生い立ちのレイヤケーキを見ると、たとえば、限定はしないが、大陸→国→郡→町→地区と、粒度の低いものから粒度の高いものへ進むロケールから、説明が始まり得る。心理学及び社会学の学生は、行動傾向をこれらの各レイヤにマッピングすることができる。したがって、たとえば、収集されたMBTIデータに基づくと、ニカラグア人は平均より15%外向的であり、チリ人は世界平均より11%内向的である。次のレイヤは都会<->地方である。都会-郊外-地方及びその中間の空間には、様々な態度の違いがあることが知られている。これらは、この場合もやはりエキスパートシステムとしてコード化され、手始めに実際の会話(テキスト、電話、動画など、下記参照)の分析と組み合わせられ、時間の経過と共に、ユーザからのフィードバックと、同じような心の他人とのラポールとに基づいて微調整される。
【0092】
同様のアプローチを使用して、他の様々な文化的次元、たとえば、宗教、文化的生い立ち、家族構成、及び政治環境が追加され得る。これらもやはり、社会学者及び心理学者によってシード(seed)されるが、映画及びテレビ番組、チャットセッション、テキストメッセージ、音声メッセージ、ならびに電子メールの分析によって情報が得られる。
【0093】
訓練レイヤ
この文脈では、訓練を、ごく早い年齢から始まるISの教育または学習と呼ぶ。このレイヤでは、たとえば、限定はしないが、ISに関する以下の質問に回答する。授乳、アイコンタクト、読み聞かせから育児までの初期学習環境の影響はどのようなものか。年齢と共に、学習環境はどのようなものであるか?たとえば、それは共学か?大規模なクラスまたは小規模なクラスはあるか?それは崩壊しているか、または集中しているか?高等教育及び仕事経験についてはどうか?ISインスタンスはどのように訓練されたか?大学に行ったか?専攻は何だったか?男子学生社交クラブ/女子学生クラブに参加したか?成績は何だったか?大学院の学位または証明書についてはどうか?以前の職歴についてはどうか?これらの因子は全て、ISインスタンスの性格に影響を与える。実質的に、仮想的な履歴書がISインスタンスに対して作成される。訓練レイヤは、ISが思い出すために、実際のイベントを企画しなくてよい(たとえば、「1995年のあの素晴らしかったAEPiのハロウィーンビアバッシュを思い出して。Jefferyはとても酔っていたね」)。訓練レイヤは、ISの充実したバイブルを作成して、独特の人間的な性格を確保するだけで十分である。いくつかの実施態様では、キャラクターバイブルは、作成者がISの独自の歴史を記述できるツールを使用して、ユーザまたはソフトウェアプログラマによって作成され得る。他の実施形態では、ISは、状況に基づいて、自身のバイブルを用いて自身のインスタンスを作成する。さらに他の実施形態では、顕著な特徴が略述され得、かつ、ISが選択可能な選択肢を提供するハイブリッドモデルが構築され得、たとえば、限定はしないが、ISの基礎となる元型は不変のまま、ISインスタンスのバイブルの分岐が選択され得る。
【0094】
一般環境レイヤ
一般環境レイヤは、ISの現在の状態のコンテキストを記述する。換言すれば、ISがユーザと関わることにつながったイベントについて記述する。このレイヤは、たとえば、限定はしないが、このISはどこで働いているか?という質問に回答し得る。人生の初期学習段階に影響を与えた同じ因子の一部は、仕事または遊びの環境に影響を与える。ISインスタンスは、コールセンターにいるか、バーにいるか、キューブにいるか、セールスの電話をかけているか、または法律事務所で訴訟担当者として働いているか?いくつかの実施形態では、一般環境レイヤは、以下の基本的なキャリア分類から開始し得る。農業、食品及び天然資源、建築及び建設、芸術、オーディオ/ビデオ技術及び通信、企業経営及び管理、教育及び訓練、ファイナンス、政府及び公的行政機関、健康科学、ホスピタリティ及び観光、福祉、情報技術、法律、公安、刑務官及びセキュリティ、製造、マーケティング、セールス及びサービス、科学、技術、工学及び数学、ならびに運輸、流通及びロジスティクス。次いで、生い立ちのコンテキストで使用したのと同じ文化的変数及びコンテキスト変数:大陸→国→郡→町→地区、都会→郊外→地方をその上にオーバーレイする。次いで、追加の分岐が追加され得、たとえば、大企業←→小企業、大規模ビル←→小規模ビル、労働力はどの程度多様であるか(複数の軸で)、会社/幹部の政治/宗教は何か、などである。分類のドメイン及びサブドメインは、社会科学者によって定義され得るが、カテゴリ、それらの重み付け、及び重要性は全て、ユーザとの関わりの結果、及びそれらの入力がそれらの出力の値にどの程度関連しているかに依存する。
【0095】
特定環境レイヤ
次のレイヤは特定環境レイヤである。ここでは、ISインスタンスの行動を作成するための最新の要素がキャプチャされる。このレイヤは、たとえば、限定はしないが、以下の質問に回答し得る。天気はどのようか?交通はどうだったか?私の朝はどうだったか?たとえば、ISIの構築された家族に基づいて、ISIは一般的に幸せな結婚を送っている場合があり、学校に送り出さなければならない2人の子供がいて、平均的に分散したサプライズイベントがあり(子供の具合が悪くなった、宿題を忘れたなど)、ISIのムード、ひいてはその行動は、これらの準備的な因子の影響を受ける。
【0096】
行動分析
