(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-11-21
(54)【発明の名称】多走査電子顕微鏡法を使用したウェーハアライメント
(51)【国際特許分類】
H01L 21/66 20060101AFI20221114BHJP
H01J 37/28 20060101ALI20221114BHJP
H01J 37/22 20060101ALI20221114BHJP
【FI】
H01L21/66 J
H01J37/28 B
H01J37/22 502H
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2022515533
(86)(22)【出願日】2020-09-08
(85)【翻訳文提出日】2022-03-08
(86)【国際出願番号】 EP2020075006
(87)【国際公開番号】W WO2021048082
(87)【国際公開日】2021-03-18
(32)【優先日】2019-09-09
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】503263355
【氏名又は名称】カール・ツァイス・エスエムティー・ゲーエムベーハー
(74)【代理人】
【識別番号】100094569
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100109070
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100067013
【氏名又は名称】大塚 文昭
(74)【代理人】
【識別番号】100086771
【氏名又は名称】西島 孝喜
(74)【代理人】
【識別番号】100120525
【氏名又は名称】近藤 直樹
(74)【代理人】
【識別番号】100139712
【氏名又は名称】那須 威夫
(74)【代理人】
【識別番号】100158469
【氏名又は名称】大浦 博司
(72)【発明者】
【氏名】サラスワトュラ ジャグデシュ チャンドラ
(72)【発明者】
【氏名】ノイマン イェンス ティモ
(72)【発明者】
【氏名】フートヴォール フィリップ
(72)【発明者】
【氏名】コルブ トーマス
(72)【発明者】
【氏名】ハヌマンタ ナヤック ラガヴェンドラ
【テーマコード(参考)】
4M106
5C101
【Fターム(参考)】
4M106AA01
4M106BA02
4M106CA39
4M106DJ04
4M106DJ07
5C101AA03
5C101EE03
5C101FF02
5C101FF09
5C101FF56
5C101HH11
5C101HH23
(57)【要約】
方法は、動力式の処理ステージ(90)が第1の位置にある間、動力式の処理ステージ(90)に取り付けられたウェーハ(100)の第1の像(601)を捕捉するように多走査電子顕微鏡(mSEM)(32)を制御することであって、第1の像(601)が、ウェーハ(100)のノッチ(201)の少なくとも一部を含む、制御することと、第1の像(601)に基づいて、ウェーハ(100)の放射軸(205)を決定することと、ウェーハ(100)を放射軸(205)に沿ってウェーハ(100)の直径の半分だけシフトさせ、その結果として、動力式の処理ステージ(90)が第2の位置にあるようにするように、動力式の処理ステージ(90)を制御することと、動力式の処理ステージ(90)が第2の位置にある間、ウェーハ(100)の第2の像(602)を捕捉するようにmSEM(32)を制御することであって、第2の像(602)が、ウェーハ構造(112、112-1~112-4、113、261、262、272)を含む、制御することと、第2の像(602)のウェーハ構造(112、112-1~112-4、113、261、262、272)の構造認識に基づいて、ウェーハ(100)の基準位置(209)を決定することと、基準位置(209)および放射軸(205)に基づいて、ウェーハ(100)のウェーハ座標系(192)を動力式の処理ステージ(90)のステージ座標系(191)に位置合わせすることと、を含む。
【選択図】
図6
【特許請求の範囲】
【請求項1】
動力式の処理ステージ(90)が第1の位置にある間、前記動力式の処理ステージ(90)に取り付けられたウェーハ(100)の第1の像(601)を捕捉するように多走査電子顕微鏡、mSEM(32)、を制御することであって、前記第1の像(601)が、前記ウェーハ(100)のノッチ(201)の少なくとも一部を含む、制御することと、
前記第1の像(601)に基づいて、前記ウェーハ(100)の放射軸(205)を決定することと、
前記ウェーハ(100)を前記放射軸(205)に沿って前記ウェーハ(100)の直径の半分だけシフトさせ、その結果として、前記動力式の処理ステージ(90)が第2の位置にあるようにするように、前記動力式の処理ステージ(90)を制御することと、
前記動力式の処理ステージ(90)が前記第2の位置にある間、前記ウェーハ(100)の第2の像(602)を捕捉するように前記mSEM(32)を制御することであって、前記第2の像(602)が、ウェーハ構造(112、112-1~112-4、113、261、262、272)を含む、制御することと、
前記第2の像(602)の前記ウェーハ構造(112、112-1~112-4、113、261、262、272)の構造認識に基づいて、前記ウェーハ(100)の基準位置(209)を決定することと、
