(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-05-27
(54)【発明の名称】プラズマ系反応器のための冷却
(51)【国際特許分類】
F28D 15/02 20060101AFI20220520BHJP
F28D 15/04 20060101ALI20220520BHJP
H05H 1/46 20060101ALN20220520BHJP
【FI】
F28D15/02 A
F28D15/02 101L
F28D15/02 102A
F28D15/04 B
F28D15/04 G
F28D15/02 102G
H05H1/46 L
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2021559101
(86)(22)【出願日】2020-04-07
(85)【翻訳文提出日】2021-12-01
(86)【国際出願番号】 US2020027081
(87)【国際公開番号】W WO2020210240
(87)【国際公開日】2020-10-15
(32)【優先日】2019-04-08
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】592010081
【氏名又は名称】ラム リサーチ コーポレーション
【氏名又は名称原語表記】LAM RESEARCH CORPORATION
(74)【代理人】
【識別番号】110000028
【氏名又は名称】特許業務法人明成国際特許事務所
(72)【発明者】
【氏名】ドルウェリー・ジョン・スティーブン
(72)【発明者】
【氏名】ベンジャミン・ニール・マーティン・ポール
【テーマコード(参考)】
2G084
【Fターム(参考)】
2G084AA02
2G084BB02
2G084CC13
2G084DD03
2G084DD13
2G084DD55
2G084DD62
2G084FF34
(57)【要約】
【課題】
【解決手段】一実施形態では、開示された装置は、切り取られた上部を有する円錐構造を含むヒートパイプ冷却システムである。円錐構造は、誘電体窓の上方に形成されるように構成され、円錐構造は、誘電体窓と円錐構造との間の容積内部に入れられたまたは形成された熱伝導流体からの蒸気を凝縮するように構成される。少なくとも1つの冷却コイルは、円錐構造の外側部分に形成される。他の装置およびシステムが開示される。
【選択図】
図2
【特許請求の範囲】
【請求項1】
ヒートパイプ冷却システムであって、
切り取られた上部を有する円錐構造であって、前記円錐構造は、誘電体窓の上方に配置されるように構成され、前記円錐構造が、前記誘電体窓と前記円錐構造との間の容積内部に形成された第1の熱伝導流体からの蒸気を凝縮するように構成される、円錐構造と、
前記円錐構造の外側部分に近接して形成された少なくとも1つの冷却コイルと
を備える、ヒートパイプ冷却システム。
【請求項2】
請求項1に記載のヒートパイプ冷却システムであって、前記少なくとも1つの冷却コイルが、内部の第2の熱伝導流体を輸送するように構成される、ヒートパイプ冷却システム。
【請求項3】
請求項1に記載のヒートパイプ冷却システムであって、前記誘電体窓が加熱される動作中、前記第1の熱伝導流体が、前記誘電体窓から充分な熱を受けて、前記第1の熱伝導流体を液相から気相に変化させ、前記気相が、前記円錐構造と接触した後、前記凝縮された蒸気から凝縮液を形成するように構成される、ヒートパイプ冷却システム。
【請求項4】
請求項1に記載のヒートパイプ冷却システムであって、前記円錐構造の前記外側部分に近接して形成された前記少なくとも1つの冷却コイルが、前記円錐構造の前記外側部分と直接熱接触する、ヒートパイプ冷却システム。
【請求項5】
請求項1に記載のヒートパイプ冷却システムであって、前記第1の熱伝導流体が、選択可能な沸点を有する誘電性流体であり、液相レジームおよび気相レジームを含む二相レジームの作用により、前記誘電体窓の蒸発冷却を提供することが可能である、ヒートパイプ冷却システム。
【請求項6】
請求項5に記載のヒートパイプ冷却システムであって、前記選択可能な沸点が、前記誘電体窓と前記円錐構造との間の前記容積内部の圧力において、約55℃~約270℃の範囲内で選択可能である、ヒートパイプ冷却システム。
【請求項7】
請求項1に記載のヒートパイプ冷却システムであって、前記円錐構造および前記誘電体窓の両方のそれぞれの外周に機械的に結合された上側窓支持構造をさらに備える、ヒートパイプ冷却システム。
【請求項8】
請求項7に記載のヒートパイプ冷却システムであって、毛管状溝が、前記上側窓支持構造の内部の外周上に形成され、前記誘電体窓の最上面全体に前記第1の熱伝導流体を流すように構成される、ヒートパイプ冷却システム。
【請求項9】
請求項1に記載のヒートパイプ冷却システムであって、前記誘電体窓の最上面が、前記第1の熱伝導流体が流れる複数の毛管状溝を含む、ヒートパイプ冷却システム。
【請求項10】
請求項1に記載のヒートパイプ冷却システムであって、前記誘電体窓の最上面が、メッシュ材、少なくとも部分的に多孔質の焼結粉末、焼結セラミック、および焼結ポリマーを含む材料から選択された1つ以上の材料を含む1つ以上のタイプの液体ウィッキング材を備えるウィック構造を含む、ヒートパイプ冷却システム。
【請求項11】
請求項1に記載のヒートパイプ冷却システムであって、加熱されるように構成された水溜めをさらに備え、前記水溜めが、前記第1の熱伝導流体の二相熱力学的サイクルを開始させるように、前記誘電体窓に近接して形成される、ヒートパイプ冷却システム。
【請求項12】
請求項11に記載のヒートパイプ冷却システムであって、液体が前記誘電体窓の上方の所定深さを超えた場合、前記第1の熱伝導流体からの前記液体を前記水溜めに流入させることを可能にするための堰構造をさらに備える、ヒートパイプ冷却システム。
【請求項13】
請求項1に記載のヒートパイプ冷却システムであって、前記第1の熱伝導流体が、前記第1の熱伝導流体内部の気泡形成を低減させるのに充分に薄い層内で、前記誘電体窓上に分配される、ヒートパイプ冷却システム。
【請求項14】
プラズマ系反応器内の少なくともいくつかの構成要素からの熱を除去するための熱管理システムであって、
誘電体窓の上方に配置されるように構成された円錐構造であって、前記誘電体窓と前記円錐構造との間の容積内部に入れられた第1の熱伝導流体からの蒸気を凝縮するように構成され、前記円錐構造の内面が、前記円錐構造の中心部から前記円錐構造の外周に向かって下向きの傾斜を有する、円錐構造と、
前記円錐構造に近接して形成された少なくとも1つの冷却コイルであって、前記少なくとも1つの冷却コイルが、内部の第2の熱伝導流体を輸送するように構成される、冷却コイルと
を備える、熱管理システム。
【請求項15】
請求項14に記載の熱管理システムであって、前記円錐構造が、切り取られた上部を含み、それによって、一種の円錐台状構造を形成し、前記上部が、前記円錐構造の前記中心部付近に位置する、熱管理システム。
【請求項16】