訓練の次のタスクは、ISが人間の行動を学習することである。今日の市場には、自動音声認識(ASR)技術及び自然言語処理(NLP)を使用して人間の行動を分析する多くの対話型音声応答(IVR)システムがある。ここでのアプローチは、それを会話のベースラインとして使用することである。本開示の態様によれば、ISは、目下のコンテキスト(この人は買い物をしている、またはビーチにいるなど)だけでなく、個人的及び社会的なコンテキストも持ち込んで、人間の社会的行動について知るように構成される。
【0097】
図18は、本開示の態様による行動収集1800及び重み付けの概要を示している。最初に、エキスパートシステムは、エキスパートシステム1801から収集された認知バイアスでプライミングされ得、観察可能な行動データ1802のコーパスが追加され得る。本開示の実施形態は、チャットボットデータのコーパス1803を使用して、より多くの普通の/社会的な会話環境を分析し得る。これらには、限定はしないが、電子メール及びテキスト1804、ソーシャルメディア1805、ボイスメール1806、映画、テレビ番組及びストリーミングビデオソース1807が含まれ得る。ビデオメディアは社会的に非常に豊富であり、膨大な量のアクセスされ得るデータがある。多くの映画及びテレビ番組が典型的でも「普通(normal)」でもない恐れがあり、そこで、人間AI分類器1808(たとえば、限定はしないが、メカニカルタークまたは他の様々な人間AI分類器のネットワーク)を使って、普通さの尺度で会話を評価することにする。その後、ISは、人間とチャットしているときに、人間の反応から学習し得る。さらに、(GANを使用して)他のISインスタンスとチャットし得、同じ人間を使って会話を分析することができる。特定のコミュニケーションデータのコーパスに応じて、分析を行うためにはいくつかの異なるアプローチが必要になる。次いで、行動分析を行動バイアスにマッピングする1809。
【0098】
本開示の態様によれば、映画及びテレビは、ISを訓練するために使用される1つの情報源であり得る。これらは必ずしも典型的な長期にわたるアーカイブを表すものではない。多くのジャンルはいつも幸せな結末を迎え、他のジャンルは皮肉っぽく、シチュエーションコメディはしばしば人々が嘘をつくことに依存し、そしてその結果、喜劇が起こる。しかしながら、これらの同じタイトルの多くにおいて、分単位の行動は非常に人間的である。パンチラインまたは衝撃的なイベントはしばしば驚くべきものであり、典型的ではないが、中間のアクションは全て普通である。いくつかの実施形態では、メカニカルターク/分類器には、普通さを調整すべき数万のビデオ資産が供給される。このアプローチは映画及びテレビに有効であるが、他にもビデオ資産があり、中でも注目すべきは、ストリーミングソーシャルメディアビデオ(たとえば、YouTube(登録商標)、Facebook(登録商標)ビデオなど)である。いくつかの実施形態では、ニューラルネットワーク1808を使用して、社会分析を実行し、「普通でない」行動をフィルタリングする。このコーパスの価値は、ほとんど定義上、他の社会分析の価値とは異なるので、それら(及び実際には各分析グループ)は分けておく必要がある(独自のコーパスとしてラベル付けされる)。
【0099】
次のデータのコーパスはチャットボットデータである。これは、人々が質問して特定の回答を求める場合に特に関係がある。様々なチャットボットコーパスからの反応は、正確性に焦点を合わせている。本開示の態様によれば、ISは、必ずしも正解を提供するのではなく、むしろ最も人間的な回答を提供するように訓練され得る。チャットボットのデータから得られる価値のある結果の1つは、ボットがそれを取り違えたときである。ボットに質問しているのは本物の人間であるので、「正しい」答えに常に満足するとは限らない(ボットが質問を誤解または誤解釈したときは、差し当たり無視する)。したがって、いくつかの実施形態では、解決しようとしている問題を解決するようにソフトウェアが設計されていないために、顧客が困難を抱えている場合、応答は人間にとって不満足であることが多く、「申し訳ありませんが、私共のソフトウェアはそれをしません」とは言わない。より繊細なボットは、「あなたが解決しようとしている問題を私が正しく理解しているかを確認させてください」と言い得る。次いで、ボットが質問を「理解」したことを適切に確認した後、問題を解決するための適切なソフトウェアに誘導し得る(家族を競合他社に送って、メイシーズブランドの価値を大幅に高めた、三十四丁目の奇蹟でのメイシーズのサンタクロースに少し似ている)。場合によっては、ボットは「その人のボット」でさえあり、すなわち、顧客と一緒にいて、他のソフトウェアを適切にインストールするのを支援する(実際には、同じボットペルソナがそのとき競合他社で働くことになり、顧客のデータの関連部分が許可を得て共有される)。
【0100】
行動分析のためのコーパスのリスト上の次のものは、ソーシャルメディア分析であり得る。このグループには大量のコミュニケーションデータがあり、通常はキュレーションされる。人々はしばしば自分の一番良い面を知人に見せようとし、より本物の側面を親しい友人に見せようとする。匿名または疑似匿名の投稿は特に非定型的であり得、おそらく全く含まれるべきではない。プライベートな投稿は、通常はそれらに伴う自然な率直さのために、特に価値がある(「今日も最高の日だ」または「相変わらず人生は最悪だ」などの余計な投稿は除外される)。繰り返しになるが、これはいくつかの別々のコーパスにバケット化され、人間性の重み付けは、行動に対する実際の反応の分析によって定義される。
【0101】