前記基準位置(209)および前記放射軸(205)に基づいて、前記ウェーハ(100)のウェーハ座標系(192)を前記動力式の処理ステージ(90)のステージ座標系(191)に位置合わせすることと、
を含む方法。
【請求項2】
前記構造認識の対象となる前記ウェーハ構造は、隣接する半導体ダイ(112、112-1~112-4)の間に直交ダイ通路(261、262)を備える、請求項1に記載の方法。
【請求項3】
前記ウェーハ(100)は、半導体ダイ(112、112-1~112-4)のアレイを備え、
前記方法は、
前記ウェーハ(100)の1つまたは複数のさらなる軸(215、216)を決定することと、
前記1つまたは複数のさらなる軸(215、216)に沿って横断するように前記動力式の処理ステージ(90)を制御することと、
前記1つまたは複数のさらなる軸(215、216)に沿って横断している間、1つまたは複数の第3の像(603)を捕捉するように前記mSEM(32)を制御することであって、前記1つまたは複数の第3の像(603)が、前記アレイの前記半導体ダイの半導体構造(113)を含む、制御することと、
前記1つまたは複数の第3の像(603)内のさらなる構造認識に基づいて、前記半導体構造(113)を決定することと、
前記認識に基づいて、前記半導体ダイ(112、112-1~112-4)のダイ座標系(193)を前記ステージ座標系(191)に位置合わせすることと、
をさらに含む、請求項1または2に記載の方法。
【請求項4】
前記1つまたは複数のさらなる軸は、中心放射軸(215)に対するオフセット(219)を有する軸(216)を含む、請求項3に記載の方法。
【請求項5】
前記オフセット(219)は、前記アレイの隣接する半導体ダイ(112、112-1~112-4)の間のダイ通路(261、262)の幅に基づいて決定される、請求項4に記載の方法。
【請求項6】
前記mSEM(32)の視野(301)は、前記オフセット(219)の60%~140%の範囲内にある、請求項4または5に記載の方法。
【請求項7】
複数の第3の像(603)は、前記1つまたは複数のさらなる軸(215、216)に沿って互いに隣接した前記アレイの複数の隣接した半導体ダイ(112、112-1~112-4)のために捕捉され、
前記半導体構造(113)は、前記複数の第3の像(603)を互いと比較することによって、前記複数の第3の像(603)内で決定される、請求項4~6のいずれか1項に記載の方法。
【請求項8】
前記第1の像(601)は、前記ノッチ(201)の鞍点(202)を含み、
前記ウェーハ(100)の前記放射軸(205)は、前記鞍点(202)に基づいて決定される、請求項1~7のいずれか1項に記載の方法。
【請求項9】
前記ウェーハ(100)の光学像を捕捉するように光学顕微鏡を制御することと、
前記光学像内で前記ノッチ(201)を認識することと、
前記ノッチ(201)の前記認識に基づいて、ならびに前記mSEMの視野および前記ステージ座標系(191)の既定のアライメントに基づいて、前記第1の位置へ横断するように前記動力式の処理ステージ(90)を制御することと、をさらに含む、請求項1~8のいずれか1項に記載の方法。
【請求項10】
動力式の処理ステージ(90)が第1の位置にある間、前記動力式の処理ステージ(90)に取り付けられたウェーハ(100)の第1の像(601)を捕捉するように多走査電子顕微鏡、mSEM(32)、を制御することであって、前記第1の像(601)が、前記ウェーハ(100)のノッチ(201)の少なくとも一部を含む、制御することと、
前記第1の像(601)に基づいて、前記ウェーハ(100)の放射軸(205)を決定することと、
前記ウェーハ(100)を前記放射軸(205)に沿って前記ウェーハ(100)の直径の半分だけシフトさせ、その結果として、前記動力式の処理ステージ(90)が第2の位置にあるようにするように、前記動力式の処理ステージ(90)を制御することと、
前記動力式の処理ステージ(90)が前記第2の位置にある間、前記ウェーハ(100)の第2の像(602)を捕捉するように前記mSEM(32)を制御することであって、前記第2の像(602)が、ウェーハ構造(112、112-1~112-4、113、261、262、272)を含む、制御することと、
前記第2の像(602)の前記ウェーハ構造(112、112-1~112-4、113、261、262、272)の構造認識に基づいて、前記ウェーハ(100)の基準位置(209)を決定することと、
前記基準位置(209)および前記放射軸(205)に基づいて、前記ウェーハ(100)のウェーハ座標系(192)を前記動力式の処理ステージ(90)のステージ座標系(191)に位置合わせすることと
を行うように構成される制御回路(902、903)を備える処理デバイス(31)。
【請求項11】
前記制御回路(902、903)は、請求項1~9のいずれか1項に記載の方法を実施するように構成される、請求項10に記載の処理デバイス(31)。
【請求項12】
請求項10または11に記載の処理デバイス(31)およびmSEM(32)を備える、システム(30)。
【発明の詳細な説明】
【技術分野】
【0001】
本出願は、概して、ウェーハアライメント(wafer alignment:ウェーハ調節、ウェーハ整列、ウェーハアラインメント)の技術に関する。より詳細には、本発明は、多走査電子顕微鏡法(multi-scanning electron microscopy)を使用したウェーハアライメントに関する。
【背景技術】
【0002】