請求項14に記載の熱管理システムであって、前記プラズマ系反応器の動作中、前記第1の熱伝導流体が、前記誘電体窓から充分な熱を受けて、前記第1の熱伝導流体を液相から気相に変化させ、前記気相が、前記円錐構造と接触した後、前記凝縮された蒸気から凝縮液を形成するように構成される、熱管理システム。
【請求項17】
請求項14に記載の熱管理システムであって、前記少なくとも1つの冷却コイルが、前記円錐構造の外側部分上に形成され、前記円錐構造の前記外側部分と直接熱接触する、熱管理システム。
【請求項18】
請求項14に記載の熱管理システムであって、前記第2の熱伝導流体が、外部ポンプによって、前記少なくとも1つの冷却コイル内部を循環する、熱管理システム。
【請求項19】
請求項14に記載の熱管理システムであって、前記円錐構造が、銅、銅合金、亜鉛合金、アルミニウム、アルミニウム合金、ステンレス鋼、および高性能合金を含む材料から選択された、少なくとも1つの材料を含む1つ以上の熱伝導性材料から形成される、熱管理システム。
【請求項20】
請求項14に記載の熱管理システムであって、前記円錐構造が、炭素含浸誘電材料および炭素含浸ポリマー材料を含む材料から選択された、少なくとも1つの材料を含む1つ以上の熱伝導性材料から形成される、熱管理システム。
【請求項21】
請求項14に記載の熱管理システムであって、前記誘電体窓の最上面が、前記第1の熱伝導流体が流れる複数の毛管状溝を含む、熱管理システム。
【請求項22】
請求項14に記載の熱管理システムであって、前記誘電体窓に近接して、加熱されるように構成された水溜めをさらに備え、前記水溜めが、前記第1の熱伝導流体の二相熱力学的サイクルを開始させる、熱管理システム。
【請求項23】
請求項22に記載の熱管理システムであって、液体が前記誘電体窓の上方の所定深さを超えた場合、前記第1の熱伝導流体からの前記液体を前記水溜めに流入させることを可能にするための堰構造をさらに備える、熱管理システム。
【請求項24】
プラズマ系反応器内の誘電体窓からの熱を除去するための熱サイフォンであって、
前記誘電体窓の上方に配置されるように構成された円錐構造であって、前記誘電体窓と前記円錐構造との間の容積内部に入れた第1の熱伝導流体からの蒸気を凝縮するように構成され、前記円錐構造の内面が、前記円錐構造の中心部から前記円錐構造の外周に向かって下向きの傾斜を有する、円錐構造と、
前記円錐構造上に形成された少なくとも1つの冷却コイルであって、内部の第2の熱伝導流体を輸送するように構成される、冷却コイルと、
加熱されるように構成された水溜めであって、前記誘電体窓に近接し、かつその下方に形成されて、前記第1の熱伝導流体の二相熱力学的サイクルを開始させる、水溜めと
を備える、熱サイフォン。
【請求項25】
請求項24に記載の熱サイフォンであって、液体が前記誘電体窓の上方の所定深さを超えた場合、前記第1の熱伝導流体からの前記液体を前記水溜めに流入させることを可能にするための堰構造をさらに備える、熱サイフォン。
【請求項26】
請求項24に記載の熱サイフォンであって、前記誘電体窓の最上面が、前記第1の熱伝導流体が流れる複数の毛管状溝を含む、熱サイフォン。
【発明の詳細な説明】
【技術分野】
【0001】
<優先権の主張>
本出願は、2019年4月8日出願の米国特許出願第62/830,896号、発明の名称「COOLING FOR AN INDUCTIVE PLASMA-BASED REACTOR」の優先権の利益を主張し、参照によりその全体が本明細書に組み込まれる。
【0002】
本明細書で開示される主題は、半導体および関連産業で使用される様々なタイプの機器に関する。より詳細には、開示される主題は、誘導型プラズマ系反応器の誘電体窓の温度制御に関する。
【背景技術】
【0003】
プラズマ系処理装置は、エッチング、原子層蒸着(ALD)、物理蒸着(PVD)、化学蒸着(CVD)、イオン注入、レジスト除去、および当技術分野で公知の他の技術を含む技術によって、基板を処理するために使用される。プラズマ処理で使用されるプラズマ処理装置の1つのタイプとしては、誘導結合プラズマ(ICP)またはトランス結合プラズマ(TCP)チャンバが挙げられる。エネルギーは、電磁誘導(経時変化する磁場による)によって生じる電流によって供給される。1つ以上のRFコイルの形式の無線周波数(RF)アンテナは、エネルギーを提供して、チャンバ内のプロセスガスをプラズマ状態に励起させ、チャンバ内の基板(例えば、シリコンウエハ)を処理する。
【0004】
ICP/TCPチャンバでは、誘電体(例えば、セラミック)窓は、チャンバをRFアンテナまたはコイルと分離させる。しかしながら、誘電体窓材料の脆い性質は、使用されるRF電力に制限を加えるが、これは、RF電力が増加するにしたがって誘電体窓内への熱流束が増加するためである。熱流束は、窓内部の温度勾配につながり、これが誘電体窓に内部応力を生じさせる可能性がある。また、窓内部の熱流束の分布は、高度に不均一な熱分布を生じる可能性があり、これは熱応力の問題を悪化させる。
【0005】
ICP/TCPチャンバに供給される電力が増加するにしたがって、誘電体窓の冷却は重要な懸念事項になってきている。現在、誘電体窓は強制空気を使用して冷却されている。しかしながら、強制空気システムの複雑さが増大している。強制空気は安価であるが、窓によって加熱された空気は通常、製造環境に排出できず、代わりに換気システムに送出されなければならない。強制空気は、一般に、プラズマ系処理装置の窓に大量に供給されなければならない圧縮空気を含む。窓をほぼ一定の温度に維持するために、複数ゾーンの温度制御システムが採用されている。この制御システムは、大きな熱質量を伴うこと、加熱/冷却システムの応答が遅いこと、および圧縮空気冷却に現在使用されている「オンオフ」制御に固有の非線形性等の様々な理由から、実装することが困難である。これらの各々の変数を的確に制御しない結果、窓の温度に大きな熱変動が引き起こされる。大きな熱変動の1つの影響は、窓における応力の増大に加えて、周囲の構成要素と比較して誘電体窓が熱膨張することに起因するチャンバ内部構成要素の機械的摩擦と、窓コーティングの潜在的な層間剥離とに起因する、チャンバ内の基板上の粒子汚染の増加である。
【0006】
高密度プラズマCVD(HDPCVD)反応器で使用される1つの手法は、プラズマ励起コイルを通して冷却液体を流し、これらのコイルをHDPCVD反応器の(この場合では)誘電体ドームに結合することである。残念ながら、チャンバ間の均一性、分割コイルの設計、および誘電体窓の修繕および再設置の必要性に対する要望が、ICP/TCPリアクターに対し同時にこのような手法をとることを妨げている。
【0007】
窓の加熱に関する問題に対し試みられた他の解決策では、冷却液体チャネルが誘電体窓に埋設される。しかしながら、静電チャック(ESC)設計を使用してICP/TCP製造業者によって得られた経験は、冷却液体チャネルにも依拠しており、そのようなチャネルの設計が複雑であることを示している。冷却液チャネルの使用は、冷却液は窓を通過するときに加熱され、それによって、窓内部の熱が不均一性になることにつながることを意味する。さらに、熱を除去するために十分な液体を循環させる必要がある場合、必要とされるチャネルの長さが、チャネルの深さを大きくすることにつながる。そのようなチャネルは、製造を困難にし、誘電体窓が脆弱になる。
