IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 長江存儲科技有限責任公司の特許一覧

特表2022-539339拡大した接合部限界寸法を有する3次元メモリデバイスおよびそのデバイスを形成するための方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-09-08
(54)【発明の名称】拡大した接合部限界寸法を有する3次元メモリデバイスおよびそのデバイスを形成するための方法
(51)【国際特許分類】
   H01L 27/11582 20170101AFI20220901BHJP
   H01L 21/336 20060101ALI20220901BHJP
   H01L 27/11556 20170101ALI20220901BHJP
【FI】
H01L27/11582
H01L29/78 371
H01L27/11556
【審査請求】有
【予備審査請求】未請求
(21)【出願番号】P 2021576669
(86)(22)【出願日】2020-01-21
(85)【翻訳文提出日】2021-12-23
(86)【国際出願番号】 CN2020073359
(87)【国際公開番号】W WO2021146878
(87)【国際公開日】2021-07-29
(81)【指定国・地域】
(71)【出願人】
【識別番号】519237948
【氏名又は名称】長江存儲科技有限責任公司
【氏名又は名称原語表記】Yangtze Memory Technologies Co.,Ltd.
【住所又は居所原語表記】No.88 Weilai 3rd Road,East Lake High-tech Development Zone,Wuhan,Hubei,China
(74)【代理人】
【識別番号】100108453
【弁理士】
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100110364
【弁理士】
【氏名又は名称】実広 信哉
(74)【代理人】
【識別番号】100133400
【弁理士】
【氏名又は名称】阿部 達彦
(72)【発明者】
【氏名】ヨンガン・ヤン
【テーマコード(参考)】
5F083
5F101
【Fターム(参考)】
5F083EP02
5F083EP18
5F083EP22
5F083EP34
5F083EP76
5F083ER22
5F083GA10
5F083GA27
5F083HA02
5F083HA06
5F083JA04
5F083JA05
5F083JA19
5F083JA36
5F083JA37
5F083JA39
5F083KA13
5F083PR05
5F083PR06
5F083PR12
5F101BA01
5F101BA45
5F101BB02
5F101BD16
5F101BD22
5F101BD30
5F101BD34
(57)【要約】
3Dメモリデバイス(200、300)及びそのデバイスを形成する方法が提供される。拡大した接合部限界寸法を有する3Dメモリデバイス(200、300)は、基板(202、302)と、基板(202、302)上に交互に積み重ねられた複数の導体層(209、309)と誘電体層(206、306)とを有するメモリスタックと、第1のメモリスタックを通って垂直に延在するメモリストリングであって、メモリストリングの側壁に沿ったメモリ膜を有するメモリストリングとを備える。メモリ膜(210、310)は、誘電体層(206、306)を介在させた不連続な遮断層(212、312)を備える。
【特許請求の範囲】
【請求項1】
基板と、
前記基板上に交互に積み重ねられた複数の導体層と誘電体層とを備えるメモリスタックと、
前記第1のメモリスタックを通って垂直に延在するメモリストリングであって、前記メモリストリングの側壁に沿ったメモリ膜を備えるメモリストリングと
を備える3次元(3D)メモリデバイスであって、
前記メモリ膜が、前記誘電体層を介在させた不連続な遮断層を備える、三次元(3D)メモリデバイス。
【請求項2】
前記不連続な遮断層が1つまたは複数の部分を備え、
少なくとも1つの部分が導体層の凹部にあって、隣接した誘電体層と、前記導体層の側面とによって囲まれている、請求項1に記載の3Dメモリデバイス。
【請求項3】
前記不連続な遮断層が全面的に不連続である、請求項1または2に記載の3Dメモリデバイス。
【請求項4】
前記不連続な遮断層が部分的に不連続である、請求項1または2に記載の3Dメモリデバイス。
【請求項5】
前記不連続な遮断層の厚さが約4nm~約10nmである、請求項1から4のいずれか一項に記載の3Dメモリデバイス。
【請求項6】
前記メモリ膜が貯蔵層およびトンネリング層をさらに備える、請求項1から5のいずれか一項に記載の3Dメモリデバイス。
【請求項7】
前記不連続な遮断層および前記誘電体層のうちの少なくとも1つが酸化シリコンを含む、請求項1から6のいずれか一項に記載の3Dメモリデバイス。
【請求項8】
前記メモリスタックが、接合部酸化物層によって分離された上部デッキおよび下部デッキを備え、
前記不連続な遮断層が、前記上部デッキおよび前記下部デッキを通って延在し、
前記不連続な遮断層の側壁が、前記接合部酸化物層の側壁と実質的に同一平面にある、請求項1から7のいずれか一項に記載の3Dメモリデバイス。
【請求項9】
前記不連続な遮断層の前記側壁が、前記誘電体層の側壁と実質的に同一平面にある、請求項8に記載の3Dメモリデバイス。
【請求項10】
基板と、
前記基板上に交互に積み重ねられた複数の導体層と誘電体層とを備えるメモリスタックと、
前記第1のメモリスタックを通って垂直に延在するメモリストリングであって、前記メモリストリングの側壁に沿ったメモリ膜を備えるメモリストリングと
を備える3次元(3D)メモリデバイスであって、
前記メモリ膜が、前記誘電体層を介在させた不連続な遮断層を備え、
前記不連続な遮断層が複数の部分を備え、
前記隣接した部分のどれも互いに接触しない、3次元(3D)メモリデバイス。
【請求項11】
前記不連続な遮断層の厚さが約4nm~約10nmである、請求項10に記載の3Dメモリデバイス。
【請求項12】
前記メモリ膜が貯蔵層およびトンネリング層をさらに備える、請求項10または11に記載の3Dメモリデバイス。
【請求項13】
前記不連続な遮断層および前記誘電体層のうちの少なくとも1つが酸化シリコンを含む、請求項10から12のいずれか一項に記載の3Dメモリデバイス。
【請求項14】
前記メモリスタックが、接合部酸化物層によって分離された上部デッキおよび下部デッキを備え、
前記不連続な遮断層が、前記上部デッキおよび前記下部デッキを通って延在し、
前記不連続な遮断層の側壁が、前記接合部酸化物層の側壁と実質的に同一平面にある、
請求項10から13のいずれか一項に記載の3Dメモリデバイス。
【請求項15】
3次元(3D)メモリデバイスを形成するための方法であって、
基板上に、交互に積み重ねられた犠牲層と誘電体層とを含む誘電体デッキを形成するステップと、
前記誘電体デッキを通って垂直に延在する開口を形成するステップと、
前記開口の側壁と接する、前記犠牲層の側面をエッチングするステップと、
前記犠牲層がエッチングされる位置に、不連続な遮断層を形成するステップと、
続いて、前記不連続な遮断層および前記介在する誘電体層の上に、貯蔵層、トンネリング層、および半導体チャネルを形成するステップと
を含む方法。
【請求項16】
前記不連続な遮断層が1つまたは複数の部分を含み、
少なくとも1つの部分が導体層の凹部に形成され、隣接した誘電体層と前記導体層の側面とによって囲まれている、請求項15に記載の方法。
【請求項17】
前記不連続な遮断層が全面的に不連続である、請求項15または16に記載の方法。
【請求項18】
前記不連続な遮断層が部分的に不連続である、請求項15または16に記載の方法。
【請求項19】
前記誘電体スタックの前記犠牲層を前記導体層で置換することにより、交互に積み重ねられた導体層と前記誘電体層とを備えるメモリスタックを形成するステップをさらに含む、請求項15から18のいずれか一項に記載の方法。
【請求項20】
前記開口の前記側壁に接する、前記犠牲層の前記側面が約1nm~約4nmエッチングされる、請求項15から19のいずれか一項に記載の方法。
【請求項21】
前記不連続な遮断層を形成するステップが、前記犠牲層の前記エッチングされた側面を酸化させるステップを含む、請求項15から20のいずれか一項に記載の方法。
【請求項22】
前記不連続な遮断層が熱酸化または湿式化学酸化のうちの1つによって形成される、請求項21に記載の方法。
【請求項23】
酸化されている前記犠牲層の厚さが約3nm~約6nmである、請求項21または22に記載の方法。
【請求項24】
前記不連続な遮断層の厚さが約4nm~約10nmである、請求項15から23のいずれか一項に記載の方法。
【請求項25】
前記不連続な遮断層および前記誘電体層のうちの少なくとも1つが酸化シリコンを含む、請求項15から24のいずれか一項に記載の方法。
【請求項26】
前記犠牲層が窒化シリコンを含む、請求項15から25のいずれか一項に記載の方法。
【請求項27】
前記犠牲層の前記側面をエッチングする前に、前記開口の下部に半導体プラグを形成するステップをさらに含む、請求項15から26のいずれか一項に記載の方法。