コーパスの最後のバケットは、テキスト、ボイスメール、及び電子メールである。テキストはトーンに関して最も自然である。いくつかの実施形態では、絵文字及び頭字語は、その絵文字または頭字語によって表現される感情または文脈の実際の言語記述に拡張される。様々なチャットのメンバー間の関係を知ることにより、各グループのコンテキストまたはメタデータが提供される。ある人は母親に対して友人とは異なる話し方をし、友人に対して4人の友人のグループとは異なる話し方をする。このコンテキストの適用は、AIの訓練にとって非常に価値がある。ボイスメールは、ある意味では、テキストデータのサブセットである。それは通常、1人または1家族を対象としている。ボイスメールのユーザは通常、テキストメッセージのユーザとは異なる層であり、異なるまたは古い性格のセットを表し得る。今日の若者達はボイスメールをほとんど使用しない。電子メールは、状況を説明し、複数のコーパスに分解するためのメタデータを必要とし得る。いくつかの実施形態では、スレッドは異なるコーパスに解析され得る(たとえば、限定はしないが、ビジネス電子メール内の個人的なコミュニケーション)。
【0102】
次のタスクは、上記の行動観察を行動傾向(行動バイアス)のリストに関連付けることである1809。この解析は、どの行動がどの傾向に関連付けられるかという質問に回答する。ここでは、専門家は2段階で使用される。最初に、専門家は行動をグループに分類する。たとえば、限定はしないが、人々は短気であるか、共感的であるか、不安であるか、またはリラックスしている。専門家は、感情グループの分類を作成し、次いで人間分類器を作成して、全ての行動にラベル付けする。次いで、これらの行動及びそれらのラベルを使用して、機械学習システム(すなわち、ニューラルネットワーク)を訓練する。
【0103】
個人への行動バイアスの帰属
ここで、全ての人間は、各行動バイアスの程度が異なる。ある人は非常に「分析的」で「現実的」であり得、別の人はより感情的で大げさな傾向があり得る。大げさな傾向がある場合でも、それは大抵、一部のドメインに限られている。高校のバスケットボールチームで自分の役割を誇張する同じ人物は、ギリシャへの旅行の詳細を思い出すときに非常に正確であり得る。状況ベースラインは基本的に、スタックを上って(DNA→初期発達+遺伝子調節→基本性格要素→発達フィルタ→関係性フィルタ)形成されたISの性格であることを思い出されたい。
【0104】
図19に示すように、状況ベースライン1900を各行動バイアス1901にマッピングして、各ISインスタンスの状況バイアスのセットを作成する1902。限定ではなく例として、1つのISインスタンスから始め、次いでより一般的なインスタンスへと推定する。たとえば、ISインスタンスはパラメータで、中西部の小さな町で育った35歳の異性愛者の女性となるように生成され得る。彼女はプロテスタントとして育ったが、定期的に教会に行くことはなく、しかしながら、彼女は強い公平性の価値観を有する。彼女には2人の兄弟がいて、共に存命であり、兄及び妹である。彼女の兄は同性愛者であり、それは彼女に関係への開放性を与える(あまり批判的ではない)。しかしながら、彼女は中絶及び生存権の問題に関して非常に批判的であり、子供が欲しい人々はたくさんいるので、命を無駄にすべきではないと信じている。彼女はEFTJ(64、81、59、50、マイヤーズ・ブリッグス)であり、彼女の5因子は、開放性(66%)、誠実性(34%)、外向性(72%)、協調性(48%)、神経症傾向(32%)であり、彼女の他の性格特性は、神経症傾向(53%)、マキャヴェリズム(14%)、達成欲求(21%)、認知欲求(73%)、権威主義(26%)、ナルシシズム(14%)、自尊心(58%)、楽観主義(87%)、及び無感情症(13%)である。彼女はクロスワードパズル及び医療ドラマを楽しむ。彼女のキャラクターバイブルにはもっと多くの構成要素があり得るが、これによってISが仮想的な人物として何者であるかが大体わかる。ここで、図20に示すように、全ての心理学的パラメータを多数の行動バイアスにマッピングし2000、それぞれに重み付けを与えることができる2001。これらはベースラインバイアスであり、どの特定の状況にもまだマッピングされていない。しかしながら、それらはそれぞれベースライン値、すなわち、「あなたの行動バイアスはどの程度顕著か?」を有する。何人かの心理学者を使用して、マイヤーズ・ブリッグス及び5因子の傾向を上記で論じた行動バイアスにマッピングする。これは任意の尺度で実行することができるが、限定ではなく例として、数値が大きいほどバイアスが発生しやすく、数値が小さいほどバイアスが発生しにくいパーセンテージが使用され得る。
【0105】
ISが他のユーザ及びISIと交流するにつれて、ISはより成熟し、バイアスの数、名前、及び重み付けが変化する。バイアスの初期セットから始めても、ISIは、どのように新しい状況に入るかに関する基本性格因子のセットを有する。これで、バイアスを有するISを特定の状況に適用することを開始できる。行動バイアスは性格の1つの構成要素にすぎないので、特定の状況に対処する準備をするときは、完全な性格バイブルが必要になることを銘記されたい。たとえば、上記の異性愛者の女性が中絶及び養子縁組に対して有している敏感さは、特定の状況での彼女の行動に強く影響し、彼女は計画出産の妊娠初期の支援グループにふさわしい性格ではない可能性があるが、彼女は教会を中心とした妊娠初期の支援グループに適したプロファイルであり得る。
【0106】
状況環境への行動バイアスの帰属
図21は、ISインスタンスをそれが置かれている状況にマッピングする、スタック内の次のレイヤを示している。状況ベースライン2100及び行動バイアス2101をマッピングして、各ISインスタンス2102の状況バイアスを作成し、次に、バイアスを状況環境に帰属させる2103。