【0008】
本セクションで説明された情報は、当業者に、以下の開示された主題の背景を呈するために提供されており、認められた先行技術と見なされるべきではない。
【図面の簡単な説明】
【0009】
【
図1】
図1は、ICP/TCPプラズマ系処理装置の断面図の一実施形態を示す。
【0010】
【
図2】
図2は、様々な実施形態によるヒートパイプ冷却システムの一実施形態の断面図を示す。
【0011】
【
図3】
図3は、
図2のヒートパイプ冷却システムの上面図を示す。
【0012】
【
図4A】
図4Aは、誘電体窓上の冷却剤分配チャネルの様々な例示的な実施形態を示す。
【
図4B】
図4Bは、誘電体窓上の冷却剤分配チャネルの様々な例示的な実施形態を示す。
【
図4C】
図4Cは、誘電体窓上の冷却剤分配チャネルの様々な例示的な実施形態を示す。
【0013】
【
図5A】
図5Aは、様々な実施形態による冷却剤予熱器の一実施形態を示す。
【0014】
【
図5B】
図5Bは、様々な実施形態による上側チャンバ内に組み込まれた冷却剤予熱器の別の実施形態を示す。
【0015】
【
図6】
図6は、様々な実施形態による上側窓支持構造およびコイル支持リングの上面図の一実施形態を示す。
【発明を実施するための形態】
【0016】
ここで、様々な添付の図面に示されているような、いくつかの一般的および具体的な実施形態を参照して、開示された主題を詳細に説明する。以下の説明では、開示された主題の完全な理解を提供するために、数多くの具体的な詳細が述べられている。しかしながら、当業者には、いくつかまたは全てのこれらの具体的な詳細がなくても、開示された主題を実施し得ることが明らかであろう。他の例では、開示された主題を不明瞭にしないように、周知のプロセスステップ、構築技術、または構造は詳細には説明されていない。
【0017】
開示された主題は、ヒートパイプおよび熱サイフォン両方の構造からの概念を使用する。結果として、「ヒートパイプ」および「熱サイフォン」という用語は、概して同義であると見なすことができ、したがって、文脈上他のことを示さない限り、本明細書では互換的に使用され得る。
【0018】
当業者には公知であるように、熱サイフォンおよびヒートパイプ構造を使用して、作動流体(例えば、熱伝導流体)の蒸気圧によって決定される温度において、温度を制御し得る。熱輸送は、潜熱搬送を介して達成される。熱サイフォンの内面は、作動流体の蒸気圧、したがって蒸発(凝縮)率への強い依存に起因して、ほぼ等温であると考えられ得る。熱伝導流体が、薄い(例えば、著しい気泡形成を回避するのに充分に薄い)層の被加熱面上に分配されると、被加熱面の温度は、高度に均一になる。蒸発率が高いのは、当該比率が温度の関数であることによる。温度が上昇するにしたがって、蒸発率がほぼ比例して上昇する。
【0019】
開示された主題の熱サイフォンの様々な実施形態は、当技術分野で公知の様々なタイプのプラズマ系のICP/TCP反応チャンバの誘電体窓を冷却または加熱するように適応され得る。本明細書で説明されるように、熱伝導流体(作動流体)のための凝縮面は、誘電体窓の上方に円錐構造を備える。熱伝導流体の循環によって、円錐構造の一面は、誘電体窓の所望の温度、またはその温度近傍に維持される。様々な実施形態では、ICP/TCP加熱コイルは、熱サイフォン構造内部に組み込まれている。熱サイフォン構造に対して充分な空間を確保しているので、コイルは作動流体に曝される。しかしながら、コイルは、流体の選択を多少制限する。例えば、水は熱サイフォン構造に対して良好な作動流体であるが、これは、単位体積当たりの並外れた潜熱に起因する。いくつかの例では、水蒸気は、ICP/TCPコイル近傍に存在する10kVを超える可能性のある電圧とは適合しない場合がある。
【0020】
さらに、特定の用途および実施形態では、可燃性または毒性の作動流体の使用は、(比較的少ない)漏れの可能性があるため、避けることが望ましい場合がある。以下でより詳細に述べるように、熱サイフォン内部で直面するおよそ120℃の温度範囲での使用に好適な作動流体は、広く冷却に使用されている種々のペルフルオロ化またはフルオロカーボン系の熱伝導流体である。これらの熱伝導流体は、様々な沸点(例えば、約110℃の沸点等)を有するように調製し得る。残念ながら、単位体積当たりの潜熱は、同等の体積の水の潜熱の約10%よりも少ない。例えば、計算では、窓面からおよそ5kWを除去するためには、約2.5リットル/分の体積流量が必要であることが示される。本明細書で開示された熱サイフォンアセンブリの様々な実施形態は、概して物理的寸法が大きいため、非水系の熱伝導流体の使用は、凝縮液の誘電体窓への戻りを制御する構造の設計に十分な配慮がなされている場合には、実施可能である場合がある。
【0021】
本明細書で提供された、開示された主題の様々な実施形態は、閉サイクル熱サイフォンを使用して、誘電体窓からの熱を除去する。本明細書で説明された様々な実施形態では、熱サイフォンもまた、一種のヒートパイプであると考えられ得る(上述のように、2つの用語は同義であると考えられ得、したがって本明細書では互換的に使用され得る)。熱サイフォンは、蒸発を介して、被加熱面からエネルギーを除去する。蒸発した液体は、別の場所で凝縮され、被冷却面に再循環される。被加熱面を大きくすることができ、かつ被加熱面の上方に位置する場合、本システムは、特定の実施形態においては、全面的に受動的であってもよい。他の実施形態では、本システムは、熱サイフォン環境の外部の流体ポンプおよび熱交換器(例えば、凝縮構造の外側面上に形成された巻き取りコイル)によって支援され得る。温度制御は、被冷却面の温度を制御することによって得られる。温度に対する蒸発率の高度に非線形な依存性に起因して、より高い入熱を有する被加熱面の領域が、より積極的に冷却される。よって、本システムは、他の方法で得ることができるよりも、大きな面にわたってはるかに均一な温度をもたらすことができる。さらに、本明細書で説明されるように、様々な実施形態では、開示された主題は、熱サイフォンアセンブリ内部に組み込まれたICP/TCPコイルを使用し、RF電力は、このアセンブリの壁を介して結合される。
【0022】
ここで
図1を参照すると、誘導結合プラズマ/トランス結合プラズマ(ICP/TCP)処理装置100の断面図の一実施形態が示される。当業者には理解されるように、ICP/TCP処理装置100は、材料をALD、CVD、PECVD、および当技術分野で公知の他の技術で蒸着するため、ならびに基板上の様々な材料をプラズマエッチングするために使用され得る。一般的には、プロセスガスは、低圧で(例えば、100mTorr未満)真空チャンバ内に供給され、無線周波数(RF)エネルギーが、実際、そのガスに供給される。ICP/TCPプラズマ処理チャンバの例は、様々な蒸着およびエッチングシステムを含む。例えば、好適なプラズマ処理チャンバとしては、Altus(登録商標)ファミリーの蒸着システムおよびKiyo(登録商標)ファミリーのエッチングシステムを含み、ともにLam Research Corporation(米国カリフォルニア州フレモント、カッシングパークウェイ4650)製が挙げられる。