【請求項28】
前記誘電体デッキが、接合部酸化物層によって分離された上部デッキおよび下部デッキを備え、
前記不連続な遮断層が、前記上部デッキおよび前記下部デッキを通って延在し、
前記不連続な遮断層の前記側壁が、前記接合部酸化物層の側壁と実質的に同一平面にある、
請求項15から27のいずれか一項に記載の方法。
【請求項29】
前記不連続な遮断層の前記側壁が、前記誘電体層の側壁と実質的に同一平面にある、請求項28に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示の実施形態は、3次元(3D)メモリデバイスおよびその製作方法に関し、詳細には、拡大した接合部限界寸法(CD)を有する3Dメモリデバイスおよびその製作方法に関する。
【背景技術】
【0002】
平坦なメモリセルは、プロセス技術、回路設計、プログラミングアルゴリズム、および製作プロセスを改善することによって、より小さいサイズにスケーリングされる。しかしながら、メモリセルのフィーチャサイズが下限に近づくにつれて、プレーナプロセスおよび製造技術の難易度が高まり、高費用になる。その結果、平坦なメモリセルに関する記憶密度は上限に近づく。
【0003】
3Dメモリアーキテクチャは、平坦なメモリセルにおける密度制約に対処することができる。3Dメモリアーキテクチャは、メモリアレイと、メモリアレイ間の信号を制御するための周辺デバイスとを含む。3Dメモリアーキテクチャには、同じビット密度の平坦なメモリセルよりも占有するウェハ領域が小さいという利点がある。3Dメモリアーキテクチャにおけるメモリストリングは、ストリングが基板上で垂直に配置されるという点で、平坦なメモリセルのものと異なる。
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、セルサイズが縮小し続けるにつれて、既存の3Dメモリ構造および製造方式のコスト、信頼性、および性能に関して様々な問題が生じる。したがって、これらの問題を解決するための新規の3Dメモリデバイスおよびその製作方法が必要とされている。
【課題を解決するための手段】
【0005】
拡大した接合部限界寸法を有する3Dメモリデバイスおよびそのデバイスを形成するための方法の実施形態が本明細書で開示される。
【0006】
一例において開示される3Dメモリデバイスは、基板と、基板上に交互に積み重ねられた複数の導体層と誘電体層とを有するメモリスタックと、メモリストリングの側壁に沿ったメモリ膜を有し、第1のメモリスタックを通って垂直に延在するメモリストリングとを含む。メモリ膜は、誘電体層を介在させた不連続な遮断層を含む。
【0007】
別の例において開示される3Dメモリデバイスは、基板と、基板上に交互に積み重ねられた複数の導体層と誘電体層とを有するメモリスタックと、メモリストリングの側壁に沿ったメモリ膜を有し、第1のメモリスタックを通って垂直に延在するメモリストリングとを含む。メモリ膜は、誘電体層を介在させた不連続な遮断層を含む。不連続な遮断層は複数の部分を有し、隣接した部分は、どれも互いに接触しない。
【0008】
もう一つの例では、3Dメモリデバイスを形成するための方法が開示される。基板上に、交互に積み重ねられた犠牲層と誘電体層とを含む誘電体デッキが形成される。第1の誘電体デッキを通って垂直に延在する開口が形成される。犠牲層の、開口の側壁に接する側面がエッチングされる。犠牲層がエッチングされる位置に、不連続な遮断層が形成される。次に、不連続な遮断層および介在する誘電体層の上に、貯蔵層、トンネリング層、および半導体チャネルが形成される。
【0009】
添付図面は、本明細書に組み込まれて本明細書の一部を構成するものであって、本開示の実施形態を示し、説明とともに、本開示の原理について説明し、当業者が本開示を作製したり使用したりすることを可能にするようにさらに役立つ。
【図面の簡単な説明】
【0010】
図1】例示的3Dメモリデバイスの断面図である。
図2A】本開示のいくつかの実施形態による、拡大した接合部限界寸法を有する例示的3Dメモリデバイスの断面図である。
図2B】本開示のいくつかの実施形態による、拡大した接合部限界寸法を有する別の例示的3Dメモリデバイスの断面図である。
図3A】本開示のいくつかの実施形態による、拡大した接合部限界寸法を有する3Dメモリデバイスを形成するための例示的製作プロセスの図である。
図3B】本開示のいくつかの実施形態による、拡大した接合部限界寸法を有する3Dメモリデバイスを形成するための例示的製作プロセスの図である。
図3C】本開示のいくつかの実施形態による、拡大した接合部限界寸法を有する3Dメモリデバイスを形成するための例示的製作プロセスの図である。
図3D】本開示のいくつかの実施形態による、拡大した接合部限界寸法を有する3Dメモリデバイスを形成するための例示的製作プロセスの図である。
図3E】本開示のいくつかの実施形態による、拡大した接合部限界寸法を有する3Dメモリデバイスを形成するための例示的製作プロセスの図である。
図3F】本開示のいくつかの実施形態による、拡大した接合部限界寸法を有する3Dメモリデバイスを形成するための例示的製作プロセスの図である。
図4】本開示のいくつかの実施形態による、拡大した接合部限界寸法を有する3Dメモリデバイスを形成するための例示的方法の流れ図である。
【発明を実施するための形態】
【0011】
本開示の実施形態が、添付図面を参照しながら以下で詳細に説明される。
【0012】
特定の構成および機構が論じられるが、これは説明のみを目的とするものであることを理解されたい。当業者なら、本開示の精神および範囲から逸脱することなく他の構成および機構が使用され得ることを認識するであろう。当業者には、本開示が様々な他の用途にも採用され得ることが明白であろう。
【0013】
明細書における「1つの(one)実施形態」、「一(an)実施形態」、「例示的実施形態」、「いくつかの実施形態」、「他の実施形態」などに対する参照は、説明される実施形態が、特定の特徴、構造または特性を含み得るが、すべての実施形態が必ずしも特定の特徴、構造または特性を含むとは限らないことを示すことが留意される。その上に、そのような慣用句は、必ずしも同一の実施形態を指すわけではない。さらに、一実施形態に関連して特定の特徴、構造または特性が記述されたときには、他の実施形態に関連してそのような特徴、構造、または特性を達成することは、明示的に記述されたか否かにかかわらず当業者の知見の範囲内にあるはずである。
【0014】
一般に、専門用語は、文脈における用法から少なくとも部分的に理解されよう。たとえば、本明細書で使用される「1つまたは複数の」という用語は、文脈に少なくとも部分的に依拠して、何らかの特徴、構造または特性を単数形の意味で記述するために使用されてよく、あるいは特徴、構造または特性の組合せを複数形の意味で記述するために使用されてもよい。同様に、「一(a)」、「一(an)」、または「その(the)」などの用語も、文脈に少なくとも部分的に依拠して、単数の用法または複数の用法を伝えるように理解されてよい。加えて、「を基に」という用語は、必ずしも要因の排他的なセットを伝えるようには意図されておらず、これも、文脈に少なくとも部分的に依拠して、必ずしも明確に記述されたものではない追加の要因の存在を許し得ると理解され得る。
【0015】
本開示における「上に」、「の上に」、および「の上方に」は、最も広い意味に解釈されるべきであり、「上に」は、あるものの「直接上に」という意味ばかりでなく、その間に中間のフィーチャまたは層がある場合をも含み、また、「の上に」または「の上方に」は、「の上に」または「の上方に」という意味ばかりでなく、その間に中間のフィーチャまたは層なしで、「その上に」または「その上方に」(すなわち直接その上に)あるという意味をも含み得ることが容易に理解されよう。
【0016】
「下に」、「の下に」、「下部の」、「の上に」、「上部の」などの空間的な相対語は、本明細書では、説明の容易さのために、1つの要素またはフィーチャの、別の要素またはフィーチャとの図に示されたような関係を記述するために使用され得る。空間的な相対語は、図に表された配向に加えて、使用中または動作中のデバイスの別の配向を包含するように意図されている。装置は、違った風に(90度回転されるか、または他の配向に)配向されてよく、本明細書で使用される空間的に相対的な記述子は、それに応じて同様に解釈されてよい。
【0017】
本明細書で使用される「基板」という用語は、続く材料層が加えられる材料を指す。基板自体がパターニングされ得る。基板の上部に追加された材料は、パターニングされ得、またはパターニングされないままであり得る。その上、基板は、シリコン、ゲルマニウム、砒化ガリウム、リン化インジウムなどの種々の半導体材料を含むことができる。あるいは、基板は、ガラス、プラスチック、またはサファイアウェハなどの非導電材料から作製され得る。
【0018】