現況技術の半導体構造は、約5ナノメートルに至る最小構造サイズまたは臨界寸法で構築され、より小さい臨界寸法を有するデバイスが開発されている。そのような半導体構造の製作は、ブランクウェーハから始まり、半導体ダイ(semiconductor dies)のアレイ(array:配置、配列)であって、各半導体ダイが半導体構造を含む、半導体ダイのアレイを形成するために、約1000個の製作ステップを伴い得る。製作ステップは、例えば、約100個のリソグラフィステップを含む。現代の製造ラインでは、1時間で最大200個のウェーハが、各リソグラフィステップを経ることができる。
【0003】
各半導体ダイ、および時として各半導体構造は、ウェーハ座標系内に明確に定められた位置を有する。ウェーハ座標系は、ウェーハの平らな表面上に横の位置を規定する。ウェーハ座標系は、例えば、(i)ウェーハの中心または他の中央基準位置、および(ii)ウェーハのノッチ(notch:刻み目、切り込み、くぼみ)と整列され得る。
【0004】
100%に近い半導体構造の高収率を得るため、典型的には、欠陥をもたらすプロセス変動を示し得る任意の製作ステップにおける変動を注意深く監視する必要がある。したがって、高速インライン(in-line)計測が、異なる製作ステップの間で使用されるか、または、製作ステップに統合される。この計測は、時として、ウェーハ検査とも呼ばれる。計測器具は、指定の製作ステップ後の構造内のプロセス変動または欠陥候補の兆候を検出するために使用される。半導体構造の製造に使用される典型的なシリコンウェーハは、最大12インチ(300mm)の直径を有する。小構造サイズでは、臨界寸法のオーダー(order)の欠陥候補が、短時間で非常に大きい面積において特定されなければならない。
【0005】
ウェーハ検査に対しては、通常、ウェーハ表面の何らかの種類の像が、走査電子顕微鏡法(SEM:scanning electron microscopy)またはX線回折などの結像モダリティ(imaging modality:結像様式)を使用して捕捉される。ウェーハが取り付けられることができる動力式の(motorized:動力設備がつけられた、モーターがつけられた)処理ステージ(handling stage:処理台)との定められた配置にある結像モダリティの視野(FOV:field-of-view)。典型的には、そのような動力式の処理ステージは、少なくとも2つもしくは3つまたはそれ以上の自由度(例えば、横変位、垂直変位、回転、および傾斜)を有する。動力式の処理ステージは、例えば、任意の関連運動のための閉ループフィードバック制御を使用して、高精度で位置付けられ得る。ウェーハ処理ステージの運動は、動力式の処理ステージと関連付けられたステージ座標系において規定される。
【0006】
このように、半導体ウェーハ検査は、半導体プロセス制御および製造にとって重要である。欠陥監視および収率管理サービスに関わる多くのステップおよび分析タイプが存在する。ウェーハ検査は、このタスクの重要な構成要素のうちの1つを形成する。特徴および欠陥は、寸法が極端に小さいため(およそナノメートル)、ダイおよびウェーハと共に、操縦する、すなわち、動力式の処理ステージを位置付けるための、良好な基準点を有することが必須である。ウェーハアライメントは、ウェーハ座標系をステージ座標系に位置合わせする(register:重ね合わせる、そろえる)ために使用される。そのようなアライメントは、ウェーハマップ、すなわち、ステージ座標系内の位置とウェーハ座標系内の位置とのマッピングを作成するために使用され得る。このように、ウェーハアライメントおよびウェーハマップの作成は、従う必要のある診断/特性化方法の基礎を形成するが、これは、ウェーハ検査のために使用される結像モダリティのFOVがステージ座標系内で整列されることが理由である。
【0007】
基準技術によると、ウェーハアライメントを実施することは、時間のかかるタスクであり得る。例えば、多くの場合、(i)分解能および(ii)FOVに関して幅広いバリエーションの仕様を提供する異なる顕微鏡法(microscopy)技術が組み合わされる必要があり、粗いアライメントが、典型的には、広いFOVを提供する顕微鏡法技術を使用して使用され、広いFOVを使用するそのような顕微鏡法は、多くの場合、限られた分解能に悩まされる。典型例は、光学顕微鏡法である。次いで、細かいアライメントが、より高い分解能を提供するが、多くの場合、利用可能なFOVに関して限られているSEMなどのさらなる顕微鏡法技術を使用して実施される。このとき、2つの顕微鏡法技術の切り替えに起因して、ウェーハアライメントを完了するのを困難にする不正確性または並進シフト(並進移動)がもたらされる。特に、複数の結像モダリティ間の視野が、整列されない場合がある。また、複数の結像モダリティのそれぞれの検出器光学素子(detector optics:検出器光学系、検出器光学)のウェーハに対する姿勢(pose)は、例えば、非一軸性(単軸でない)アライメント(non-uniaxial alignment:単軸でない整列)に起因して、変化し得る。例えば、このとき、位置決めマーカを検出するために、細かいアライメントのための複数の像を捕捉する(capture:キャプチャする、とらえる)ことが必要とされ得る。細かいアライメントのために使用される顕微鏡技術の限られたFOVに起因して、時として、位置決めマーカまたは半導体構造の繰り返し配置における曖昧性が、上記位置合わせの間違った結果をもたらし得る。
【0008】
以下の参照文献:米国特許公報第10,199,330号および米国特許公報第10,199,316号が知られている。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】米国特許公報第10,199,330号