【0023】
ICP/TCP処理装置100は、反応チャンバ105、誘電体窓101、ガス分配デバイス103、RF源113、RFインピーダンス整合回路111、および反応チャンバ105内のガスにRFエネルギーを供給するRFコイル115を含んで示される。プロセスガスは、ガス供給部119(または、多数のプロセスガス供給部)から、ガス分配デバイス103を通して反応チャンバ105内に導入される。ガス分配デバイス103は、ガスシャワーヘッド、ガスインジェクタ、または当技術分野で公知の他の好適なデバイスを備え得る。RFコイル115からのRFエネルギーは、誘電体窓101を通してプロセスガスに誘導結合される。
【0024】
誘電体窓101は、窓全体にわたってほぼ均一な温度分布が与えられた場合、破損しにくい。開示された主題は、ヒートパイプ(熱サイフォン)を提供し、本明細書で提供された詳細によれば、ヒートパイプの内側部分はかなり均一な温度である。本明細書で定義されるように、ヒートパイプは、自然対流に基づくヒートパイプ内部の受動的な熱交換を提供する。したがって、誘電体窓がヒートパイプ内部に自然な対流を作り出すために充分な熱を提供した後、強制的な対流を誘発するためにヒートパイプ内部の機械装置は使用しない。しかしながら、様々な実施形態によれば、液体は沸騰することなく直接気相に移行する。誘電体窓101の最上面の平面は、蒸発が生じ得るほぼ平坦な平面を提供する。結果として、ヒートパイプは、ループタイプのヒートパイプであると考えられ得る。様々な実施形態では、開示された主題のヒートパイプは、封止されたヒートパイプ内部に封入された熱伝導流体を有する密閉ユニットであると考えられ得る。
【0025】
ICP/TCP処理装置100はさらに、反応チャンバ105の内部において基板109(例えば、シリコンウエハ)を支持するための基板支持部107(例えば、静電チャック(ESC))を含んで示される。いったん1つ以上のプロセスガスが、ガス供給部119からガス分配デバイス103を通って反応チャンバ105の内部に導入されると、プロセスガスは、エネルギーを反応チャンバ105の内部に誘導的に供給するRFコイル115によって、高密度プラズマ117の中に付勢される。様々な実施形態では、RFコイル115は、RF源113およびRFインピーダンス整合回路111によって電力供給される外部平面アンテナを備え、反応チャンバ105内にRFエネルギーを誘導結合する。RFコイル(例えば、平面アンテナ)へのRF電力の印加によって生成された電磁界は、1つ以上のプロセスガスを付勢して、高密度プラズマ117を形成する。例示的な実施形態では、高密度プラズマ117は、基板109のほぼ上方に形成された約1010~約1012イオン/cm3を含み得る。
【0026】
図1を引き続き参照すると、誘電体窓101は、反応チャンバ105の頂部または最上部の壁を形成する。セラミック、石英、またはガラス材料を含む、いくつかの異なるタイプの窓材料が、誘電体窓101に使用され得る。例えば、誘電体窓101に好適な様々な材料は、酸化アルミニウム(Al
2O
3)、酸化ジルコニウム(ZrO
2)、二酸化ケイ素(SiO
2)、および当技術分野で公知の他の材料を含み得る。誘電体窓101は、外部環境(例えば、製造工場)からの反応チャンバ105の内部の隔離を維持する一方で、RFコイル115によって作り出された磁場の浸透を可能にする。RFコイル115は、反応チャンバ105内部に作り出される磁場の強度を増加または最大化するために、誘電体窓101に非常に接近するか、または接触して配置され得る。誘電体窓101の厚さは、RFエネルギーをRFコイル115から反応チャンバ105の内部に伝達させ、それによって、高密度プラズマ117の形成が可能になるように十分に薄くなるよう選択される。反対に、誘電体窓101は、反応チャンバ105内部で引き起こされた真空と、外部環境との間で引き起こされた差圧に耐えるように十分な厚さになるように選択される。当業者は、誘電体窓101を形成するために選択された材料と、誘電体窓101の及ぶ物理的距離に基づいて、誘電体窓101の適切な厚さを決定する方法を認識するであろう。
【0027】
図2は、様々な実施形態によるヒートパイプ冷却システム200の一実施形態の断面図を示す。
図2に示されるように、図の左半分は、
図3に示されるセクションAに関する断面を示す。図の右半分は、同様に
図3によって示されるセクションBに関する断面を示す。ヒートパイプ冷却システム200は、先端が切り取られた円錐構造221を含んで示される(したがって、円錐構造は、一種の円錐台状構造を形成し、これは、概ね円錐台形状を有し、円錐の基部(下部)部分が、当技術分野で理解されているように、基部に対して概ね平行な平面によって頂部を切断することによって形成されている)。円錐構造221は、円錐構造221の最上部の近くに、または円錐構造221の最上部に接触して(例えば、近傍に)、頂部断熱板217と少なくとも1つの冷却コイル219Aとを含む。少なくとも1つの冷却コイル219Aは、熱伝導流体219Bを含み、これは、外部ポンプによって冷却コイル219A内部で循環され、熱交換器を経由して、熱伝導流体219Bを冷却し得る(外部ポンプおよび熱交換器機構のいずれも示されていないが、本出願における両方のデバイスの使用は、開示された主題を読んで理解することにより、当業者には理解可能である)。一般的には、冷却コイル219Aおよび熱伝導流体219Bは、誘電体窓215の所望の動作温度またはその動作温度付近に維持され得る。
【0028】
特定の実施形態では、さらに内部励起RFアンテナ213Aおよび周辺励起RFアンテナ213Bの一方または両方も含まれ、誘電体窓215の近くに配置されてもよい。内部励起RFアンテナ213Aは、頂部絶縁プレート217を通して挿入され得る。周辺励起RFアンテナ213Bは、円錐構造221の一部の内部に形成されたポート225を通して挿入され得る。ポート225は、ポート絶縁プレート223で覆われる。
【0029】
円錐構造221は、種々の材料から機械加工されるか、さもなければ形成され得る。特定の例示的な実施形態では、円錐構造221は、様々なタイプの金属またはさもなければ熱伝導性材料から形成され得る。これらの材料は、例えば銅および銅合金(亜鉛合金(例えば、真ちゅう)を含む)、アルミニウムおよび様々なタイプのアルミニウム合金、または様々なグレードのステンレス鋼(例えば、タイプ304または316L)を含む。円錐構造221が腐食性ガスまたは他の液体と接触する恐れがある特定の例示的な実施形態では、円錐構造221は、様々なタイプの高性能合金から形成され得る。そのような高性能合金は、例えばInconel(登録商標)(米国ウェストバージニア州ハンティントンのInco Alloys International,Inc.を含む異なる供給源から入手可能)またはHastelloy(登録商標)(米国インディアナ州ココモのHaynes Stellite Companyおよび米国ニューヨーク州ニューヨークのUnion Carbide Corporationを含む異なる供給源から入手可能)を含む。他の例示的な実施形態では、鋼構造221は、様々なタイプの誘電体またはポリマー材料から形成され得る。これらの材料は、機械加工可能および/または成形可能なポリマーおよび高性能プラスチック(例えば、Delrin(登録商標)またはKepital(登録商標)、両方ともに当技術分野で公知)を含む。しかしながら、比較的高レベルの熱伝導率を保持するため、様々な誘電材料またはポリマー材料に、例えば炭素を含浸させてもよい。