本明細書で使用される「層」という用語は、厚さを有する領域を含む材料部分を指す。層は、下もしくは上にある構造の全体の上に延在し得、または下もしくは上にある構造の大きさ未満の大きさを有し得る。さらに、層は、均一な連続構造体、またはこの連続構造体の厚さ未満の厚さを有する不均一な連続構造体の領域であり得る。たとえば、層は、連続構造体の頂面と底面との間にある、または頂面および底面における、任意の対の水平面の間にあり得る。層は、水平に、垂直に、かつ/またはテーパ面に沿って延在することができる。基板は層であり得、その中に1つまたは複数の層を含むことができ、ならびに/あるいは1つまたは複数の層を、上に、その上に、かつ/またはその下に有することができる。層は複数の層を含むことができる。たとえば、相互接続層は、1つまたは複数の導体および接触層(その中に相互接続ラインおよび/またはバイア接触が形成される)、ならびに1つまたは複数の誘電体層を含むことができる。
【0019】
本明細書で使用される「公称の/名目上」という用語は、製品またはプロセスの設計段階中に、所望の値を上回る値の範囲および/または下回る値の範囲とともに設定される、構成要素またはプロセス動作に関する特性またはパラメータの所望の値または目標値を指す。値の範囲は、製造プロセスまたは公差におけるわずかな変動に起因し得る。本明細書で使用される「約」という用語は、対象の半導体デバイスに関連した特定の技術ノードに基づいて変化し得る所与の量の値を指示する。「約」という用語は、特定の技術ノードに基づいて、たとえば値の10~30%の範囲内(たとえば値の±10%、±20%、または±30%)で変化する所与の量の値を指示することができる。
【0020】
本明細書で使用される「3Dメモリデバイス」という用語は、基板に対してメモリストリングが垂直方向に延在するように、水平方向に配向された基板上に垂直に配向されたメモリセルトランジスタのストリング(本明細書ではNANDメモリストリングなどの「メモリストリング」と参照される)を有する半導体デバイスを指す。本明細書で使用される「垂直な/垂直に」という用語は、基板の外側面に対して名目上垂直であることを意味する。
【0021】
96以上のレベルを有するものなどの先行技術を用いて3D NANDメモリデバイスを製作する際に通常使用されるデュアルデッキのアーキテクチャは、デッキ間のプラグ構造によって電気的に接続され得る2つの積み重ねられたチャネル構造を含む。デッキ間プラグ構造を形成する前に、アーキテクチャの下部チャネルホールにおいて様々なプロセスが実行され得るように、デッキ間の接合部における窓が開かれてよい。しかしながら、セルサイズの継続的な縮小の結果として、接合部CDが大幅に縮小しており、したがって、それらのプロセスに必要な化学薬品が下部チャネルホールに入るのが困難になるほど、デッキ間の接合部における窓が狭くなっている。
【0022】
図1は、例示的3Dメモリデバイス100の断面図を示す。製作プロセス中の3Dメモリデバイス100は、デュアルデッキのメモリスタック107(下部メモリデッキ107Aおよび上部メモリデッキ107Bを含む)を通って垂直に延在するNANDメモリストリングを含む。下部メモリデッキ107Aおよび上部メモリデッキ107Bの各々が含む複数の対のそれぞれが、基板102上に形成された誘電体層106と導体層109との対(本明細書では「導体層/誘電体層の対」と参照される)を含む。下部メモリデッキ107Aと上部メモリデッキ107Bとは、接合部酸化物層103によって分離されている。上部メモリデッキ107Bを通る上部チャネルホール124および下部メモリデッキ107Aを通る下部チャネルホール122を含むチャネル構造が形成され、このチャネル構造においてNANDメモリストリングが形成され得る。
【0023】
基板102は、シリコン(たとえば単結晶シリコン)、シリコンゲルマニウム(SiGe)、砒化ガリウム(GaAs)、ゲルマニウム(Ge)、シリコンオンインシュレータ(SOI)、絶縁体上ゲルマニウム(GOI)、または他の任意の適切な材料を含む。いくつかの実施形態では、基板102は、研削、エッチング、化学機械研磨(CMP)、またはそれらの任意の組合せによって薄くされた薄化基板(たとえば半導体層)である。3Dメモリデバイス100における構成要素の空間的関係をさらに図示するために、図1にはx軸およびy軸が含まれることが留意される。3Dメモリデバイス100の基板102は、x方向(すなわち水平方向)において水平方向に延在する2つの外側面(たとえば頂面および底面)を含む。本明細書で使用される、3Dメモリデバイス(たとえば3Dメモリデバイス100)の1つの構成要素(たとえば層またはデバイス)が別の構成要素(たとえば層またはデバイス)「上に」、「の上に」、または「の下に」あるかどうかは、基板がy方向において3Dメモリデバイスの最下面に位置するとき、y方向(すなわち垂直方向)において3Dメモリデバイス(たとえば基板102)の基板に関連して判定される。空間的関係を記述するための同一の概念が、本開示の全体にわたって適用される。
【0024】
それぞれのNANDメモリストリングが、上部メモリデッキ107Bと下部メモリデッキ107Aとの両方を通って垂直に延在するメモリ膜110を含む。メモリ膜110は、トンネリング層116、貯蔵層114(「電荷捕獲層」としても知られている)、および遮断層112を含む。NANDメモリストリングがさらに含む半導体チャネル118は、チャネル構造の中に半導体材料を充填することによって形成される。半導体チャネル118に接触するNANDメモリストリングの下部に半導体プラグ105が設けられ、NANDメモリストリングのソース選択ゲートによって制御されるチャネルとして機能する。
【0025】
接合部酸化物層103の位置における円筒形状の直径は、図1に示されるように接合部限界寸法(CD)として表される。チャネル構造の上部におけるすべてのCDの中で通常は接合部CDが最も小さいため、接合部CDの値は、様々な化学薬品の、上部チャネルホール124から下部チャネルホール122まで接合部の通過し易さに対して、直接的な影響を及ぼし得る。チャネル構造の側壁に沿ったメモリ膜(たとえばメモリ膜110)は非常に厚く、したがって、物質がチャネル構造の下部に入るのが困難になるので、接合部CDにおいて多くの開口が必要になるため、従来技術は、接合部CDが狭いという問題に直面する。たとえば、チャネル構造の下部における酸化シリコンをエッチングするために使用される湿式化学薬品が下部に入り込めないときには、アンダーエッチングにより、チャネル構造の最下部においてポリシリコン上に非常に厚い層が生じる恐れがある。別の例では、ポリシリコン半導体チャネルを形成した後に、それを洗浄するための湿式化学薬品を下部から除去するのが困難である場合、オーバーエッチングがポリシリコンの損傷を引き起こす恐れがある。もう一つの例では、乾式エッチングが適用される場合、接合部CDが狭いと、チャネル構造の最下部において酸化物-窒化物-酸化物(ONO)膜のアンダーエッチングが起こり得る。これによって、暗電圧コントラスト(DVC)障害など、欠陥検査の障害がさらに起こり得る。これらのことは、いずれも半導体製作プロセスにおいて理想的ではない。
【0026】
本開示による様々な実施形態は、接合部CDを拡大するための効果的な構造および方法を提供するものである。より詳細には、チャネルホールの側壁に接するシリコン窒化物層の少なくとも一部が、メモリ膜の堆積に先立ってエッチングされ、次いで酸化されて、自然酸化物層を形成する。したがって、2つのデッキ間の接合部に隣接したチャネルホールのCDが拡大され得て、アーキテクチャの下部チャネルホールにおいてさらなるプロセスが実行され得る。
【0027】
図2Aは、本開示のいくつかの実施形態による、拡大した接合部CDを有する例示的3Dメモリデバイス200の断面図を示す。図1に示された3Dメモリデバイス100のように、図2Aの3Dメモリデバイス200も、図1の基板102と同一または類似の特性および実装形態を有する基板202を含み得る。したがって、基板102の説明がここでも同様に適用され得るので、繰り返さない。
【0028】
3Dメモリデバイス200はモノリシック3Dメモリデバイスの一部になり得る。「モノリシック」という用語は、3Dメモリデバイスの構成要素(たとえば周辺デバイスおよびメモリアレイデバイス)が単一の基板上に形成されることを意味する。モノリシック3Dメモリデバイスの製作は、周辺デバイスの処理とメモリアレイデバイスの処理とのコンボルーションによるさらなる制約に遭遇する。たとえば、メモリアレイデバイス(たとえばNANDメモリストリング)の製作には、同一の基板上に形成されたまたはこれから形成される周辺デバイスに関連したサーマルバジェットによる制約がある。
【0029】
あるいは、非モノリシック3Dメモリデバイスの一部であり得る3Dメモリデバイス200において、構成要素(たとえば周辺デバイスおよびメモリアレイデバイス)が、別々の基板上にたとえば一対一のやり方で別個に形成され、次いで結合され得る。いくつかの実施形態では、メモリアレイデバイス基板(たとえば基板202)が、結合された非モノリシック3Dメモリデバイスの基板として残り、周辺デバイス(3Dメモリデバイス200の動作を助長するために使用される、たとえば、示されていないページバッファ、復号器、およびラッチなどの任意の適切なデジタル、アナログ、および/または混合信号の周辺回路を含む)が裏返されて、ハイブリッド結合のために、下にあるメモリアレイデバイス(たとえばNANDメモリストリング)と向かい合う。いくつかの実施形態では、ハイブリッド結合のために、メモリアレイデバイス基板(たとえば基板202)が裏返されて下の周辺デバイス(図示せず)の方へ向いているため、結合された非モノリシック3Dメモリデバイスにおいてメモリアレイデバイスは周辺デバイスの上にあることが理解される。メモリアレイデバイス基板(たとえば基板202)は薄化基板であり得(結合された非モノリシック3Dメモリデバイスの基板ではない)、非モノリシック3Dメモリデバイスの配線工程(BEOL)の相互接続は、薄化メモリアレイデバイス基板の裏面に形成され得る。