【特許文献2】米国特許公報第10,199,316号
【発明の概要】
【0010】
したがって、ウェーハアライメントの高度な技術が必要とされている。特に、上で特定した欠点上の制限の少なくともいくつかを克服または軽減する高度な技術が必要とされている。
【0011】
この必要性は、独立請求項の特徴によって満たされる。従属請求項の特徴は、実施形態を規定する。
【0012】
方法は、ウェーハの第1の像を捕捉するように多走査電子顕微鏡(mSEM:multi-scanning electron microscope:マルチ走査電子顕微鏡)を制御することを含む。ウェーハは、動力式の処理ステージに取り付けられる。mSEMは、動力式の処理ステージが第1の位置にある間、第1の像を捕捉するように制御される。第1の像は、ウェーハのノッチの少なくとも一部を含む。本方法はまた、第1の像に基づいて、ウェーハの放射軸(radial axis)を決定することを含む。本方法は、ウェーハを放射軸に沿ってウェーハの直径の半分だけシフト(移動)させるように、動力式の処理ステージを制御することをさらに含み、このとき動力式の処理ステージは、第2の位置にある。本方法は、動力式の処理ステージが第2の位置にある間、ウェーハの第2の像を捕捉するようにmSEMを制御することをさらに含む。第2の像は、ウェーハ構造を含む。本方法はまた、第2の像のウェーハ構造の構造認識(structure recognition)に基づいて、ウェーハの基準位置(reference position)を決定することを含む。本方法は、基準位置および放射軸に基づいて、ウェーハのウェーハ座標系を動力式の処理ステージのステージ座標系に位置合わせすることをさらに含む。
【0013】
コンピュータプログラムまたはコンピュータプログラム製品またはコンピュータ可読記憶媒体は、少なくとも1つのプロセッサによって実行され得るプログラムコードを含む。プログラムコードを実行することにより、少なくとも1つのプロセッサに方法を実行させる。本方法は、ウェーハの第1の像を捕捉するように多走査電子顕微鏡(mSEM)を制御することを含む。ウェーハは、動力式の処理ステージに取り付けられる。mSEMは、動力式の処理ステージが第1の位置にある間、第1の像を捕捉するように制御される。第1の像は、ウェーハのノッチの少なくとも一部を含む。本方法はまた、第1の像に基づいて、ウェーハの放射軸を決定することを含む。本方法は、ウェーハを放射軸に沿ってウェーハの直径の半分だけシフトさせるように、動力式の処理ステージを制御することをさらに含み、このとき動力式の処理ステージは、第2の位置にある。本方法は、動力式の処理ステージが第2の位置にある間、ウェーハの第2の像を捕捉するようにmSEMを制御することをさらに含む。第2の像は、ウェーハ構造を含む。本方法はまた、第2の像のウェーハ構造の構造認識に基づいて、ウェーハの基準位置を決定することを含む。本方法は、基準位置および放射軸に基づいて、ウェーハのウェーハ座標系を動力式の処理ステージのステージ座標系に位置合わせすることをさらに含む。
【0014】
処理デバイスは、制御回路を含む。制御回路は、動力式の処理ステージが第1の位置にある間、動力式の処理ステージに取り付けられたウェーハの第1の像を捕捉するように多走査電子顕微鏡(mSEM)を制御するように構成される。第1の像は、ウェーハのノッチの少なくとも一部を含む。制御回路は、第1の像に基づいて、ウェーハの放射軸を決定するようにさらに構成される。制御回路は、ウェーハを放射軸に沿ってウェーハの直径の半分だけシフトさせ、その結果として、動力式の処理ステージが第2の位置にあるようにするように、動力式の処理ステージを制御するようにさらに構成される。制御回路は、動力式の処理ステージが第2の位置にある間、ウェーハの第2の像を捕捉するようにmSEMを制御するようにさらに構成され、第2の像がウェーハ構造を含む。制御回路は、第2の像のウェーハ構造の構造認識に基づいて、ウェーハの基準位置を決定するようにさらに構成される。制御回路は、基準位置および放射軸に基づいて、ウェーハのウェーハ座標系を動力式の処理ステージのステージ座標系に位置合わせするようにさらに構成される。
【0015】
上で述べた特徴およびこれから以下に説明されることになる特徴は、示されたそれぞれの組み合わせにおいてだけでなく、本発明の範囲から逸脱することなく、他の組み合わせで、または孤立して使用され得るということを理解されたい。
【図面の簡単な説明】
【0016】
【
図1】様々な例に従う、ウェーハ座標系およびステージ座標系を概略的に例証する図である。
【
図2】様々な例に従う、ダイ座標系を概略的に例証する図である。
【
図3】様々な例に従う、ウェーハ製作およびウェーハ検査を概略的に例証する図である。
【
図4】様々な例に従う、システムを概略的に例証する図である。
【
図5】様々な例に従う、方法のフローチャートである。
【
図6】様々な例に従う、ノッチおよびウェーハの中心を概略的に例証する図である。
【
図7】様々な例に従う、ノッチおよびウェーハの中心を概略的に例証する図である。
【
図8】様々な例に従う、ウェーハの中心の周囲の半導体ダイを概略的に例証する図である。
【発明を実施するための形態】
【0017】