【0030】
頂部絶縁板217およびポート絶縁板223は、ヒートパイプ冷却システム200内部に熱を保持するように、当技術分野で公知の様々なタイプの断熱材料で少なくとも部分的に形成され得る。断熱材料は、円錐構造221を形成するために使用される材料と類似のまたは同じ材料を、当技術分野で公知の断熱材料と結合させて含み得る。絶縁板217、223は、円錐構造221およびポート225の最上部に(例えば、化学接着剤、溶接、または当技術分野で公知の他の技術によって)それぞれ固定されるか、またはさもなければ接着される。特定用途のための特定の実施形態では、絶縁プレート217、223は、熱的に非絶縁性の材料のみから形成され得る。
【0031】
図2を引き続き参照し、そしてここで
図6を参照すると、内部励起RFアンテナ213Aおよび周辺励起RFアンテナ213Bの両方が、コイル支持リング227によって支持され得る。コイル支持リング227は、当技術分野で公知の種々の材料、例えばセラミックまたは金属が機械加工されるかまたは他の方法で形成され得る。プロセスガスインジェクタ207は、反応チャンバ(例えば、
図1の反応チャンバ105)の内側部分237に1つ以上のプロセスガスを導入し得る。内部励起RFアンテナ213Aおよび周辺励起RFアンテナ213B、誘電体窓215、およびプロセスガスインジェクタ207の各々は、
図1のRFコイル115、誘電体窓101、およびガス分配デバイス103とそれぞれ同じであってもよく、または類似していてもよい。明らかには示されていないが、プロセスガスインジェクタ207は、頂部絶縁板217および誘電体窓215の両方において(真空開放または外部周囲環境への漏れを防止するために)封止される。
【0032】
円錐構造221は、複数の留め具201(例えば、小ねじ、ボルト、または当技術分野で公知の他の留め具)によって上側窓支持構造239に固定され、明確にするために、そのうちの1つのみが示されている。複数の留め具の各々は、ボルト円301の複数の対応する貫通孔に挿入される(
図3を参照)。シーラント材料203は、反応チャンバの内側部分237内に発生した真空が、上側窓支持構造239と円錐構造221との間に漏れることを防止する。シーラント材料203は、当技術分野で公知の様々なタイプの金属シールを備えてもよく、またはOリングシール(例えば、Kalrez(登録商標)または他のタイプのペルフルオロ化エラストマーまたはフルオロエラストマー材料から製造される)を使用して、上側窓支持構造239と円錐構造221との間にガスが漏れることを防止してもよい。特定の例示的な実施形態では、シーラント材料203の保全性は、最大で約10
-9トルリットル/秒(約10
-9×133.322パスカルリットル/秒)のヘリウム漏れ率に対して確認され得る。
【0033】
円錐構造239は、複数の留め具229(例えば、小ねじ、ボルト、または当技術分野で公知の他の留め具)によって下側窓支持構造231に固定され、明確にするために、そのうちの1つのみが示されている。シーラント材料243は、反応チャンバの内側部分237内に発生した真空が、上側窓支持構造239と誘電体窓215との間に、または誘電体窓215と下側窓支持構造231との間に漏れることを防止する。シーラント材料243は、上述のシーラント材料203(例えば、金属シールまたはOリング)と同じであるか、または類似していてもよい。本明細書に開示されている様々な実施形態では、ヒートパイプ冷却システム200の内側の圧力範囲は、相当のものである。用途に応じて、およそ20トル~1500トル(2666.45パスカル~199983.6パスカル)の絶対圧力において、漏れがほとんどないかまたは全くないようにしなければならない。結果として、当業者には、シーラント材料203、243の必要性が認識されよう。
【0034】
下側窓支持構造231は、本明細書で説明されるような熱(加熱または冷却)制御を提供するための1つ以上のチャネル235をさらに含む。チャネル235は、機械加工または当技術分野で公知の他の技術によって、下側窓支持構造231内部に形成される。以下により詳細に説明される様々なタイプの熱伝導流体を使用し、1つ以上のチャネル235内部に入れられてもよい。チャネル235は、下側窓支持構造231の外周の近くに、または下側窓支持構造231内部の選択された任意の場所に形成されてもよい。加えて、チャネル235は、下側窓支持構造231内部に(例えば、トロイダル形状のチャネルとして)、または下側窓支持構造231内部の複数のセグメント化された部分に、連続的に形成され得る。したがって、様々な実施形態では、下部窓支持構造231は、高い熱伝導率を有する材料から形成され、それによって、チャネル235内部に封入された熱伝導流体が、下側窓支持構造231から誘電体窓215への伝導冷却によって、かつ下側窓支持構造231からチャネル内部の熱伝導流体への対流冷却によって。様々な実施形態では、チャネル内部の流体は、例えば外部ポンプによって循環されて、付加的な対流冷却を提供し得る。
【0035】
ヒートパイプ冷却システム200の動作中に、誘電体窓215と円錐構造221との間に形成された空間内に入れられた熱伝導流体は、誘電体窓215の最上面から蒸発する。次いで、熱伝導流体は、蒸気211Aとして最上面から蒸発し、次いで、向かい合った被冷却面(円錐構造221の下面側)上で凝縮され、それによって、熱伝導流体凝縮液211Bを形成する。特定の例示的な実施形態では、熱伝達液体、例えばGalden(登録商標)HT110(米国ニュージャージー州ソロフェアのSolvay Solexis,Inc.より入手可能)を、ヒートパイプ冷却システム200内部で使用され得る。Galden(登録商標)は、約55℃~約270℃の範囲にわたる選択可能な沸点を有する誘電性流体(標準温度および圧力で)である。Galden(登録商標)内部のペルフルオロ化ポリエーテル(PFPE)の誘電特性、ならびにそれらの化学的安定性および非常に低い温度に加えて上昇した温度で動作する能力との組み合わせによって、Galden(登録商標)は、半導体および関連産業において見出される条件に対して好適な熱伝導流体となる。別の特定の例示的な実施形態では、別のフルオロカーボン系の熱伝導流体を、Galden(登録商標)に代えて、またはGalden(登録商標)に加えて使用してもよい。1つのそのようなフルオロカーボン系の熱伝導流体は、Fluorinert(登録商標)(米国ミネソタ州メープルウッドの3M Companyから入手可能)である。Fluorinert(登録商標)の様々な配合は、約56℃~約215℃の範囲にわたる沸点を有するように選択され得る。開示された主題を読んで理解すれば、当業者は、二相レジーム(例えば、液体および蒸気)で作用して、本明細書で説明されるような蒸発冷却を提供することが可能である多くの他の熱伝導流体を、同様に使用してもよいことを認識するであろう。