【0030】
本開示の実施形態によれば、3Dメモリデバイス200は、メモリセルが、基板202の上にそれぞれ垂直に延在するNANDメモリストリングの配列の形で与えられるNAND型フラッシュメモリデバイスである。各NANDメモリストリングは、それぞれが製作プロセス中に基板202の上に形成された誘電体層206および導体層209を含む複数の対(本明細書では「導体層/誘電体層の対」と称される)の層を通って延在することができる。図2Aに示されるデュアルデッキのメモリスタック207(下部メモリデッキ207Aおよび上部メモリデッキ207Bを含む)を通ってNANDメモリストリングが垂直に延在する。メモリスタック207における導体層/誘電体層の対の数(たとえば32、64、96、128または本開示に適合する任意の他の数)が、3Dメモリデバイス200におけるメモリセルの数を設定することができる。図2Aに示されるように、下部メモリデッキ207Aと上部メモリデッキ207Bとは、接合部酸化物層203によって分離され得る。
【0031】
いくつかの実施形態では、製作プロセスの中頃に形成される誘電体スタック(図示せず)は、それぞれが誘電体層(すなわち誘電体層206)および犠牲層を含む複数の対の層を含む。製作プロセスの最後の方に、メモリスタック207がゲート置換プロセスによって誘電体スタックを置換し、これは各犠牲層を導体層(すなわち導体層209)で置換するものである。ゲート置換の後に、メモリスタック207の中で導体層209と誘電体層206とが垂直方向において互い違いになり得、したがって、基板202上に、交互に積み重ねられた複数の導体層209と誘電体層206とを備えるメモリスタックを生成する。言い換えれば、メモリスタックの上部および下部におけるもの以外は、各導体層209の両側に2つの誘電体層206が隣接し得、各誘電体層206の両側に2つの導体層209が隣接し得る。導体層209のそれぞれが、同一の厚さまたは異なる厚さを有することができる。同様に、誘電体層206のそれぞれが、同一の厚さまたは異なる厚さを有することができる。同様に、導体層209と誘電体層206とのそれぞれが、同一の厚さまたは異なる厚さを有することができる。導体層209は、それだけではないが、タングステン(W)、コバルト(Co)、銅(Cu)、アルミニウム(Al)、ポリシリコン、不純物添加シリコン、ケイ化物、またはそれらの任意の組合せを含む導電材料を含むことができる。誘電体層206は、それだけではないが、酸化シリコン、窒化シリコン、酸窒化シリコン、またはそれらの任意の組合せを含む誘電材料を含むことができる。いくつかの実施形態では、基板202とメモリスタックとの間に絶縁層(図示せず)が形成され、酸化シリコンなどの誘電材料を含む。
【0032】
本開示の実施形態によれば、上部メモリデッキ207Bを通る上部チャネルホール224および下部メモリデッキ207Aを通る下部チャネルホール222を含むチャネル構造が形成され得、このチャネル構造においてNANDメモリストリングが形成され得る。NANDメモリストリングには、上部メモリデッキ207Bと下部メモリデッキ207Aとの両方を通り、NANDメモリストリングの側壁に沿って垂直に延在するメモリ膜210も含まれ得る。メモリ膜210は、トンネリング層216、貯蔵層214(「電荷捕獲層」としても知られている)、および遮断層212を含むことができる。トンネリング層216は、酸化シリコン、酸窒化シリコン、またはそれらの任意の組合せを含むことができる。貯蔵層214は、窒化シリコン、酸窒化シリコン、シリコン、またはそれらの任意の組合せを含むことができる。遮断層212は、酸化シリコン、酸窒化シリコン、高誘電率(高κ)誘電体、またはそれらの任意の組合せを含むことができる。一例では、メモリ膜210は、酸化シリコン/酸窒化シリコン/酸化シリコン(ONO)の複合層を含むことができる。
【0033】
図2Aに示されるように、3Dメモリデバイス200のNANDメモリストリングは半導体チャネル218をさらに含むことができ、これはチャネル構造において半導体材料を充填することによって形成され得る。いくつかの実施形態では、半導体チャネル218は、アモルファスシリコン、ポリシリコン、または単結晶シリコンなどのシリコンを含むことができる。次のプロセスにおいて、チャネルホール222および224の残りの空間は、酸化シリコンなどの誘電材料を含む充填層で部分的または全面的に埋められ得る。3Dメモリデバイス200のチャネル構造は、3Dメモリデバイス100と同様に円筒形状(たとえばピラー形状)を有し得る。いくつかの実施形態によれば、充填層、半導体チャネル218、トンネリング層216、貯蔵層214、および遮断層212は、中央からピラーの外表面に向かってこの順序で放射状に配置されてよい。
【0034】
いくつかの実施形態では、NANDメモリストリングの下部に(たとえば下端に)半導体プラグ205が与えられる。基板202が3Dメモリデバイス200の最下面に位置するとき、本明細書で使用される、構成要素(たとえばNANDメモリストリング)の「上端」はy方向において基板202から遠い終端であり、構成要素(たとえばNANDメモリストリング)の「下端」はy方向において基板202に近い終端である。半導体プラグ205が含み得るシリコンなどの半導体材料は、基板202から任意の適切な方向にエピタキシャルに成長される。いくつかの実施形態では、半導体プラグ205が、基板202と同一材料の単結晶シリコンを含むことが理解される。言い換えれば、半導体プラグ205は、基板202と同一の材料のエピタキシャルに成長された半導体層を含むことができる。いくつかの実施形態では、半導体プラグ205の一部は、基板202の頂面上にあって半導体チャネルに接触している。半導体プラグ205は、NANDメモリストリングのソース選択ゲートによって制御されるチャネルとして機能することができる。
【0035】
本開示と整合性のある実施形態によれば、遮断層212は、誘電体層206が介在する不連続な遮断層であり得る。図2Aに示されるように、遮断層212は複数の小さい部分を含み得、隣接した部分は、垂直方向に沿って誘電体層206によって分離されている。いくつかの実施形態では、小さい部分の数は、垂直方向に沿った導体層209の数に等しくてよい。それぞれの小さい部分は、一端が貯蔵層214に接し、他端が導体層209の1つの層の側面に接し、2つの隣接した誘電体層206とその導体層209の片側とによって囲まれたその導体層209の凹部にある。不連続な遮断層212のそれぞれの小さい部分は、チャネル構造の側壁に接する犠牲層(後に導体層209で置換される)の側面をエッチングし、次いで、熱酸化または(たとえばオゾン含有の化学薬品を使用する)湿式化学酸化などの酸化プロセスによって酸化物層を形成することによって形成され得、このことは図3A図3Fに関連して以下で詳細に説明される。
【0036】
図2Aに示された遮断層212は全面的に不連続であり、遮断層212の隣接した小さい部分のどれも互いに接触しないことを意味する。たとえば、小さい部分2121と小さい部分2122とは、図2Aにおける遮断層212の隣接した小さい部分であって、1つの誘電体層2061によって完全に分離され、貯蔵層214によって覆われている。
【0037】
本開示と整合性のあるいくつかの他の実施形態によれば、図2Bに示された遮断層212は部分的に不連続でよく、少なくとも2つの隣接した小さい部分(たとえば小さい部分2121と2122)から突出してこれらの部分を接続する連続した鉛直層2123が、これらの部分の間に位置する誘電体層2061の側面を覆うことを意味する。連続した鉛直層は、不連続な遮断層212の小さい部分2121および2122を形成するのと同一の酸化プロセスによって形成されてよく、犠牲層をエッチングすることによって生成された浅い凹部の結果として突出し得、このエッチングは、これらの凹部における小さい部分2121および2122の形成に先立つものである。さらにいくつかの他の実施形態では、3個、4個、5個、10個など3つ以上の隣接した小さい部分、またはすべての小さい部分が、1つまたは複数の連続した鉛直層によって接続されてよい。図2Bにおける3Dメモリデバイス250の他の部分は、図2Aに関連して説明された3Dメモリデバイス200のものに類似であり、したがって、それらの位置および機能性は本明細書では繰り返されない。
【0038】
図2Aに戻って、誘電体層206が酸化シリコンを含み、犠牲層が窒化シリコンを含む、いくつかの実施形態では、遮断層212は酸化シリコンを含み得る。酸化プロセス(たとえばチッ素原子およびイオンが自然酸化物から除去される程度)に依拠して、自然酸化物は、もっぱら酸化シリコンであり得、もっぱら酸窒化シリコンであり得、また酸化シリコンと酸窒化シリコンとの混合物であり得ることが理解される。その結果、いくつかの実施形態では、遮断層212は酸化シリコンと酸窒化シリコンとの両方を含む。