【0107】
このレイヤは、たとえば、限定はしないが、以下の質問に回答する:ISはメイクアップカウンターでメイクアップを販売しているか、カスタマーサポートを提供しているか、医療従事者の役割を担っているか、リゾートのカウンセラーであるか?ここでは、何らかの状況行動データが有用である。これは、心理学的データに基づく軸を有するエキスパートシステムから始まり得る。図22からわかるように、行動パラメータが存在し、これらは最高レベルでテリトリー2200に基づいている(シベリアはカンヌとは大きく異なる)。また、誰もが、自分のいる場所の時刻2201によって、ある程度影響を受ける。他のパラメータの多くは、2つの異なる側面の間の連続体である。たとえば、限定はしないが、都会2202及び地方2203の社会の間には、深い社会的な違いがある。このために、人口密度を使用することができる。また、優雅(Entitled)2204及び粗野2205の間の連続体がある。人々はビバリーヒルズではある振る舞いをし、コンプトンでは別の振る舞いをする。環境はどのくらい混雑しているか?ISは忙しいモールで働いているか、または自宅で一人で働いているか(これは性格行動を確立するためであり、実際にはいかなる物理的なインスタンス化も行う必要はなく、いくつかの実施形態では、ISはクラウドに「住む」ことになる)?他の因子には、大人数2206または単独2207で仕事するまたは遊ぶこと、どんな種類の仕事2208をしていてどんな種類の遊び2209をするか、仕事中の環境はどのようなもので2210、自由時間にどこで遊ぶか2211、が含まれるが、これらに限定されない。ここで、様々な環境を見ていくと、タイプに基づいて少し掘り下げることができる。それは保険事務所であるか?グラフィックデザインハウス?ソフトウェアプログラマーキューブ?図書館か、ビーチか、クルーズ船か?人間によって作成されたエキスパートシステムを使用して、完全な分類を作成することにする。AIは時間の経過と共に反復し、経験に基づいて独自の分類を開発するので、本システムが完全に正確であるか否かは問題ではない。
【0108】
エキスパートシステムの基本的なパラメータが心理学及び社会学のデータから設定されると、分類器は予想される行動を社会環境にマッピングし得る。この場合、認識された社会的慣習を大量に収集することが、社会的規範の正確な表現を決定するよりも重要である。これは、大規模な人口に調査を行うか、または別の方法で聞き取り調査を行うことによって、行われ得る。十分な数の人々(たとえば、約1,000人)が特定の行動及び環境について調査を受けた後、本システムはかなり正確な社会的視点を有することになる。
【0109】
限定ではなく例として、ISが銀行の出納係であると仮定する。現在、我々はまだ個人と特定の交流を行っていないが、我々は環境について多くのことを知っている。たとえば、出納係は、人々が友好的で社交的である傾向がある地方の銀行にいるとする。その銀行は通常混雑していないので、人々は大抵待つ必要はなく、取引は大抵、天気または最近の出来事もしくはフェアについての会話から始まる。出納係が適度に長い(仮想的な)通勤をしていて、その日の交通状況を知っていると仮定しよう。これらのことは全て、この環境でのISインスタンスのベースライン行動に影響を与える。
【0110】
データの順序付け
このスタックでの次の段階は、ISが人的交流に持ち込む完全な心理学的プロファイルを作成することである。これを行うために、図23に示すようにデータを保持及び操作するための配列のマトリクスが作成され得る。様々なデータセットが配列内の列及び行に割り当てられる。これは多くの方法で行うことができるが、限定ではなく例として、いくつかの配置を選択しよう。配列1は、状況ベースラインのベースレイヤ2300である。その配列内に、因子2301が配置され、行1はDNAであり、行2はRNAであり、行3はマイクロバイオームであり、行4は性別連続体である、などとなっており、身体的属性を含む行を経由し、それに続いて、マイヤーズ・ブリッグス軸、5因子の性格特性軸、及びその他の性格特性がある。
【0111】
ここで、続いてスタックを上って、次の配列を追加する。この配列は文化レイヤ2302である。物理的な位置から始まって、行は、亜大陸、国、州、都市、及び地区となる。各因子は、パーセンテージ2303及び重み付け2304を有する。したがって、宗教の実施例では、ISIはかなり信心深い場合があり、たとえば73%であるが、その人生にほとんど影響を与えない可能性があるので、重み付けはわずか15%であり得る。次は文化レイヤの家族の構成要素であり、これらは、親密さ、規模、性別構成、親構成などの連続体を有する。ここで、行4は、どんな状況であなたはコミュニティになじんでいるか?のような行を有する文化レイヤである。あなたのコミュニティの人々はどのくらい社交的であるか?他のコミュニティに訪問するか?よく外食するか?コミュニティは結束が固いか緩いか?他の文化的因子は宗教であり得、列は、正統派、文化協会のような宗教的影響の軸を表す。
【0112】
文化レイヤには、家族規模、兄弟の数、基本的な文化的背景(宗教、文化的グループなど)のような最も初期の発達因子が含まれている。これはもちろん拡張可能であり、この配列内の行及び列は、変更、拡大、縮小などすることができる。
【0113】
図23にあるのは、様々な配列のフィールドの一部の大まかな見積もりであり、Excelスナップショットでは配列の多次元性が伝わらないことを理解しているが、それでもある程度の幅の感覚は得られる。図24は、データを視覚化するための他のアプローチを示しており、それが複数の配列で構成されているという事実を明確にするのに役立ち得る。