【0036】
上側窓支持構造239の内側壁は、機械加工されるか、エッチングされるか(例えば、化学エッチングされるか、またはレーザーエッチングされる)、または他の方法でその内部に形成された多数の毛管状溝205を含み得る。毛管状溝205は、円錐構造221の内部部分に形成された、誘電体窓215の熱によって生成された蒸気211Aから熱伝導流体凝縮液211Bを輸送するための経路を提供する。誘電体窓215の最上面はまた、複数の毛管状溝209を含み、任意で、1つ以上のタイプの液体ウィッキング材料、例えばメッシュ材料、多孔質の(または部分的に多孔質の)焼結粉末、焼結セラミック、焼結ポリマー、または当技術分野で公知の別の毛管状構造を備えるウィック構造をさらに含んでもよい(毛管およびウィッキング材料は、
図2では容易に見えないが、以下の
図4A~4Cを参照してより詳細に説明される)。
【0037】
毛管状溝209の形成は、上側窓支持構造239の内側壁上に形成された毛管状溝205と同じであるか、または類似していてもよい。しかしながら、上側窓支持構造239の内側壁上の毛管状溝は、誘電体窓215の最上部に戻る熱伝導流体の物質輸送を増大させるために、ほぼ垂直に向けられるように形成される。毛管状溝209は、熱伝導流体凝縮液211Bを、誘電体窓215の最上部をわたって戻るように輸送し続ける。いったん熱伝導流体凝縮液211Bが、誘電体窓215から充分な熱を受けて、凝縮液を再び蒸気211Aの相に変化させると、再び熱力学的冷却サイクル全体が開始される。
【0038】
したがって、ウィック構造は、熱伝導流体凝縮液211Bを排出させ、誘電体窓215の上面全体に分配させる。誘電体窓215からの熱負荷が、誘電体窓215の温度を維持することができない場合については、加熱された水溜め(以下に
図5Aおよび5Bを参照して示され、説明される)が設けられ、それによって、蒸気211Aおよび熱伝導流体凝縮液211Bが、上述された二相熱力学的サイクルを開始して、誘電体窓215を冷却し得る。
【0039】
結果として、したがって、ヒートパイプ冷却システム200は、熱伝導性および相転移の両方の原理を組み合わせて、誘電熱体窓215からの熱を、2つの固体界面を含む円錐構造221に伝達する熱伝達デバイスである。そして次に、円錐構造221は、内部に含まれる冷却コイル219Aおよび熱伝導流体219Bによってさらに冷却される。ヒートパイプ(誘電体窓215)の高温界面において、熱伝導性固体面と接触している熱伝導流体凝縮液211Bは、誘電体窓215の最上面から熱を吸収することによって蒸気211Aになる。次いで、蒸気211Aは、ヒートパイプ(円錐構造221)の低温界面部に移動し、凝縮して液体に戻り、それによって、誘電体窓215との接触から得られた潜熱を放出する。次いで液体は、例えば、毛管作用(毛管状溝205)と重力との組み合わせを通して高温界面(誘電体窓215)に戻り、熱力学的サイクルを繰り返す。様々な実施形態では、選択された熱伝導流体の物理的特性、およびヒートパイプ冷却システム200の全体的な物理的サイズに少なくとも部分的に依存して、1リットル/分(lpm)を超える流体を蒸発させた後に凝縮させ、サイクルを再開し得る。
【0040】
図3は、
図2のヒートパイプ冷却システム200の上面
図300を示す。したがって、上面
図300は、ヒートパイプ冷却システム200における構成要素の例示的な配置の付加的な詳細を提供するものとして、
図2を補足する。当業者は、開示された主題を読んで理解することによって、構成要素の付加的な、または変形の配置が実現でき、依然として開示された主題の範囲内であることを認識するであろう。
【0041】
図4A~4Cは、冷却剤分配チャネルの様々な例示的な実施形態を示す。
図4A~4Cの各々において、溝、メッシュ材料、多孔質焼結粉末、または別の毛管構造からなるウィック構造が、誘電体窓215の最上面403上に形成される。様々な実施形態では、溝と多孔質焼結構造との組み合わせを、凝縮液の強化された分配と併用してもよい。例えば、溝401の第1のパターン400、溝411の第2のパターン410、および溝431の第3のパターン430が、
図4A、4B、および4Cにそれぞれ示される。
図4A~4Cおよび
図2を並行して参照すると、これらのパターンの各々は、上側窓支持構造239(
図2を参照)の内部の外周上の毛管状溝205からの熱伝導流体凝縮液211Bが、誘電体窓215の最上面403全体に流れ、それによって誘電体窓215から熱伝導流体に熱を伝達することを可能にするように配置される。いったん充分な熱が熱伝導流体に移送されると、流体は次いで、熱伝導体窓215の最上面403から蒸発し、熱力学的状態が液体から蒸気211Aに変化する。
【0042】
開示された主題を読んで理解することによって、当業者は、どのようにして溝401、411、431を通って流れる凝縮液の体積に基づいて、物理的寸法(例えば、溝401、411、431の深さおよび幅がどの程度か)、流体(凝縮液)に移送される熱量、液体の熱容量、誘電体窓215の厚さ、および当技術分野で公知の他の要因を決定する方法を認識するであろう。また、当業者は、溝401、411、431が形成され得る多数の他のパターンを認識するであろう。
【0043】
ここで
図5Aを参照すると、開示された主題の様々な実施形態による冷却剤予熱器500の一実施形態が示される。上側窓支持構造239および円錐構造221は、リザーバ/ヒータ部503Aを含んで示され、リザーバ/ヒータ部503Aは、誘電体窓215を超えて延びている。水溜め収納部505Aは、上側窓支持構造239の下側の下方に、かつ誘電体窓215の直径の外側に形成される(
図6も参照)。堰構造501は、液体が誘電体窓215の上方の所定深さを超えると、液体が水溜め収納部505Aに流入することを可能にする。上述の冷却剤蒸気サイクルは、誘電体窓215が、反応チャンバ105の内側部分237内のプラズマ反応により加熱されたときに機能する(
図1を参照)。しかしながら、誘電体窓215が比較的低温であり(例えば、システムメンテナンス後またはツールの起動時等のプラズマ起動時)、そのため、誘電体窓215が、熱伝導流体を上述の蒸気状態に導くために充分な熱を提供できない場合、別個の加熱器を使用してもよい。したがって、誘電体窓215は低温でもよく、円錐構造221(凝縮構造)は、誘電体窓215よりも高温であってもよい。この状況では、熱は、次いで誘電体窓215に、または誘電体窓215から効果的に流れない。そのような場合では、開示された主題は、以下により詳細に説明するように、外部から熱を提供することを可能にする特徴を含んでもよい。
【0044】
引き続き
図5Aを参照すると、水溜収納部505A内の熱伝導流体507は、加熱されてもよい。例えば、電気ヒータ要素509を使用して、誘電体窓215が低温である場合に熱伝導流体507に初期レベルの熱を提供してもよい。熱伝導流体507は、上記のように、チャネル235内部で運ばれる熱伝導流体と同じであってもよく、または類似していてもよい。
【0045】