【0039】
不連続な遮断層212は、デュアルデッキのメモリスタック207における導体層209の凹部に形成された複数の小さい部分を含み得るので、チャネル構造の側壁から突出するメモリ膜210の全体厚が大幅に縮小され得、それによって、下部チャネルホール222および上部チャネルホール224のCD、ならびに接合部酸化物層203における、または同酸化物層の近くの接合部CDを拡大する。接合部窓が拡大されたことにより、チャネル構造の下部で実行される様々なプロセス中に化学薬品が下部チャネルホール222に入ることがより容易になり、したがって、上記で論じたようなオーバーエッチングおよびアンダーエッチングの発生を抑制する。
【0040】
いくつかの実施形態では、貯蔵層214に接する一端と1つの導体層209の側面に接する他端の間の水平幅で測定された不連続な遮断層212の厚さは、4nm~10nm(たとえば4nm、4.5nm、5nm、5.5nm、6nm、6.5nm、7nm、7.5nm、8nm、8.5nm、9nm、9.5nm、10nm、これらの値のうち任意のものを下限とする任意の範囲、またはこれらの値のうちの任意の2つによって定義される任意の範囲)など、約4nm~約10nmでよい。いくつかの実施形態では、不連続な遮断層212は、約6nm~約8nmの厚さを有し得、これは遮断層112(図1に示されている)の厚さ7nmに近いものであり、したがって、続く製造プロセスにおける大幅な変更は不要である。本開示によれば、遮断層212の部分は、導体層209の凹部に形成され得るので、下部チャネルホール222および上部チャネルホール224のCD、ならびに接合部酸化物層203における、または同酸化物層の近くの接合部CDは、遮断層212の約8nm~約20nmの保存された厚さの2倍の利得を有し得る。CDおよび接合部CDは、図1と比較して約14nmの利得を有し得る。
【0041】
導体層209の凹部に不連続的に埋め込まれているが、本開示による遮断層212は、誘電体層206が間にあって、その側面も阻止能力をもたらし得るので、阻止能力において先行技術の遮断層に劣るようにはならない。誘電体層206は、遮断層212のものに類似の誘電材料(たとえば酸化シリコン、窒化シリコン、酸窒化シリコン、またはそれらの任意の組合せ)を含み得る。したがって、本開示では、不連続な遮断層212と誘電体層206とが、チャネル構造の側壁に沿って連続した遮断層を総体として形成する。
【0042】
いくつかの実施形態では、不連続な遮断層212は、メモリ膜210の一部として、図2Aに示されるように、上部メモリデッキ207Bと下部メモリデッキ207Aとの両方を通り、NANDメモリストリングの側壁に沿って垂直に延在し得る。この構成には、続く製作プロセスにおいて、チャネル構造の全体の側壁がエッチングされるのを防止するという利点がある。
【0043】
いくつかの実施形態では、不連続な遮断層212の側壁は、接合部酸化物層203の側壁と実質的に同一平面にあり得る。この構成により、接合部CD領域における貯蔵層214および/またはトンネリング層216の厚さの均一性を達成することが可能になる。その結果、メモリ膜210は、接合部CD領域において破損する可能性が低く、さもないと3Dメモリデバイス200に欠陥が生じる可能性がある。本明細書で使用される「同一平面の」という用語は、2つの隣接した側壁によって形成された表面が一様であることを記述するものである。「実質的に」という用語は、不連続な遮断層212の側壁と接合部酸化物層203の側壁との間の相対位置を説明するのに使用されたときには、2つの層の側壁が完全に同一平面上にあるか、または互いの間にせいぜい約±1nm(たとえば±0.1nm、±0.2nm、±0.5nm、±1nm、これらの値のうち任意のものを下限とする任意の範囲、またはこれらの値のうちの任意の2つによって定義される任意の範囲)の小さいずれのみがあり得ることを意味する。これは、製作プロセスが、2つの層の側壁を互いに整列させるには十分に正確ではないことがあるからである。それにもかかわらず、本開示の意図された結果が得られる限り、別々の層の側壁の絶対的な整列は必要とされない。
【0044】
いくつかの実施形態では、不連続な遮断層212の側壁は、誘電体層206の側壁と実質的に同一平面にあり得る。上記の実施形態と同様に、この構成により、チャネル構造にわたる全体の垂直領域において貯蔵層214および/またはトンネリング層216の厚さの均一性を達成することが可能になる。その結果、メモリ膜210は、チャネル構造において破損する可能性が低く、さもないと3Dメモリデバイス200に欠陥が生じる可能性がある。
【0045】
図3A図3Eは、本開示のいくつかの実施形態による、拡大した接合部CDを有する3Dメモリデバイス300を形成するための例示的製作プロセスの図である。図4は、本開示のいくつかの実施形態による、拡大した接合部CDを有する3Dメモリデバイスを形成するための例示的方法400の流れ図を示す。図3A図3Eおよび図4に表された3Dメモリデバイス300の例は、図1図2Aおよび図2Bに表された3Dメモリデバイス100、200および250を含む。図3A図3Eおよび図4は一緒に説明される。方法400に示された動作は網羅的なものではなく、示された各動作のうち任意のものの前、後、または中頃に他の動作が実行され得ることが理解される。さらに、動作のうちいくつかは同時に実行されてよく、または図4に示されたものとは異なる順序で実行されてもよい。
【0046】
図4を参照して、方法400は、基板上に誘電体デッキが形成される動作402から始まる。基板はシリコン基板であり得る。誘電体デッキは、交互に積み重ねられた複数の犠牲層と誘電体層とを含むことができる。いくつかの実施形態では、犠牲層の各々が窒化シリコンを含み、誘電体層の各々が酸化シリコンを含む。
【0047】
図3Aを参照して、本開示のいくつかの実施形態によれば、製作プロセス中の3Dメモリデバイス300は、デュアルデッキの誘電体スタック304(下部誘電体デッキ304Aおよび上部誘電体デッキ304Bを含む)を含み得る。下部誘電体デッキ304Aおよび上部誘電体デッキ304Bの各々が、シリコン基板302上に形成された誘電体層306と犠牲層308との複数の対(本明細書では「誘電体層の対」と参照される)を含むことができる。誘電体層306および犠牲層308は、あるいはシリコン基板302上に堆積され得る。いくつかの実施形態では、誘電体スタック304の形成に先立って、シリコン基板302上に酸化シリコンなどの誘電材料を堆積することにより、または熱酸化によって、誘電体スタック304とシリコン基板302との間に絶縁層(図示せず)が形成され得る。いくつかの実施形態では、各誘電体層306が酸化シリコンの層を含み、各犠牲層308が窒化シリコンの層を含む。それだけではないが、CVD、PVD、ALD、またはそれらの任意の組合せを含む1つまたは複数の薄膜堆積プロセスによって、誘電体スタック304が形成され得る。
【0048】
方法400は、図4に示されるように動作404に進み、誘電体デッキを通って垂直に延在する開口が形成される。図3Aに示されるように、チャネルホール320は、誘電体スタック304を通って垂直に延在するように形成された開口である。チャネルホール320は、上部チャネルホール324および下部チャネルホール322を含み得る。いくつかの実施形態では、後工程において各開口が個々のNANDメモリストリングを成長させるための拠点になるように、複数の開口が誘電体スタック304を通って形成される。いくつかの実施形態では、チャネルホール320を形成するための製作プロセスは、ディープイオン反応エッチング(DRIE)など、湿式エッチングおよび/またはドライエッチングを含む。いくつかの実施形態では、チャネルホール320は、シリコン基板302の上部を通ってさらに延在する。誘電体スタック304を通るエッチングプロセスは、シリコン基板302の頂面において停止することなく、シリコン基板302の一部をエッチングし続けてよい。いくつかの実施形態では、誘電体スタック304を通してエッチングした後に、シリコン基板302の一部をエッチングするために個別のエッチングプロセスが使用される。
【0049】
いくつかの実施形態では、開口の下部に半導体プラグが形成される。半導体プラグは、開口の下部における基板からエピタキシャルに成長され得る。いくつかの実施形態では、半導体プラグはエピタキシャルに成長されたシリコンプラグである。図3Aに示されるように、シリコンプラグ305は、シリコン基板302から(たとえば底面および/または側面から)単結晶シリコンを任意の適切な方向にエピタキシャルに成長させて、下部チャネルホール322の下部を埋めることによって形成され得る。エピタキシャルに成長されたシリコンプラグ305の製作プロセスは、それだけではないが、気相成長(VPE)、液相成長(LPE)、分子線成長(MPE)、またはそれらの任意の組合せを含み得る。
【0050】
方法400は動作406に進み、図4に示されるように、開口の側壁に接する犠牲層の側面をエッチングする。犠牲層が窒化シリコンを含むので、デュアルデッキの誘電体スタックにおいて犠牲層の1つまたは複数の凹部を開くために、窒化シリコンをエッチバックするエッチングプロセスが実行されてよい。いくつかの実施形態では、各犠牲層について1つの凹部が開かれ得る。