【0114】
同じ考え方を使用して、訓練レイヤ2305、一般環境レイヤ2306、及び特定環境レイヤ2307が作成される。これらのレイヤは全て組み合わさって、人間との交流に至るまでのISインスタンスを作成する。
【0115】
Excelのスナップショットでは幅の感覚は得られるが、配列の多次元性は伝わらない。図24は、より模範的な方法でデータを捉えてこれを視覚化するための別のアプローチを示しており、配列の多次元性を明確にするのに役立ち得る。2400はベースレイヤを構成する各要素を表す列を示しており、この特定のISの性格2値(内向性vs外向性など)の連続体においてこの性格特性がどれほど強いかを表す大きさ2401と、社会的状況で決定を下す場合にこの特性がどの程度重み付けされるべきか、または特定の状況との関連性を評価する場合にその性格の側面がどの程度考慮されるべきかを示す重み付け2402と、の両方を示している。配列の各次元は異なるレイヤに関連付けられており、これには、ベースレイヤ2403、文化レイヤ2404、訓練レイヤ2405、一般環境レイヤ2406、及び特定環境レイヤ2407が含まれる。
【0116】
行動へのデータのマッピング
上記で論じたように、データはチャットセッション、テキストメッセージ、ビデオなどからキャプチャされるが、それでも、表現される性格特性にマッピングされる必要がある。
【0117】
図25は、本開示の態様によるデータセットの改良を示している。収集された行動データ2500は、まず、人間AI分類器によって、映画&テレビ、チャットボットコーパス、ソーシャルメディア、電子メール、及びボイスメール2501に関連する行動及びコメンタリーを監視し、その行動をカテゴリ化するときに生成される。このコーパスから、人間分類器からの初期行動マッピングを作成する2502。
【0118】
収集された行動の初期セットが分類器によって分析された後、これらのタグ付けされた行動(会話、身体的行動など)のビットは、上述の分類に従ってラベル付けされる。ベースレイヤ、文化レイヤ、訓練レイヤ、一般環境レイヤ、及び特定環境レイヤの全ての異なる要素がラベル付けされる。様々な要素の分析を得ると、1つまたは複数のディープニューラルネットワーク(DNN)2503を使用してこれらの分類を学習し得る。
【0119】
次いで、DNNは、第2のデータのセット2504を分析し得る。これらのマッピングの正確性は、人間AI分類器(場合によっては、より熟練していることが分かっている上記のサブセット)によってレビューされ得る。DNNが最良の分類器2506と同等になるまで、このレビュー及び反復2505を行い続ける。並行して、分類器の分類能力に関してスコアが生成され得る。これは必ずしも心理学的な正確性ではなく、一般的な行動の正確性である。すなわち、人間分類器が最も一般的な意見に最も頻繁に同意する場合、分類器としてより高いスコアを獲得する。これの数ラウンドが終了し、人間がどのように行動を分類するかについての良い考えが得られると、予測の精度は、社会科学及び心理学の専門家が保有する、情報に基づく心理学的信念に照らしてチェックされ得る。
【0120】
社会的分類の作成
人間分類器によってラベル付けされた会話の分析から、社会的状況の分類が作成され得る。繰り返しになるが、心理学者及び社会学者は、ベースラインの予想のセットと、それらを行動2600、2601、2602、2603、及びサブ行動2604、2605など、さらに下の分類2606、2607に構造化したグループと、を作成することができる。やはり繰り返しになるが、これらのグループは完全に決定的なものではなく、出発点にすぎない。任意の選択の成功は、社会的状況の分類により、設定した目標がどれだけ近く達成されるかによって測定される。これは、目標がどのように設定、管理、更新、及び統治されるかという全ての最大の問題に到達し始める。この会話の分類は、自然言語処理(NLP)、感情分析、及び感情検出の発展に基づいて拡張され、継続的に適応される。感情の検出はテキスト及び音声に限定されず、視覚的な手がかりを使用して大きな進歩を遂げていることに留意されたい。
【0121】
完全なベースライン性格の作成
次のステップは、この全てのデータを取得し、それを使用して完全なベースライン性格を定義することである。図27は、図24の上に構築されている。これは、人間が初めてISIと交流する時点でのISIの性格である。この時点までに、非常に幅広く深い因子のマトリクス2700を作成している。まず、人間が性格を組み立てるために使用できるダッシュボードを作成する。3つの初期レイヤ(ベース2703、文化2704、及び訓練2705)と、2つの環境(一般2706及び特定2707)とに関する全てのデータを、一連の列及び行として、値を変更するためのフェーダーまたはその他の入力タイプと共に配置することができ、基本的な機能性について人間がテストすることができる。この時点で、ISインスタンスは非常に論理的になる。それらはまだ思いやり及びユーモアならびに他のあらゆる種類の人間の感情を持って反応するが、非常に(おそらく過度に)論理的になる。完全なベースライン性格を作成した後、認知バイアスまたは行動マスク2708ならびに発達フィルタ2709及び関係性フィルタ2710を追加する。
【0122】
関数(バイアス)を動作させる状況のコーパスをどのように開発するか?バイアスを帰属させるための非常に限られた状況のサブセットが最初に使用され得、時間の経過と共に、本システムはバイアスを(人間と同じように)さらに多くの状況に帰属させるように訓練し得る。
【0123】