本開示のいくつかの例は、概して、複数の回路または他の電気デバイスを提供する。回路および他の電気デバイスならびに各々によって提供される機能性に対するすべての言及は、本明細書に例証および説明されるものだけを包含することに限定されることは意図されない。特定の符号が、開示される様々な回路または他の電気デバイスに割り当てられ得るが、そのような符号は、回路および他の電気デバイスについての動作の範囲を限定することは意図されない。そのような回路および電気デバイスは、互いと組み合わせられることができ、および/または所望される特定のタイプの電気実装形態に基づいて任意の様式で分離され得る。本明細書に開示される任意の回路または他の電気デバイスは、本明細書に開示される動作を実施するために互いと一緒に作用する任意の数のマイクロコントローラ、グラフィック処理装置(GPU)、集積回路、メモリデバイス(例えば、FLASH(登録商標)、ランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、電気的にプログラム可能なリードオンリメモリ(EPROM)、電気的に消去可能なプログラム可能なリードオンリメモリ(EEPROM)、またはそれらの他の好適な異形)、およびソフトウェアを含み得るということを理解されたい。加えて、電気デバイスの任意の1つまたは複数は、開示されるような任意の数の機能を実施するようにプログラムされた非一時的なコンピュータ可読媒体に埋め込まれるプログラムコードを実行するように構成され得る。
【0018】
以下において、本発明の実施形態は、添付の図面を参照して詳細に説明されることになる。実施形態の以下の説明は、限定的意味でとられるべきではないということを理解されたい。本発明の範囲は、以後説明される実施形態によって、または図面によって限定されることは意図されず、単に例証的であるととられるものとする。
【0019】
図面は、概略的な表現であると見なされるべきであり、図面に例証される要素は、必ずしも縮尺通りに示されない。むしろ、様々な要素は、それらの機能および汎用が当業者に明らかになるように表される。図面に示される、または本明細書に説明される機能ブロック、デバイス、構成要素、または他の物理的もしくは機能的ユニット間の任意の接続または結合は、間接的な接続または結合によっても実装され得る。構成要素間の結合はまた、ワイヤレス接続を介して確立され得る。機能ブロックは、ハードウェア、ファームウェア、ソフトウェア、またはそれらの組み合わせで実装され得る。
【0020】
以後、ウェーハアライメントの技術が説明される。本明細書に説明される技術は、ウェーハマップを生成することを促進する。ウェーハマップは、(i)動力式の処理ステージのステージ座標系内の位置の(ii)ウェーハと関連付けられたウェーハ座標系内の位置へのマッピングを示すものであり得る。ウェーハマップは、例えば、ウェーハ上の1つまたは複数の位置を関連した結像モダリティのFOVと整列させるために、ウェーハ検査において使用され得る。
【0021】
本明細書に説明される技術によると、多走査電子顕微鏡(mSEM)は、ウェーハアライメントのために使用され得る。
【0022】
特に、様々な例は、参照実装形態において、ウェーハアライメントが、第一に光学顕微鏡を使用した粗いアライメント、および第二に走査電子顕微鏡を使用した細かいアライメントを含む2段階プロセスであるという所見に基づく。本明細書に説明される様々な例によると、mSEMは、ウェーハアライメントに必要とされるプロセス全体を完了するために使用されることができ、故に、光学顕微鏡を使用した粗いアライメントを回避する。mSEMは、荷電粒子顕微鏡の実装形態である。mSEMにおいて、ウェーハは、一次放射線として、例えば40超またはさらには90超の電子ビームを含む、電子ビームのアレイによって照射される。ビームは、ウェーハの上で一緒に走査されて、大面積のウェーハの像をまとめて形成する。走査位置ごとに、複数のビームが使用されて像を獲得する。これが大きいFOVを提供する。像は、一次放射線、すなわち電子ビームによる照射に応答してウェーハから発せられる二次粒子または放射線に基づいて形成される。二次放射線は、二次電子、反射電子、X線、および/または発光放射線の形態にあり得る。二次放射線の組成、エネルギー、および角度は、一次放射線のエネルギーによって制御されることができ、走査されるウェーハ表面の材料組成および表面品質を示すものである。mSEMでは、ウェーハ表面の高速走査が可能であり、したがって、それは、高スループットでのウェーハ計測に非常に好適である。例えば、mSEMのFOVは、100マイクロメートル×100マイクロメートルまたはさらには120マイクロメートル×120マイクロメートル程度であり得る一方、従来の走査電子顕微鏡のFOVは、1マイクロメートル×1マイクロメートル程度であり得る。各mSEM像の分解能は、5nm×5nm程度であり得る。
【0023】
ウェーハアライメントにおいてmSEMを使用することにより、細かいアライメントならびに粗いアライメントの両方を一回で実施することが可能である。特に、全体および局所特徴は、例えば、補完光学像の必要なしに、mSEM像から特定され得る。これは、ウェーハアライメントをロバスト(強健)にし、ウェーハアライメントを単純化する。さらなる詳細において、一軸で整列されない複数の結像モダリティを使用するときに遭遇する並進誤差を低減することが可能になる。mSEMの大きいFOVは、位置決めマーカまたは半導体構造または他のウェーハ構造などのウェーハ上の固有の構造を見つけ出すために使用されることができ、ウェーハアライメントのためにそのような構造を使用する。さらには、大きいFOVはまた、例えば、特徴認識などの画像処理アルゴリズムと併せて使用されるとき、唯一性を確実にし、典型的には、ウェーハの繰り返し構造のコンテクスト(context:前後関係、背景、状況)は、mSEMのそのような大きいFOVによって捕捉されることができ、こうして、繰り返し構造の繰り返し特性に起因する曖昧さが分解され得る。mSEMの高分解能は、構造の小さい特徴を使用することによって、精密なアライメントを可能にする。