【0051】
図3Bを参照して、本開示のいくつかの実施形態によれば、開口の側壁に接する側面から犠牲層308をエッチバックすることによって凹部311を開くことができる。各凹部311は、2つの隣接した誘電体層306と、一部がエッチングされた犠牲層308の片側面とによって囲まれ得る。エッチングプロセスの一例として、製作プロセス中に、3Dメモリデバイス300に対してエッチング液(たとえばリン酸(HPO))を含有している溶液を与えることによって湿式エッチングが実行されてよく、これは、酸化シリコンよりも窒化シリコンに対してはるかに(たとえば10倍以上)速いエッチング速度を有する。したがって、隣接した誘電体層306の間に、図3Bに示される凹部311などの凹部を生成するために、犠牲層308の側面がエッチングされてよい。現在の開示によって教示される意図された結果が達成される限り、凹部を生成するためにドライエッチングなどの他のエッチング方法も使用され得ることが理解される。凹部には、後に、不連続な遮断層312の小さい部分が形成され得る。
【0052】
いくつかの実施形態では、犠牲層308における凹部の水平方向の深さは、1nm~4nm(たとえば1nm、1.5nm、2nm、2.5nm、3nm、3.5nm、4nm、これらの値のうち任意のものを下限とする任意の範囲、またはこれらの値のうちの任意の2つによって定義される任意の範囲)など、約1nm~約4nmに制御される。特定の溶液またはエッチング液に関する窒化シリコンのエッチング速度は、既知であるかまたは実験によって確認可能であるため、深さはエッチングの持続時間によって制御され得る。たとえば、リン酸は、所与の温度(たとえば150℃~180℃)下で約1nm/min~約10nm/minのエッチング速度を有し得る。したがって、犠牲層308を3nmエッチングするには約18秒~3分かかるはずである。
【0053】
方法400は動作408に進み、図4に示されるように、犠牲層がエッチングされた位置に不連続な遮断層が形成される。遮断層は、犠牲層のうちの少なくともいくらかの自然酸化物を含み得る。いくつかの実施形態では、不連続な遮断層を形成するために、開口の側壁に接する犠牲層の部分が酸化されて自然酸化物になる。遮断層は熱酸化または湿式化学酸化によって形成され得る。いくつかの実施形態では、遮断層の厚さは、7nmなど、約4nm~約10nmである。遮断層は、介在する誘電体層とともに、チャネル構造の側壁に沿って連続した遮断層を形成し得る。
【0054】
図3Cを参照して、本開示のいくつかの実施形態によれば、犠牲層308がエッチングされた位置に遮断層312が形成され得る。これらの位置には、図3Bに示されるように、エッチングによって凹部311が開かれている。凹部311は誘電体層306を介して不連続であるため、そこに形成された遮断層312も不連続であって複数の小さい部分を含み得、隣接した部分は、垂直方向に沿って誘電体層306によって分離されている。いくつかの実施形態では、小さい部分の数は、垂直方向に沿った犠牲層308の数に等しくてよい。それぞれの小さい部分は犠牲層308の凹部にあり、一端が貯蔵層314(図3Dに示されている)に接し、他端がこの犠牲層308の1つの層の側面に接する(犠牲層308が導体層309で置換された後には導体層309に接する)。
【0055】
いくつかの実施形態では、遮断層312の隣接した小さい部分のどれも互いに接触することはなく、したがって、遮断層312は、図2Aに関連して上記で論じたように全面的に不連続である。いくつかの他の実施形態では、少なくとも2つの隣接した小さい部分が、これらの部分から突出して、間にある誘電体層の側面を覆う、連続した鉛直層(図3Cには示されていない)によって接続されており、したがって、遮断層312は、図2Bに関連して上記で論じたように、部分的に不連続である。
【0056】
いくつかの実施形態では、不連続な遮断層312の厚さは、4nm~10nm(たとえば4nm、4.5nm、5nm、5.5nm、6nm、6.5nm、7nm、7.5nm、8nm、8.5nm、9nm、9.5nm、10nm、これらの値のうち任意のものを下限とする任意の範囲、またはこれらの値のうちの任意の2つによって定義される任意の範囲)など、約4nm~約10nmでよい。他の実施形態では、不連続な遮断層312は、約6nm~約8nmの厚さを有し得、これは遮断層112(図1に示されている)の厚さ7nmに近いものであり、したがって、続く製造プロセスにおける大幅な変更は不要である。3Dメモリデバイス200と同様に、方法400によって製作された3DメモリデバイスにおけるチャネルホールのCDおよび接合部CDは、遮断層312の保存された厚さの2倍の利得を有し得、これは約8nm~約20nmである。CDおよび接合部CDは、図1と比較して約14nmの利得を有し得る。
【0057】
本開示によれば、上記で説明された範囲の厚さの自然酸化物を形成するために、犠牲層308のエッチングされた側面を酸化させることによって、不連続な遮断層312の小さい部分が形成され得る。いくつかの実施形態では、凹部311に接する犠牲層308の一部の自然酸化物は熱酸化プロセスによって酸化される。酸化剤として分子酸素を使用するドライ酸化、または酸化剤として水蒸気を使用する湿式酸化のいずれかが、たとえば約850℃以下の温度で自然酸化物を形成するために使用され得る。いくつかの実施形態では、熱酸化は、500℃~850℃(たとえば500℃、550℃、600℃、650℃、700℃、750℃、800℃、850℃、それらの値のうち任意のものを下限とする任意の範囲、またはこれらの値のうちの任意の2つによって定義される任意の範囲)など、約500℃~約850℃で実行される。いくつかの実施形態では、熱酸化は、700℃など、約700℃で実行される。熱酸化物が誘電体スタック304から消費されたシリコンと環境から供給された酸素とを混和するので、不連続な遮断層312の小さい部分が、そのエッチングされた側面から、犠牲層308の末口の中と、チャネルホール320の方との両方に成長することができ、凹部311を形成する位置の上の自然酸化物層の厚さの一部および犠牲層308の内部の一部をもたらす。もたらされる自然酸化物層の厚さは熱酸化の温度および/または時間によって制御され得、その一例は上記で既に説明されている。一例では、酸化されている犠牲層308の末口は、約3nm~約6nm(たとえば3nm、3.5nm、4nm、4.5nm、5nm、5.5nm、6nm、それらの値のうち任意のものを下限とする任意の範囲、またはこれらの値のうちの任意の2つによって定義される任意の範囲)の厚さを有し得、その結果、もたらされる自然酸化物層は、犠牲層308における凹部311の水平方向の深さが約1nm~約4nmになるように制御されたとき、約4nm~約10nmの厚さを有し得る。
【0058】
いくつかの実施形態では、凹部311に接する犠牲層308の一部の自然酸化物は湿式化学酸化プロセスによって酸化される。自然酸化物を形成するために、凹部311に接する犠牲層308の一部を酸化させるように、オゾンを含む湿式化学薬品が使用され得る。いくつかの実施形態では、湿式化学薬品はフッ化水素酸とオゾンの混合物(たとえばFOM)である。たとえば、フッ化水素酸は超純水において49%の濃度を有する。もたらされる自然酸化物層の厚さは、湿式化学薬品の組成、温度、および/または時間によって制御され得る。インサイチュの水蒸気生成(ISSG)プロセスなど、水蒸気の形で水を生成するために酸素ガスおよび水素ガスを使用する任意の他の適切なプロセスを使用して、不連続な遮断層312の小さい部分が形成され得ることが理解される。
【0059】
いくつかの実施形態では、犠牲層308は窒化シリコンを含み、誘電体層306は酸化シリコンを含む。犠牲層308における窒化シリコンを酸化すると酸窒化シリコンを生成することができ、これは、酸化シリコンとともに不連続な遮断層312に残り得、または任意の適切なプロセスを使用して、不連続な遮断層312から部分的もしくは全面的に除去され得る。それにもかかわらず、不連続な遮断層312と誘電体層306とが、チャネル構造の側壁に沿って連続した遮断層を総体として形成し得る。
【0060】
本開示のいくつかの実施形態によれば、不連続な遮断層312は、図3Cに示されるように、上部誘電体デッキ304Bと下部誘電体デッキ304Aとの両方を通り、NANDメモリストリングの側壁に沿って垂直に延在し得る。この構成には、続く製作プロセスにおいて、チャネル構造の全体の側壁がエッチングされるのを防止するという利点がある。
【0061】
いくつかの実施形態では、不連続な遮断層312は、その側壁が接合部酸化物層303の側壁と実質的に同一平面にあるように形成され得る。この構成により、接合部CD領域において、貯蔵層314(図3Dに示されている)および/またはトンネリング層316(図3Dに示されている)の厚さの均一性を達成することが可能になる。その結果、メモリ膜310(図3Dに示されている)は、接合部CD領域において破損する可能性が低く、さもないと3Dメモリデバイス300に欠陥が生じる可能性がある。
【0062】