堰構造501は、誘電体窓215上で凝縮する液体が、水溜め収納部505Aの中に溢れ出ることを可能にする。熱サイフォンシステムの液体量は、ヒートパイプ冷却システム200(
図2を参照)が初期温度にあり、基本的に全ての熱伝導流体(作動流体)が液体状態であるとき、水溜め収納部505Aが、少なくとも部分的に充填されるように制御される。次いで、水溜め収納部505Aは、上述のように、電気ヒータ要素509によって加熱され得る。
【0046】
図5Bは、開示された主題の様々な実施形態による、上側チャンバに組み込まれた冷却剤予熱器510の別の実施形態を示す。上述したように、
図5Aと同様に、上側窓支持構造239および円錐構造221は、リザーバ/ヒータ部503Bを含んで示され、これは、誘電体窓215(
図6も参照)を超えて延びている。水溜め収納部505Bは、上側窓支持構造239の下側の下方に、かつ誘電体窓215の直径の外側に形成される。
図5Aを参照して上記で提供された説明と同様に、堰構造501は、液体が誘電体窓215の上方の所定深さを超えると、液体が水溜め収納部505Bに流入することを可能にする。この場合、熱伝導流体515は、チャネル513を取り囲む温度制御ブロック511によって加熱され得る。
【0047】
温度制御ブロック511は、外部の温度制御部(図示せず)に結合されてもよい。外部の温度制御部に供給される熱は、当技術分野で公知の多くの加熱方式、例えば製造施設の様々な機器から排出された熱を再利用して、施設の冷却のために放出することによって、少なくとも部分的に加熱され得る。開示された主題を読んで理解することによって、当業者は、温度制御ブロック511に熱を提供するための多くの他の方式を認識するであろう。
【0048】
チャネル513は、本明細書で説明された熱伝導流体か、またはさもなければ当技術分野で公知の熱伝導流体のいずれかで充填され得るか、または部分的に充填され得る。熱伝導流体515は、チャネル513内部に封入された熱伝導流体と同じであるか、または類似していてもよい。次いで、チャネル513および熱伝導流体515の両方が、温度制御ブロック511によって加熱され、ヒートパイプ冷却システム200(
図2を参照)に充分な熱を提供して、本明細書で説明された二相熱力学的サイクルを開始し得る。
【0049】
図5Aおよび5Bの両方を参照すると、代替のまたは付加的な実施形態では、誘電体窓215が(例えば、プラズマ処理反応が生じることにより)加熱された後、ヒートパイプ冷却システム200の上部からの熱を除去するために使用される熱伝導流体を使用して、水溜め収納部505A、505Bを加熱し得る、または
図5Aおよび
図5Bの両方の方法の組み合わせを使用し得る。水溜め収納部505A、505Bが加熱されると、誘電体窓215の表面上で蒸気が凝縮し、それによって、液体が堰構造501を越えて再度流れ始め、水溜め収納部505A、505Bに戻る。この液体の循環は、入熱が十分である場合、ヒートパイプ冷却システム200(
図2を参照)が円錐構造221の温度と、ほぼ等しい温度を有する等温状態に到達することにつながる。
【0050】
図5Aおよび5Bは、誘電体窓215と共に使用される熱伝導流体の温度が、本明細書で説明された熱力学的プロセスを開始するために充分な熱レベルまで引き上げられることを可能にする、2つの方法のみを説明する。しかしながら、開示された主題を読んで理解することにより、当業者は、本明細書で説明された二相プロセスを開始するために、誘電体窓215を冷却状態から加熱する他の方法を認識するであろう。したがって、誘電体窓215と共に使用される熱伝導流体を加熱するその他の手段は、開示された主題の範囲内であると考えられる。
【0051】
図6は、様々な実施形態による上側窓支持構造239およびコイル支持リング227の上面
図600の一実施形態を示す。
図6は、
図2、
図5A、および
図5Bに関して詳細に上述されている。したがって、
図6の上面
図600は、これらの図の付加的な詳細を補い、また当業者に対する付加的情報を提供する。
【0052】
全体として、本明細書に包含される開示された主題は概して、半導体製造環境(製造工場)で動作可能であり、かつツールの部分を冷却するために使用され得るヒートパイプ冷却システムを説明しているか、またはそれに関連している。そのようなツールは、様々なタイプの蒸着(プラズマ系ツール、例えば原子層堆積(ALD)、化学気相堆積(CVD)、プラズマ励起化学気相堆積(PECVD)などを含む)、およびエッチングツール(例えば、反応性イオンエッチング(RIE)ツール)を含み得る。したがって、様々な実施形態では、開示された主題は、プラズマ化反応器を冷却するための熱管理システムに関連する。また、開示された主題は、様々なタイプの熱処理炉(例えば、急速熱アニーリングおよび酸化等)、イオン注入、および様々な製造工場で見られ、かつ当業者に公知の様々な他のプロセスおよび計測ツールでも使用され得る。しかしながら、開示された主題は、半導体環境に限定されず、数多くの機械ツール環境、例えばロボット組立環境、製造環境、および機械加工環境での冷却作業(例えば、物理気相堆積(PVDツール)を使用する作業を含む)、ならびに種々の他の環境で使用され得る。本明細書で提供された開示を読んで理解することによって、当業者は、開示された主題の様々な実施形態を、他のタイプのプロセスツール、並びに種々多様な他のツール、機器、および構成要素と併用してもよいことを認識するであろう。
【0053】
本明細書で使用される場合、「または」という用語は、包括的または排他的な意味で解釈され得る。さらに、当業者には、提供された開示を読んで理解することにより、他の実施形態が理解されるであろう。さらに、本明細書で提供された開示を読んで理解することにより、当業者は、本明細書で提供された技術および例の様々な組み合わせは全て、様々な構成において適用し得ることを容易に理解するであろう。
【0054】
様々な実施形態が別個に述べられているが、これらの別個の実施形態は、独立した技術または設計と見なされることは意図されていない。上記で示されたように、様々な部分の各々が相互に関連していてもよく、各々が別個に、または本明細書で述べられた他の実施形態と組み合わせて使用されてもよい。例えば、方法、動作、およびプロセスの様々な実施形態が説明されてきたが、これらの方法、動作、およびプロセスが別個に、または様々に組み合わせて使用されてもよい。
【0055】
当業者には、本明細書で提供された開示を読んで理解することによって明らかであるように、結果として、多くの改変および変形が可能である。さらに、本明細書に列挙されたものに加えて、本開示の範囲内での機能的に同等の方法およびデバイスは、前述の説明から当業者には明らかであろう。いくつかの実施形態の部分および特徴、材料、ならびに構築技術は、他の部分および特徴、材料、ならびに構築技術に含まれるか、または置き換えられてもよい。そのような改変および変形は、添付の特許請求の範囲に含まれることが意図されている。したがって、本開示は、添付の特許請求の範囲の用語に加えて、そのような特許請求の範囲の権利が付与される同等物の範囲全体によってのみ限定されるべきである。また、本明細書で使用される用語は、特定の実施形態のみを説明することを目的とし、限定することは意図されていないことも理解されるべきである。