【0024】
図1は、ステージ座標系191およびウェーハ座標系192に関する態様を概略的に例証する。ステージ座標系191は、動力式のウェーハ処理ステージ90(以後、単にステージ)と関連付けられる。
【0025】
ウェーハ100は、ステージ90に取り付けられる。ウェーハ100は、半導体ダイ112のアレイ111を含む。アレイ111は、半導体ダイ112の繰り返し順を規定する。ウェーハ100はまた、ウェーハ100の中心と一緒に、ウェーハ座標系192を規定するノッチ201を含む(
図1の例では、ウェーハ座標系192は、横次元(lateral dimensions)によって規定され、
図1の描画面(図平面)に対して垂直な垂直次元(vertical dimension)は例証されない)。
【0026】
図1の例では、ウェーハ座標系192の起源は、ノッチ201と整列されるが、他の例では、ウェーハ座標系192の起源は、別途、例えば、ウェーハ100の中心または別の基準位置と整列され得る。
【0027】
以後、ウェーハアライメントの技術が説明される。ウェーハアライメントは、ウェーハ座標系192をステージ座標系191に位置合わせするプロセスを表す。
【0028】
ウェーハ100がステージ90に取り付けられた後、ステージ座標系191に対するウェーハ座標系192の配置は、分かっていないか、少なくとも、製作または計測に必要な精度では分かっていない。例えば、ステージ座標系191の一次軸に対して横平面(lateral plane)におけるウェーハ座標系192の一次軸の回転が存在し得る。また、ステージ座標系191とウェーハ座標系192との差を結果としてもたらし得るわずかな例を挙げると、ウェーハ座標系192の横の一次軸がステージ座標系191の横平面から外に傾斜されることが可能である(すなわち、ウェーハ表面が、非平面の(non-planar:平らでない)取り付けに起因して、ステージ90の取り付け表面から外に傾斜される)。そのような差の影響は、ウェーハ座標系192をステージ座標系191に位置合わせすることによって、ウェーハアライメントに基づいて補償(compensate:相殺する、埋め合わせる)され得る。座標変換は、ウェーハ座標系192とステージ座標系191との間で決定されることができ、および/またはその逆もまた同様である。
【0029】
時として、ステージ座標系191およびウェーハ座標系に加えて、ダイ座標系が使用され得る。また、ダイ座標系は、ウェーハアライメントの部分として、ステージ座標系に位置合わせされ得る。ダイ座標系に関する詳細は、
図2に関連して説明される。
【0030】
図2は、ダイ座標系193に関する態様を概略的に例証する。ダイ座標系193は、アレイ111の半導体ダイ112と関連付けられる。特に、アレイ111の各半導体ダイ112は、独自の関連ダイ座標系193を有し得る。各半導体ダイ112内の1つまたは複数の半導体構造113の位置は、それぞれのダイ座標系193に対して規定され得る。半導体ダイ112は、繰り返しであってよく、すなわち、各半導体ダイ112は、同じ1つまたは複数の半導体構造113の同じ配置を含み得る。
【0031】
通則として、各半導体ダイ112は、それぞれの半導体ダイ112の基準位置、例えば、それらの角または中心に位置する対応する起源に対して規定されるそれぞれのダイ座標系193を有し得る。複数のダイ座標系193は、複数の半導体ダイ112のそれぞれの基準位置間の並進シフトによって、互いへと変換され得る。
【0032】
時として、ダイ座標系193はまた、それらがダイ112の1つ1つにおける半導体構造113の局所位置を規定することから、ラベル付きの局所座標系であるが、同様に、ウェーハ座標系192は、時として、それがグローバルに、すなわち、ウェーハ100のウェーハレベルにおいて、アレイ111のダイ112の位置を規定することから、グローバル座標系(global coordinate system)と呼ばれる。
【0033】
様々な例によると、例えば、ウェーハアライメントの部分として、半導体ダイ112のダイ座標系193をステージ座標系191に位置合わせすることが可能である。これは、各半導体ダイ112のための適切な基準位置を見つけ出すことを含み得る。
【0034】
例えば、次いで、半導体構造113の選択したものがそれぞれの結像モダリティ(ステージ90と整列したFOVを有する)のFOVの中心にあるように、ステージ90のモーターを適切に制御することによって、ステージ90を位置付けることが可能である。次いで、ウェーハ検査が実施され得る。
【0035】
通則として、半導体構造113の典型的な横の長さスケールは、ナノメートル~10ナノメートルまたは数十ナノメートル程度であり得る。半導体ダイ112の典型的な横の長さスケールは、数十マイクロメートル~100マイクロメートル、すなわち、少なくとも半導体構造113の典型的な長さスケールよりも1,000倍大きい程度であり得る。したがって、mSEMを使用することにより、各半導体構造113の詳細を結像する(image)のに十分に大きい分解能を有すること、ならびに半導体ダイ112のかなりの割合を結像する(image)のに十分に大きいFOVを有することが可能である。これは、粗いアライメントおよび細かいアライメントを促進する。
【0036】
本明細書に論じられるようなウェーハアライメントは、半導体構造の製造中にインライン計測のために用いられ得る。様々な実施形態のための応用環境としてのそのような半導体構造の製造の例が、
図3に例証される。