初期の交流の範囲を制限すると、発達の基盤が作成される。電話でのカスタマーサポートは、発達のための最初の分野の1つであり得る。これはいくつかの理由によるものであり、たとえば、顧客とのコミュニケーションの経験を含む過去データのコーパスが大きいことである。最初の目標は、1人の顧客の問題を解決する1つのISIに関するものであり得る。ISIは、サポート会話データのコーパスでプライミングされ得るので、既に現在のチャットボットのレベルにあり得る。この上に、心理学的プリミティブの最初のセットがオーバーレイされ得るので、交流に人間性を加えることができる。基本的な人的交流(こんにちは、お元気ですか、何か手伝いましょうか、など)は、使用される初期の心理学的プリミティブであり得る。並行して、質問及び会話に関連する心理学的意味が測定され得る。最初のフェーズ(音声のみでのカスタマーサポート)では、コミュニケーションは音のみを介しており、視覚またはその他の知覚なしでは、感情/意図を読み取る能力は制限されるが、音声分析を追加するだけで、ISの理解及び応答能力が大幅に増加する。次のステップはビデオチャットであろう。最終的には、物理的な存在(ペット、ロボットなど)と同様の機能性が存在するように、他の感覚が追加され得る。
【0124】
完全な状況認識プロファイルに戻ると、5つのレイヤ(ベース2703、文化2704、及び訓練2705)と、2つのフィルタ(発達2709及び関係性2710)と、2つの環境(一般2706及び特定2707)と、マスク(行動2708)とに基づく大規模な要素のセットがある。
【0125】
上記からわかるように、多くの変数がある。しかしながら、グループ化及びサブグループ化アルゴリズムを使用して、ダッシュボードを制御することによって、これらのレイヤ、フィルタ、及びマスクにわたる性格(ISI)の様々なパラメータの変数を設定し、以下に示すように、それらのパラメータを使用して、適切な反応をリアルタイムに構築し得る。
【0126】
ISIが作成されると、ISSを評価し得る人間分類器によって試運転され得、その評価を使用してISIを改良し得る。適度に優れたISIのセットが確立されると、それらは互いに訓練され得る。次いで、人間分類器を再度使用して、教師なし訓練の結果を判断し得、教師なし訓練処理の観察からより多くの洞察が得られ得る。
【0127】
行動関数の生成
ISIの性格は、多次元行列を使用して記述され得る。便宜上、ここで説明するマトリクスは16×2×8に制限する(たとえば、外向性2800、感覚2801、思考2802、判断2803、開放性2804、誠実性2805、協調性2806、神経症傾向2807、マキャヴェリズム2808、達成2809、認知2810、権威主義2811、ナルシシズム2812、自尊心2813、楽観主義2814、及び無感情症2815)×(大きさ2816及び重み付け2817)が8次元(レイヤ、フィルタ、及びマスク)。心理学者及び社会学者は、16個の最も重要な因子を選択する(行列演算のためにマトリクスの次元を単純に保つため)。レタリングを使用して、レイヤ、フィルタ及びマスクの各次元を表し得る:B(ベースレイヤ2818)、C(文化レイヤ2819)、T(訓練レイヤ2820)、D(発達フィルタ2821)、R(関係性フィルタ2822)、G(一般環境レイヤ2823)、S(特定環境レイヤ2824)、及びB(行動マスク2825)。ISIの性格マトリクスは、ISIの性格特性を記述するように構成される任意のサイズであり得ることを理解されたい。これで、ISが振る舞うことができる性格の表現が作成される。畳み込みニューラルネットワーク(CNN)が動作する方法と異ならない方法で、我々のレイヤを畳み込んで集約レイヤを作成することができる。図28のマトリクスを見ると、その内容が引用により本明細書に組み込まれている、http://www.iaeng.org/publication/WCE2010/WCE2010_pp1824-1828.pdfで入手可能な、Ashu M. G. Solo et al. “Multidimensional Matrix Mathematics: Notation, Representation and Simplification, Part 1 of 6”の、多次元行列を表現するためのアプローチを使用している。
【0128】
これで、ベースライン性格の表現が作成された。上記のように、これは、いかなる人間とも交流する前のISインスタンスの性格である。一部の人的交流はISインスタンスに変更をもたらし、それらは新しいインスタンスとして、または既存のインスタンスへの記述された変更として記憶される必要がある。上記のように、行動バイアスのセット、及びこれらの行動が発生する周囲環境のセットがある。ISインスタンスの心理学的記述が確立されたので、行動バイアスが各交流に適用され得る。定義済みの状況が、任意のISインスタンスのレンズを介して関連するバイアスにマッピングされ得る。3次元の性格マトリクスは、Φ(ファイ)と表され得る。48個の行動(認知)バイアスのそれぞれは、大きさ及び重み付けの2つの因子を有する(48×2行列)。行動バイアスマトリクスはΛ(ラムダ)と表され得、追加的な行列計算は、各状況において、f(行動)={Φ}・{Λ}として実行され得る。
【0129】
フィードバックループ
フィードバックループは非常に重要である。ISIは数十億もの小さな決定を下し得、それらの決定のそれぞれがどれほどうまくいったかを知ることが重要である。そのために、本システムは行動の手がかりを監視し、それらをISIの性能の尺度として使用し得る。不成功の明らかな指標のいくつかの実施例は、限定はしないが、反応の遅延(不在を示す過度に長い遅延はカウントしない)、同じトピックへ戻る(テキスト分析を使用して何かが理解されなかったか否かを判定する)、怒り、否定性(dismissiveness)などである。