いくつかの実施形態では、不連続な遮断層312は、その側壁が誘電体層206の側壁と実質的に同一平面になり得るように形成され得る。上記の実施形態と同様に、この構成により、チャネル構造にわたる全体の垂直領域において貯蔵層314および/またはトンネリング層316の厚さの均一性を達成することが可能になる。その結果、メモリ膜310は、チャネル構造において破損する可能性が低く、さもないと3Dメモリデバイス300に欠陥が生じる可能性がある。
【0063】
方法400は動作410に進み、続いて、図4に示されるように、不連続な遮断層および介在する誘電体層の上に、また開口の側壁に沿って、遮断層、貯蔵層、およびトンネリング層がこの順序で形成される。いくつかの実施形態では、貯蔵層を形成するために、不連続な遮断層および介在する誘電体層の上にシリコン窒化物層または酸窒化シリコン層が堆積される。
【0064】
図3Dを参照して、チャネルホール320(図3Aに示されている)の側壁に沿って、メモリ膜310(不連続な遮断層312、貯蔵層314、およびトンネリング層316を含む)が形成される。続いて、ALD、CVD、PVD、任意の他の適切なプロセス、またはそれらの任意の組合せなどの1つまたは複数の薄膜堆積プロセスを使用して、不連続な遮断層312および介在する誘電体層306の上に、貯蔵層314(たとえばシリコン窒化物層または酸窒化シリコン層)およびトンネリング層316(たとえば酸化シリコン層)がこの順序で堆積され得る。いくつかの実施形態では、不連続な遮断層312および介在する誘電体層306の上に、シリコン窒化物層または酸窒化シリコン層が貯蔵層314として堆積される。いくつかの実施形態では、メモリ膜310は、チャネルホール320の側壁を全面的に覆うことができる。
【0065】
方法400は動作412に進み、続いて、図4に示されるように、トンネリング層の上に半導体チャネルが形成される。
【0066】
図3Eに示されるように、CVD、PVD、ALD、電気めっき、無電解めっき、またはそれらの任意の組合せなどの1つまたは複数の薄膜堆積プロセスを使用して、メモリ膜310のトンネリング層316の上に半導体チャネル318が形成され得る。いくつかの実施形態では、半導体チャネル318はポリシリコンを含む。いくつかの実施形態では、チャネルホール320の残りの空間を全面的または部分的に埋めるために、CVD、PVD、ALD、電気めっき、無電解めっき、またはそれらの任意の組合せなどの1つまたは複数の薄膜堆積プロセスを使用して、チャネルホール320の中に、酸化シリコン層などのキャッピング層(図示せず)が形成されてよい。したがって、図3Dに示されるように、不連続な遮断層312、貯蔵層314、トンネリング層316、半導体チャネル318、およびキャッピング層を含むチャネル構造が形成される。不連続な遮断層312は、チャネル構造の最外層であり得、誘電体スタック304の介在する誘電体層306および308に接触する。本開示では、貯蔵層314も、誘電体スタック304の介在する誘電体層306および308に接触することができる。
【0067】
図3A図3Eに示されるようなNANDメモリストリングを形成した後に、図3Fに示されるように、下部誘電体デッキ304Aおよび上部誘電体デッキ304Bにおける犠牲層308を導体層309で置換することにより、デュアルデッキのメモリスタック307が形成され得る。メモリスタック307は、誘電体スタック304の犠牲層308を導体層309で置換することによって形成され得、交互に積み重ねられた導体層309と誘電体層とを含み得る。いくつかの実施形態では、メモリスタック307を形成するために、誘電体スタック304を通ってスリット開口(たとえばゲートラインスリット)が形成され得、複数の水平方向の凹部を形成するために、スリット開口を通してエッチング液を与えることによって誘電体スタック304における犠牲層308がエッチングされ得て、水平方向の凹部に導体層309が堆積され得る。いくつかの実施形態では、メモリスタック307を形成する際に、誘電体スタック304の第1の誘電体層は、自然酸化物層によって停止されるまでエッチングされる。
【0068】
本開示の一態様によって開示される3Dメモリデバイスは、基板と、基板上に交互に積み重ねられた複数の導体層と誘電体層とを有するメモリスタックと、メモリストリングの側壁に沿ったメモリ膜を有し、第1のメモリスタックを通って垂直に延在するメモリストリングとを含む。メモリ膜は、誘電体層を介在させた不連続な遮断層を含む。
【0069】
いくつかの実施形態では、不連続な遮断層は1つまたは複数の部分を含み、少なくとも1つの部分が導体層の凹部にあって、隣接した誘電体層と導体層の側面とによって囲まれている。
【0070】
いくつかの実施形態では、不連続な遮断層は全面的に不連続である。
【0071】
いくつかの実施形態では、不連続な遮断層は部分的に不連続である。
【0072】
いくつかの実施形態では、不連続な遮断層の厚さは約4nm~約10nmである。
【0073】
いくつかの実施形態では、メモリ膜は、貯蔵層およびトンネリング層をさらに含む。
【0074】
いくつかの実施形態では、不連続な遮断層および誘電体層のうちの少なくとも1つが酸化シリコンを含む。
【0075】
いくつかの実施形態では、メモリスタックは、接合部酸化物層によって分離された上部デッキおよび下部デッキを含む。不連続な遮断層が、上部デッキおよび下部デッキを通って延在し、不連続な遮断層の側壁は接合部酸化物層の側壁と実質的に同一平面にある。
【0076】
いくつかの実施形態では、不連続な遮断層の側壁は、誘電体層の側壁と実質的に同一平面にある。
【0077】
本開示の別の態様によって開示される3Dメモリデバイスは、基板と、基板上に交互に積み重ねられた複数の導体層と誘電体層とを有するメモリスタックと、メモリストリングの側壁に沿ったメモリ膜を有し、第1のメモリスタックを通って垂直に延在するメモリストリングとを含む。メモリ膜は、誘電体層を介在させた不連続な遮断層を含む。不連続な遮断層は複数の部分を有し、隣接した部分は、どれも互いに接触しない。
【0078】
いくつかの実施形態では、不連続な遮断層の厚さは約4nm~約10nmである。
【0079】
いくつかの実施形態では、メモリ膜は、貯蔵層およびトンネリング層をさらに含む。
【0080】
いくつかの実施形態では、不連続な遮断層および誘電体層のうちの少なくとも1つが酸化シリコンを含む。
【0081】
いくつかの実施形態では、メモリスタックは、接合部酸化物層によって分離された上部デッキおよび下部デッキを含む。不連続な遮断層が、上部デッキおよび下部デッキを通って延在し、不連続な遮断層の側壁は接合部酸化物層の側壁と実質的に同一平面にある。
【0082】
いくつかの実施形態では、不連続な遮断層の側壁は、誘電体層の側壁と実質的に同一平面にある。
【0083】
本開示の別の態様によれば、3Dメモリデバイスを形成するための方法が開示される。基板上に、交互に積み重ねられた犠牲層と誘電体層とを含む誘電体デッキが形成される。第1の誘電体デッキを通って垂直に延在する開口が形成される。開口の側壁と接する、犠牲層の側面がエッチングされる。犠牲層がエッチングされる位置に、不連続な遮断層が形成される。次に、不連続な遮断層および介在する誘電体層の上に、貯蔵層、トンネリング層、および半導体チャネルが形成される。
【0084】
いくつかの実施形態では、不連続な遮断層は1つまたは複数の部分を含み、少なくとも1つの部分が導体層の凹部に形成され、隣接した誘電体層と導体層の側面とによって囲まれている。
【0085】
いくつかの実施形態では、不連続な遮断層は全面的に不連続である。
【0086】
いくつかの実施形態では、不連続な遮断層は部分的に不連続である。
【0087】
いくつかの実施形態では、誘電体スタックの犠牲層を導体層で置換することにより、交互に積み重ねられた導体層と誘電体層とを有するメモリスタックが形成される。
【0088】
いくつかの実施形態では、犠牲層の、開口の側壁に接する側面が約1nm~4nmエッチングされる。
【0089】
いくつかの実施形態では、不連続な遮断層を形成することは、犠牲層のエッチングされた側面を酸化させることを含む。
【0090】
いくつかの実施形態では、不連続な遮断層は熱酸化または湿式化学酸化のうちの1つによって形成される。
【0091】
いくつかの実施形態では、酸化されている犠牲層の厚さは約3nm~約6nmである。
【0092】
いくつかの実施形態では、不連続な遮断層の厚さは約4nm~約10nmである。
【0093】
いくつかの実施形態では、不連続な遮断層および誘電体層のうちの少なくとも1つが酸化シリコンを含む。
【0094】
いくつかの実施形態では、犠牲層は窒化シリコンを含む。
【0095】
いくつかの実施形態では、3Dメモリデバイスの形成するための方法は、犠牲層の側面をエッチングする前に、開口の下部に半導体プラグを形成することをさらに含む。
【0096】
いくつかの実施形態では、誘電体デッキは、接合部酸化物層によって分離された上部デッキおよび下部デッキを含む。不連続な遮断層が、上部デッキおよび下部デッキを通って延在し、不連続な遮断層の側壁は接合部酸化物層の側壁と実質的に同一平面にある。
【0097】
いくつかの実施形態では、不連続な遮断層の側壁は、誘電体層の側壁と実質的に同一平面にある。
【0098】