【0037】
図3において、半導体構造の製造は、ブランクウェーハ100で開始する。そのようなウェーハの例としては、シリコンウェーハまたはガリウムヒ素ウェーハが挙げられるが、任意の半導体ウェーハが使用され得る。
【0038】
まず、ウェーハ100は、いわゆるフロントエンド処理11に供される。フロントエンド処理は、ウェーハ上の構造が互いから機械的に分離される(解放)前の、構造がウェーハ上に形成されるすべての処理ステップに関する。大量生産のため、複数の等しい構造が、ウェーハ上に形成され、次いでこれは、別個の半導体構造へと分離される。
【0039】
フロントエンド処理11は、複数の製作ステップ13を含む。そのような製作ステップ13は、エッチング、半導体層または金属層の層堆積、例えばドーピングのための拡散または注入、清浄、ウェーハ平坦化、レジスト塗布およびレジスト処理、リソグラフィ暴露などを含み得る。これらの製作ステップ13により、構造が、ウェーハ100、例えば、半導体ダイのアレイ111(
図1を参照)上に形成される。
【0040】
特定の製作ステップ13の後、ウェーハは、インライン計測/ウェーハ検査14に供される。インライン計測14に加えて、または代替的に、測定が、「原位置」で、すなわち、製作ステップ13のうちの1つまたは複数の間に実施され得る。
【0041】
ウェーハ検査では、上に説明される、および以下にさらに説明されるような方法およびデバイスが、ウェーハアライメントを実施するために使用される。ウェーハ検査は、膜厚さ、膜均一性、粒子もしくは汚染の検出、または抵抗もしくは静電容量のような電気パラメータを測定することなど、物理パラメータの様々な測定を含み得る。計測を使用することにより、ウェーハ上に形成される構造の寸法は、ウェーハの像を獲得することによって決定され得る。像は、ウェーハ座標系192(および任意選択的に、ダイ座標系193)がステージ座標系191に位置合わせされることから、ウェーハの明確に定められた位置で得られ得る。任意選択的に、ウェーハの欠陥マップ16を獲得すること、すなわち、ウェーハ上で構造が所望の通りに形成されていない場所に関する情報を獲得することが可能である。欠陥マップは、ウェーハ座標系192を規定され得る。欠陥の存在または不在の決定は、像データを、別の物体の同様の区域について以前に集めたデータと比較すること(ダイ対ダイ)によって実行され得るか、またはそれは、参照データベース(ダイ対データベース)もしくは設計データ(ダイ対CAD)の対応する位置との比較によって実行され得る。すべてのデータは、代表的な欠陥の集合を形成する欠陥データベース、理想的または代表的な構造に関する情報を収集するCADデータベース、およびプロセスレシピを含む、データベース内で取り扱われ、制御され得る。
【0042】
製作ステップ13中のウェーハ検査のための、またはインラインウェーハ検査14における、これらの測定は、直接的もしくは特定の試験構造を使用して、製品ウェーハに対して、すなわち、販売用の半導体構造を製造することが意図されるウェーハに対して、または代替的に特定の非機能的なモニタウェーハ(ダミーウェーハとも呼ばれる)に対して、直接的に実施され得る。特別に設計された試験構造は、プロセス制御モニタ(PCM)としても知られる。
【0043】
欠陥が検出されると、欠陥が検出されるウェーハ100は、アトライン(at-line)ウェーハ欠陥レビューおよび分類17へ提供され得る。「アトライン」は、この場合、ウェーハ100が、さらなる検査のために通常の生産プロセスから取り出されることを示す。特に、レビューおよび分類17において、ウェーハ欠陥マップ内で特定された場所が、プロセス変動または欠陥を示すものを確認および分類するためにレビューされ得る。像は、ウェーハ座標系192(および任意選択的に、ダイ座標系193)がステージ座標系191に位置合わせされることから、ウェーハ100の明確に定められた位置で得られ得る。故に、ステージ90は、それぞれの結像モダリティのための適切な位置へ移動され得る。
【0044】
結果として、製作へのフィードバック命令15が、例えば、プロセス変動を考慮するように製作パラメータを修正するために提供され得るか、または、例えば、対応する製作デバイス内の可能性のある欠陥構成要素に起因して保守を行うための命令も提供され得る。
【0045】
これは、チェック18においてすべての処理層が完了したことを決定するまで反復する。これに続いて、ウェーハプローブ試験19が実施されてよく、ここでは、例えば、ウェーハ上の構造が、試験測定を実施するためにプローブによって電気的に接触される。
【0046】
フロントエンド処理11の後、バックエンド処理12が続き、ここでは、ウェーハが、アライメントダイ112の間のダイ通路に沿って別個のチップへとダイスカットされ(diced)、チップが包装される(packaged:パッケージングされる)。製造される半導体構造のさらなる試験が、バックエンド処理中に発生し得る。
【0047】
上記から理解されるように、計測およびウェーハ検査は、正確なウェーハアライメントに依存してよく、計測の部分として使用される結像モダリティのFOVがステージ座標系191内で規定されることから、ウェーハ座標系192を、および任意選択的に任意のダイ座標系193を、ステージ座標系に正確に位置合わせすることが重要である。これは、後に、欠陥の位置を正確に特定することができるという助けになり、このことが、例えば、それぞれのウェーハの合格/不合格を特定するのを助けることができ、または関連した欠陥の根本原因を特定するのを助けることができる。本明細書に説明される技術は、そのような正確なウェーハアライメントを促進する。正確なウェーハアライメントに関する詳細は、以下の図に関連して次に説明される。