【0130】
より深いレベルでは、本開示のいくつかの態様によるシステムは、(視覚及び音声分析を用いて)感情的心理(emotional sentiment)を監視することが可能であり得る。具体的には、本システムは、共感、落ち着き、及び関与を求め得る。これらのメトリックを使用して、目標が事前に設定されたタスクにおいてISIがどの程度成功したかを判断する。おそらく、最良の目標は、共感、緊張感がないこと、関与、(偽りのない)感謝の言葉であるが、所望の結果に応じて、任意の目標のセットを選択することができる(たとえば、ことによると、政府が救助していないハリケーンの被害者に誰かが腹を立てることをISIの作成者が望むなど)。望ましくない結果につながる特定の反応またはアプローチが見つかった場合、そのアプローチまたは反応はあまり使用されなくなるか、または非推奨にすらなり得、特定のアプローチが我々の目標達成の成功につながる場合、ISIはさらにいっそうそのように行動するよう変更され得る。さらに、いくつかの実施形態では、特定の性格が特定の人間の性格とうまくいかないことが分かり得るので、ISインスタンスの性格に微調整を行うことができ、または全く新しい性格を試すことができ、これは特に、人間の性格がわかっているか、または行動に基づいて帰属させている場合である。
【0131】
バイブルソフトウェア及びダッシュボード
本開示のいくつかの実施形態では、ダッシュボードは、人間がISIの性格の異なる変数を試せるようになる異なる性格パラメータから作成され得る。他の実施形態では、ISは、状況及び関与するエンティティに基づいて、自身の性格パラメータを選択し得る。もちろん、性格設計者は、256個以上の変数のいずれかを手動で設定し、その後ISインスタンスをテスト会話または交流に連れて行き得る。いくつかの実施形態では、ISインスタンスは既知のエンティティ、たとえば、限定はしないが、Abraham LincolnもしくはKatherine HepburnまたはGreys AnatomyのMeredith Greyをモデルにし得る。さらに他の実施形態では、ユーザはISIの特定の性格を要求することができ、または、さらに他の実施形態では、既知の性格が混合され得、たとえば、限定はしないが、Winston Churchillは、Diane Sawyerと混合され、James Earl Jonesのような声と、Harry Potterのような癖を持つ。このようにして、本物の人間のような交流を行う、ユニークで楽しくエキサイティングな仮想性格が作成され得る。
【0132】
反応
様々なフィルタ、マスク、及び関数によって適切な反応が準備されたので、ISはリアルタイムでもっともらしく反応する必要がある。いくつかの実施形態では、反応の計算時間を分からなくするために、プログラムされた遅延が追加され得る。たとえば、質問された後、ISIは即座に「うーん」または「あぁ」と反応する場合があり、一方、より長いより良い反応を計算する。さらに、本開示のいくつかの態様によれば、身体的反応、たとえば、微妙な表情及び他の体の動き、声色、呼吸、汗、皮膚の色(血流)などが、適切な反応にマッピングされ、ISは人間の感情を理解できるようになる。
【0133】
応用
本開示の態様によれば、ISIは、ビデオゲーム及びテキストヘルプラインなどの仮想環境に実装され得る。さらに、ISIとのさらなる「現実世界」の交流を可能にする他の新しい仮想環境が作成され得、ISIはより昔ながらの人間の役割を果たし得、たとえば、限定はしないが、ISIは株式売買人、用務員、医師であり得る。ISIは仮想環境を通じてより広い世界と交流し得る。さらに、いくつかの実施形態では、この技術は、訓練用のVRメガネまたは部屋の有無にかかわらず使用することができる。
【0134】
本開示のいくつかの側面によれば、我々のオンライン及びゲーム内の世界でますます多くの仮想キャラクターが作成されるにつれて、それらは交流し、仮想ソーシャルネットワークの一部となる。現実のユーザは、我々のソーシャルネットワークに参加して、ストーリー、写真、ビデオなどを共有することができる。しかしながら、仮想キャラクター(ISI)も、自身のソーシャルネットワークに参加することができるが、現実または仮想キャラクターの任意の組み合わせが存在するソーシャルネットワークの一部でもあり得る。
【0135】
国際化
上記及び下記のシステムは、任意の文化的環境で機能する。しかしながら、結果は文化的環境によって異なる。一部の文化(オランダ人など)は非常に遠慮がなくぶっきらぼうであり得るが、他の文化(日本人など)は非常に繊細で状況を踏まえる。心理学者、社会学者、及び当技術分野で熟練したその他の人々は、文化的サブグループごとに結果を取り出す必要があり、ISはその文化的環境内で機能する必要がある。
【0136】
システム
図31は、たとえば、図5図10、または図13など、本明細書全体を通して図に示したような方法を実装するための知的エージェントシステムを示している。本システムは、ユーザ入力デバイス3102に結合されたコンピューティングデバイス3100を含み得る。ユーザ入力デバイス3102は、コントローラ、タッチスクリーン、マイクロフォン、キーボード、マウス、ジョイスティック、またはユーザが本システムに音データを含む情報を入力することを可能にする他のデバイスであり得る。ユーザ入力デバイスは、触覚フィードバックデバイス3121に結合され得る。触覚フィードバックデバイス3121は、たとえば、振動モータ、フォースフィードバックシステム、超音波フィードバックシステム、または空気圧フィードバックシステムであり得る。