特定の実施形態の前述の説明は、他者が、当技術の技量の範囲内の知見を適用することによって、そのような特定の実施形態を、不適当な実験作業なしで、本開示の一般概念から逸脱することなく、容易に変更すること、および/または様々な用途に適合させることができるように、本開示の全般的な性質を明らかにするはずである。したがって、そのような適合および変更は、本明細書で提示された教示および案内を基に、開示された実施形態の相当物の意味および範囲の中にあることが意図されている。本明細書の言葉遣いまたは専門用語は、当業者によって、本明細書の専門用語または言葉遣いが教示および案内に照らして解釈されるように、制限することではなく説明を目的とするものであることを理解されたい。
【0099】
本開示の実施形態が、指定された機能の実装形態およびそれらの関係を例証する機能的ビルディングブロックの支援によって、上記で説明されてきた。これらの機能的ビルディングブロックの境界は、説明の便宜のために本明細書で便宜的に定義されたものである。指定された機能およびそれらの関係が適切に実施される限り、代替の境界が定義され得る。
【0100】
発明の概要および要約の段落は、発明者によって企図されたように、本開示の例示的実施形態のすべてではなく1つまたは複数を説明し得るものであり、したがって、本開示および添付の特許請求の範囲を制限するようには意図されていない。
【0101】
本開示の広さおよび範囲は、前述の例示的実施形態のいかなるものによっても制限されるべきではなく、以下の特許請求の範囲およびそれらの等価物によってのみ定義されるべきである。
【符号の説明】
【0102】
100 3次元(3D)メモリデバイス
102 基板
103 接合部酸化物層
105 半導体プラグ
106 誘電体層
107 メモリスタック
107A 下部メモリデッキ
107B 上部メモリデッキ
109 導体層
110 メモリ膜
112 遮断層
114 貯蔵層
116 トンネリング層
118 半導体チャネル
122 下部チャネルホール
124 上部チャネルホール
200 3Dメモリデバイス
202 基板
203 接合部酸化物層
205 半導体プラグ
206 誘電体層
2061 誘電体層
207 メモリスタック
207A 下部メモリデッキ
207B 上部メモリデッキ
209 導体層
210 メモリ膜
212 遮断層
2121 遮断層212の小さい部分
2122 遮断層212の小さい部分
2123 連続した鉛直層
214 貯蔵層
216 トンネリング層
218 半導体チャネル
222 チャネルホール
224 チャネルホール
300 3Dメモリデバイス
302 シリコン基板
303 接合部酸化物層
304 誘電体スタック
304A 下部誘電体デッキ
304B 上部誘電体デッキ
305 シリコンプラグ
306 誘電体層
307 メモリスタック
307A 下部メモリデッキ
307B 上部メモリデッキ
308 犠牲層
309 導体層
310 メモリ膜
311 凹部
312 遮断層
314 貯蔵層
316 トンネリング層
318 半導体チャネル
320 チャネルホール
322 下部チャネルホール
324 上部チャネルホール
図1
図2A
図2B
図3A
図3B
図3C
図3D
図3E
図3F
図4
【手続補正書】
【提出日】2021-12-23
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
基板と、
前記基板上に交互に積み重ねられた複数の導体層と誘電体層とを備えるメモリスタックと、
前記第1のメモリスタックを通って垂直に延在するメモリストリングであって、前記メモリストリングの側壁に沿ったメモリ膜を備えるメモリストリングと
を備える3次元(3D)メモリデバイスであって、
前記誘電体スタックが、接合部酸化物層によって分離された上部デッキおよび下部デッキを備え、前記メモリ膜が、前記上部デッキおよび前記下部デッキ内の前記誘電体層によって分離された不連続な誘電材料層を備え、前記上部デッキおよび前記下部デッキ内の前記不連続な誘電材料層の側壁が、前記接合部酸化物層の側壁と実質的に同一平面にある、3次元(3D)メモリデバイス。
【請求項2】
前記不連続な誘電材料層が1つまたは複数の部分を備え、
少なくとも1つの部分が導体層の凹部にあって、隣接した誘電体層と、前記導体層の側面とによって囲まれている、請求項1に記載の3Dメモリデバイス。
【請求項3】
前記不連続な誘電材料層が全面的に不連続である、請求項1または2に記載の3Dメモリデバイス。
【請求項4】
前記不連続な誘電材料層が部分的に不連続である、請求項1または2に記載の3Dメモリデバイス。
【請求項5】
前記不連続な誘電材料層の厚さが約4nm~約10nmである、請求項1またはに記載の3Dメモリデバイス。
【請求項6】
前記メモリ膜が貯蔵層およびトンネリング層をさらに備える、請求項1またはに記載の3Dメモリデバイス。
【請求項7】
前記不連続な誘電材料層および前記誘電体層のうちの少なくとも1つが酸化シリコンを含む、請求項1またはに記載の3Dメモリデバイス。
【請求項8】
前記不連続な遮断層の側壁が、前記接合部酸化物層の側壁と実質的に同一平面にある、請求項1に記載の3Dメモリデバイス。
【請求項9】
基板と、
前記基板上に交互に積み重ねられた複数の導体層と誘電体層とを備えるメモリスタックと、
前記第1のメモリスタックを通って垂直に延在するメモリストリングであって、前記メモリストリングの側壁に沿ったメモリ膜を備えるメモリストリングと
を備える3次元(3D)メモリデバイスであって、
前記誘電体スタックが、接合部酸化物層によって分離された上部デッキおよび下部デッキを備え、前記メモリ膜が、前記上部デッキおよび前記下部デッキ内の前記誘電体層によって分離された不連続な誘電材料層を備え
前記不連続な誘電材料層が複数の部分を備え、
前記不連続な誘電材料層の前記複数の部分のうち隣接した部分のどれも、互いに接触せず、
前記不連続な誘電材料層の側壁が、前記接合部酸化物層の側壁と実質的に同一平面にある、3次元(3D)メモリデバイス。
【請求項10】
前記不連続な誘電材料層の厚さが約4nm~約10nmである、請求項に記載の3Dメモリデバイス。
【請求項11】
前記メモリ膜が貯蔵層およびトンネリング層をさらに備える、請求項または10に記載の3Dメモリデバイス。
【請求項12】
前記不連続な誘電材料層および前記誘電体層のうちの少なくとも1つが酸化シリコンを含む、請求項または10に記載の3Dメモリデバイス。
【請求項13】
3次元(3D)メモリデバイスを形成するための方法であって、
基板上に、交互に積み重ねられた犠牲層と誘電体層とを含む誘電体デッキを形成するステップと、
前記誘電体デッキを通って垂直に延在する開口を形成するステップと、
前記開口の側壁と接する、前記犠牲層の側面をエッチングするステップと、
前記犠牲層がエッチングされる位置に、不連続な誘電材料層を形成するステップと、
続いて、前記不連続な誘電材料層と、前記不連続な誘電材料層の間の前記誘電体層との上に、貯蔵層、トンネリング層、および半導体チャネルを形成するステップと
を含む方法。
【請求項14】
前記誘電体デッキの前記犠牲層を前記導体層で置換することにより、交互に積み重ねられた導体層と誘電体層とを備えるメモリスタックを形成するステップをさらに含む、請求項13に記載の方法。
【請求項15】
前記不連続な誘電材料層が1つまたは複数の部分を含み、
少なくとも1つの部分が導体層の凹部に形成され、隣接した誘電体層と前記導体層の側面とによって囲まれている、請求項14に記載の方法。
【請求項16】
前記不連続な誘電材料層が全面的に不連続である、請求項13から15のいずれか一項に記載の方法。
【請求項17】
前記不連続な誘電材料層が部分的に不連続である、請求項13から15のいずれか一項に記載の方法。
【請求項18】
前記開口の前記側壁に接する、前記犠牲層の前記側面が約1nm~約4nmエッチングされる、請求項13から15のいずれか一項に記載の方法。
【請求項19】
前記不連続な誘電材料層を形成するステップが、前記犠牲層の前記エッチングされた側面を酸化させるステップを含む、請求項13から15のいずれか一項に記載の方法。
【請求項20】
前記不連続な誘電材料層が熱酸化または湿式化学酸化のうちの1つによって形成される、請求項19に記載の方法。
【請求項21】
酸化されている前記犠牲層の厚さが約3nm~約6nmである、請求項19に記載の方法。
【請求項22】
前記不連続な誘電材料層の厚さが約4nm~約10nmである、請求項13から15のいずれか一項に記載の方法。
【請求項23】
前記不連続な誘電材料層および前記誘電体層のうちの少なくとも1つが酸化シリコンを含む、請求項13から15のいずれか一項に記載の方法。
【請求項24】
前記犠牲層が窒化シリコンを含む、請求項13から15のいずれか一項に記載の方法。
【請求項25】
前記犠牲層の前記側面をエッチングする前に、前記開口の下部に半導体プラグを形成するステップをさらに含む、請求項13から15のいずれか一項に記載の方法。
【請求項26】
前記誘電体デッキが、接合部酸化物層によって分離された上部デッキおよび下部デッキを備え、
前記不連続な誘電材料前記接合部酸化物層によって分離されており
前記不連続な誘電材料層の側壁が、前記接合部酸化物層の側壁と実質的に同一平面にある、請求項13から15のいずれか一項に記載の方法。
【請求項27】
前記不連続な誘電材料層の前記側壁が、前記誘電体層の側壁と実質的に同一平面にある、請求項26に記載の方法。
【国際調査報告】