実施例
【0056】
第1の実施例では、開示された主題は、切り取られた上部を有する円錐構造を含むヒートパイプ冷却システムである。円錐構造は、誘電体窓の上方に配置される。円錐構造は、誘電体窓と円錐構造との間の容積内部に形成された第1の熱伝導流体からの蒸気を凝縮する。少なくとも1つの冷却コイルが、円錐構造の外側部分に近接して形成される。
【0057】
第1の実施例の少なくとも1つの冷却コイルは、内部の第2の熱伝導流体を輸送する。
【0058】
前述の実施例のいずれかにおいて、誘電体窓が加熱される動作中、第1の熱伝導流体は、誘電体窓から充分な熱を受けて、第1の熱伝導流体を液相から気相に変化させ、気相は、円錐構造と接触した後、凝縮された蒸気から凝縮液を形成する。
【0059】
前述の実施例のいずれかにおいて、少なくとも1つの冷却コイルは、円錐構造の外側部分に近接して形成され、円錐構造の外側部分と直接熱接触する。
【0060】
前述の実施例のいずれかにおいて、第1の熱伝導流体は、選択可能な沸点を有する誘電性流体であり、液相レジームおよび気相レジームを含む二相レジームで作用し、誘電体窓の蒸発冷却を提供できる。
【0061】
前述の実施例において、選択可能な沸点は、誘電体窓と円錐構造との間の容積内部の圧力において、約55℃~約270℃の範囲内で選択可能である。
【0062】
前述の実施例のいずれかにおいて、ヒートパイプ冷却システムは、円錐構造および誘電体窓の両方のそれぞれの外周に機械的に結合された上側窓支持構造を含む。
【0063】
前述の実施例において、毛管状溝は、上側窓支持構造の内部の外周上に形成され、誘電体窓の最上面全体に第1の熱伝導流体を流す。
【0064】
前述の実施例のいずれかにおいて、誘電体窓の最上面は、第1の熱伝導流体が流れる複数の毛管状溝を含む。
【0065】
前述の実施例のいずれかにおいて、誘電体窓の最上面は、メッシュ材、少なくとも部分的に多孔質の焼結粉末、焼結セラミック、および焼結ポリマーを含む材料から選択された1つ以上の材料を含む1つ以上のタイプの液体ウィッキング材を備えるウィック構造を含む。
【0066】
前述の実施例のいずれかにおいて、ヒートパイプ冷却システムは、加熱され得る水溜めを含む。水溜めは、第1の熱伝導流体の二相熱力学的サイクルを開始させるように、誘電体窓に近接して形成される。
【0067】
前述の実施例において、ヒートパイプ冷却システムは、液体が誘電体窓の上方の所定深さを超えた場合、第1の熱伝導流体からの液体を水溜めに流入させることを可能にするための堰構造を含む。
【0068】
前述の実施例のいずれかにおいて、第1の熱伝導流体は、第1の熱伝導流体内部の気泡形成を低減させるのに充分に薄い層内で、誘電体窓上に分配される。
【0069】
別の実施例においては、開示された主題は、プラズマ系反応器内の少なくともいくつかの構成要素からの熱を除去するための熱管理システムである。熱管理システムは、誘電体窓の上方に配置された円錐構造を含む。円錐構造は、誘電体窓と円錐構造との間の透析内部に入れられた第1の熱伝導流体からの蒸気を凝縮するように配置される。円錐構造の内面は、円錐構造の中心部から円錐構造の外周に向かって下向きの傾斜を有する。少なくとも1つの冷却コイルは、円錐構造に近接して形成される。少なくとも1つの冷却コイルは、内部の第2の熱伝導流体を輸送するように配置される。
【0070】
熱管理システムの別の実施例においては、円錐構造は、切り取られた上部を含み、それによって、一種の円錐台状構造を形成する。上部は、円錐構造の中心部付近に位置する。
【0071】
熱管理システムの前述の実施例のいずれかにおいて、プラズマ系反応器の動作中、第1の熱伝導流体は、誘電体窓から充分な熱を受けて、第1の熱伝導流体を液相から気相に変化させる。気相は、円錐構造と接触した後、凝縮された蒸気から凝縮液を形成する。
【0072】
熱管理システムの前述の実施例のいずれかにおいて、少なくとも1つの冷却コイルは、円錐構造の外側部分上に形成され、円錐構造の外側部分と直接熱接触する。
【0073】
熱管理システムの前述の実施例のいずれかにおいて、第2の熱伝導流体は、外部ポンプによって少なくとも1つの冷却コイル内部を循環する。
【0074】
熱管理システムの前述の実施例のいずれかにおいて、円錐構造は、銅、銅合金、亜鉛合金、アルミニウム、アルミニウム合金、ステンレス鋼、および高性能合金を含む材料から選択された少なくとも1つの材料を含む1つ以上の熱伝導性材料から形成される。
【0075】
熱管理システムの前述の実施例のいずれかにおいて、円錐構造は、炭素含浸誘電材料および炭素含浸ポリマー材料を含む材料から選択された少なくとも1つの材料を含む1つ以上の熱伝導性材料から形成される。
【0076】
熱管理システムの前述の実施例のいずれかにおいて、誘電体窓の最上面は、第1の熱伝導流体が流れる多数の毛管状溝を含む。
【0077】
熱管理システムの前述の実施例のいずれかにおいて、本システムは、加熱され得る水溜めを含む。水溜めは、誘電体窓に近接している。水溜めは、第1の熱伝導流体の二相熱力学的サイクルを開始させる。
【0078】
熱管理システムの前述の実施例のいずれかにおいて、本システムは、液体が誘電体窓の上方の所定深さを超えた場合、第1の熱伝導流体からの液体を水溜めに流入させることを可能にするための堰構造を含む。
【0079】
別の実施例においては、開示された主題は、プラズマ系反応器内の誘電体窓からの熱を除去する熱サイフォンである。熱サイフォンは、誘電体窓の上方に配置された円錐構造を含む。円錐構造は、誘電体窓と円錐構造との間の容積内部に入れられた第1の熱伝導流体からの蒸気を凝縮するように配置される。円錐構造の内面は、円錐構造の中心部から円錐構造の外周に向かって下向きの傾斜を有する。本システムはさらに、円錐構造上に形成された少なくとも1つの冷却コイルを含む。少なくとも1つの冷却コイルは、内部の第2の熱伝導流体を輸送するように配置される。水溜めは、加熱されるように配置され、誘電体窓に近接し、かつ誘電体窓の下方に形成されて、第1の熱伝導流体の二相熱力学的サイクルを開始させる。
【0080】
熱サイフォンの別の実施例では、液体が誘電体窓の上方の所定深さを超えた場合、第1の熱伝導流体からの液体を水溜めに流入させることを可能にするための堰構造が含まれる。
【0081】
熱サイフォンの前述の実施例のいずれかにおいて、誘電体窓の最上面は、第1の熱伝導流体が流れる複数の毛管状溝を含む。
【0082】
本開示の要約は、読者が技術的開示の本質を素早く把握することを可能にするために提供される。要約は、特許請求の範囲を解釈したり限定したりするためには使用されないことを理解した上で提示されている。加えて、前述の詳細な説明では、様々な特徴が、本開示を合理化することを目的として、単一の実施形態に共にグループ化され得ると見受けられる場合がある。この開示方法は、特許請求の範囲を限定するものと解釈されるべきではない。よって、以下の特許請求の範囲は、ここで詳細な説明に組み込まれ、各特許請求の範囲は、それ自体で、別個の実施形態である。
【国際調査報告】