【0137】
コンピューティングデバイス3100は、1つまたは複数のプロセッサユニット3103を含み得、これは、たとえば、シングルコア、デュアルコア、クアッドコア、マルチコア、プロセッサ-コプロセッサ、セルプロセッサなどのよく知られているアーキテクチャに従って構成され得る。コンピューティングデバイスはまた、1つまたは複数のメモリユニット3104(たとえば、ランダムアクセスメモリ(RAM)、ダイナミックランダムアクセスメモリ(DRAM)、読み取り専用メモリ(ROM)など)を含み得る。
【0138】
プロセッサユニット3103は1つまたは複数のプログラムを実行し得、その一部はメモリ3104に記憶され得、プロセッサ3103は、たとえば、データバス3105を介してメモリにアクセスすることによって、メモリに動作可能に結合され得る。プログラムは、上記で論じたように、データベース3122内の収集された行動データ及び行動バイアスにラベル付け及び重み付けを行い、ベースライン性格3109及びISインスタンス3108を改良するように構成される機械学習アルゴリズム3121を含み得る。さらに、メモリ3104は、データベース3122に記憶された性格バイアス及び行動バイアスから、またはベースライン性格3109の一部として反応を生成するように構成され得る1つまたは複数のエキスパートシステム3110を有し得る。これらの反応は、ISインスタンス3108の一部でもあり得る。データベース3122、ベースライン性格3109、ISインスタンス3108、及び機械学習アルゴリズム3121は、データ3118またはプログラム3117として、大容量記憶装置3115に、またはネットワークインターフェース3114を介してアクセスされるネットワーク3120に結合されたサーバに記憶され得る。
【0139】
入力されたビデオ、オーディオ、触覚フィードバック、匂い、味、及び/またはテキストは、データ3118として大容量記憶装置3115に記憶され得る。プロセッサユニット3103はさらに、大容量記憶装置3115またはメモリ3104に記憶された1つまたは複数のプログラム3117を実行するように構成され、それらはプロセッサに上記の方法のうちの1つまたは複数を実行させる。
【0140】
コンピューティングデバイス3100はまた、入力/出力(I/O)回路3107、電源(P/S)3111、クロック(CLK)3112、及びキャッシュ3113などのよく知られているサポート回路を含み得、これらは、たとえばバス3105を介して、本システムの他の構成要素と通信し得る。コンピューティングデバイスは、ネットワークインターフェース3114を含み得る。プロセッサユニット3103及びネットワークインターフェース3114は、ローカルエリアネットワーク(LAN)またはパーソナルエリアネットワーク(PAN)を、適切なネットワークプロトコル、たとえばPANの場合はブルートゥース(登録商標)を介して実装するように構成され得る。コンピューティングデバイスは、任意選択で、ディスクドライブ、CD-ROMドライブ、テープドライブ、フラッシュメモリなどの大容量記憶デバイス3115を含み得、大容量記憶デバイスは、プログラム及び/またはデータを記憶し得る。コンピューティングデバイスはまた、本システムとユーザとの間のやりとりを容易にするためのユーザインターフェース3116を含み得る。ユーザインターフェースは、モニター、テレビ画面、スピーカー、ヘッドホン、またはユーザに情報を伝達する他のデバイスを含み得る。
【0141】
コンピューティングデバイス3100は、電子通信ネットワーク3120を介した通信を容易にするためのネットワークインターフェース3114を含み得る。ネットワークインターフェース3114は、ローカルエリアネットワーク及びインターネットなどのワイドエリアネットワークを介して有線または無線通信を実装するように構成され得る。デバイス3100は、ネットワーク3120上で1つまたは複数のメッセージパケットを介してデータ及び/またはファイルの要求を送受信し得る。ネットワーク3120を介して送信されるメッセージパケットは、メモリ3104内のバッファに一時的に記憶され得る。カテゴリ化された行動データベースは、ネットワーク3120を介して利用可能であり、使用のためにメモリ3104に部分的に記憶され得る。
【0142】
上記は本発明の好ましい実施形態の完全な説明であるが、多様な代替例、修正例、及び均等物を使用することが可能である。したがって、本発明の範囲は、上記の説明を参照して判定されるべきでなく、代わりに、添付の特許請求の範囲を参照して、それらの均等物の全範囲と併せて判定されるべきである。好ましいか否かに関わらず、本明細書で説明した任意の特徴は、好ましいか否かに関わらず、本明細書で説明した他の任意の特徴と組み合わせられ得る。以下の特許請求の範囲では、不定冠詞「a」または「an」は、明示的に特別に定められた場合を除き、冠詞に続く項目の1つまたは複数の数量を指す。添付の特許請求の範囲は、ミーンズプラスファンクションの限定を含むものとして解釈されるべきではなく、ただしこれは、そのような限定が、所与の請求項において、「~するための手段」という語句を使用して明示的に記載されていない場合である。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26
図27
図28
図29A
図29B
図29C
図29D
図30
図31
【国際調査報告】