【0048】
図4は、システム30を例証する。システム30は、様々な例に従うウェーハアライメントのために使用され得る。システム30は、処理デバイス31、像取得デバイス32、およびステージ制御デバイス33を含む。処理デバイス31、像取得デバイス32、およびステージ制御デバイス33は各々、それぞれの通信インターフェース901、911、921を含み、通信インターフェース901、911、921を介して互いと通信することができる。
【0049】
図4では、単一の像取得デバイス32が使用されるシナリオが例証されるが、時として、複数の像取得デバイスが使用され得る。
【0050】
像取得デバイス32は、分光計測、X線透過または回折顕微鏡などのX線を使用した計測のためなど、短波長の光を使用する光学像取得デバイス、あるいは、電子またはガリウムもしくはヘリウムイオンなどの他の粒子を使用する走査電子顕微鏡または集束イオンビーム顕微鏡など、荷電粒子を使用したデバイスであり得る。荷電粒子を使用するこれらのデバイスはまとめて、荷電粒子顕微鏡とも呼ばれる。荷電粒子顕微鏡の1つの特定の実装形態がmSEMである。以後、技術は、像取得デバイス32がmSEMとして実装される技術に関連して説明されることになる。mSEMは、半導体構造113から、最小関連詳細、例えば、最小発生欠陥または逸脱(deviations:かたより、ずれ)を捕捉するのに十分に高い画素密度、すなわち、高い分解能を提供する。その一方、mSEMは、例えば、複数の半導体構造113、またはダイ112もしくは複数の位置決めマーカのかなりの区域/領域を捕捉することによって、個々の構造の空間的コンテクスト(spatial context:空間的状況)を捕捉するのに十分に大きいFOVを提供する。
図4は、mSEM32の光学素子912を例証する。
【0051】
ステージ制御デバイス33は、ステージ90を、例えば、ステージ座標系191の一次横軸に沿って、再位置付けするために使用され得るモーター922を含む。位置付け精度は、サブマイクロメートル範囲にあり得る。
【0052】
処理デバイス31は、プロセッサ902およびメモリ903を含み、これら両方が制御回路を形成する。例えば、制御回路は、制御データをステージ制御デバイス33に伝送し、以てウェーハ100を再位置付けするようにステージ90を制御することができる。処理デバイス31の制御回路はまた、mSEM32の光学素子912から像を受信することができる。例えば、制御回路は、そのような像に含まれる特徴の特徴認識を実施するために実装され得る。制御回路は、ウェーハ座標系192をステージ座標系191に位置合わせすること、および任意選択的にダイ座標系193のうちの1つまたは複数をステージ座標系191に位置合わせすることによって、ウェーハアライメントを実施するように構成され得る。次いで、ウェーハ100上の特定の位置、例えば、特定の半導体構造113が、ウェーハ検査のために所与の結像モダリティのFOV内に位置付けられることになる場合、制御回路は、ウェーハ座標系192および/またはそれぞれのダイ座標系193における関連位置に基づいて、ステージ座標系191における必要なシフトを計算することができる。次いで、適切な制御データが、ステージ制御デバイス33のモーター922に伝送され得る。
【0053】
システム30の機能に関する詳細は、
図5に関連して次に説明される。
【0054】
図5は、様々な例に従う方法のフローチャートである。例えば、
図5の方法は、処理デバイス31の制御回路によって実行され得る。例えば、
図5の方法は、メモリ903からプログラムコードをロードした際にプロセッサ902によって実行され得る。
【0055】
ボックス1001で、ウェーハ積載チェックが実施される。例えば、これは、積載ドックが閉じられているかどうか、およびウェーハ100がステージ90に適切に取り付けられているかどうかをチェックすることを含み得る。ボックス1001はまた、例えば、ステージ90をステージ座標系191内で規定された初期位置に位置付けることによって、ステージ90を初期化することを含み得る。
【0056】
ボックス1001を実行するとき、ウェーハ座標系192は、ステージ座標系191と整列されない。故に、ウェーハ100上のmSEM32のFOVの中心位置が分かっている精度が低い、すなわち、半導体構造113の典型的な構造サイズよりも低い大きさである。典型的には、特定のウェーハアライメントプロセスがないときの(すなわち、ウェーハ100をステージ90に取り付けるときの機械的アライメントに基づく)アライメント精度は、100マイクロメートルよりも劣り、手動(マニュアル)取扱い精度または積載器具精度によって制限される。
【0057】
ボックス1002において、光学顕微鏡は、ウェーハ100のノッチ201を特定するために使用される。これは、mSEM32のFOVがノッチ201の鞍点202を中心とするように、粗いアライメントのために使用され得る(例となる鞍点202は、
図6および
図7に例証される)。
【0058】
したがって、ボックス1002において、ウェーハ100の光学像を捕捉するように、次いで光学像内でノッチ201を認識するように光学顕微鏡を制御することが可能である。次いで、ノッチの認識に基づいて、ならびにmSEMのFOVおよびステージ座標系191の既定のアライメントに基づいて、第1の位置へ横断(traverse)するようにステージ90を制御することが可能である。mSEMのFOVは、ステージ90が第1の位置にあるとき、ノッチ201の鞍点202を中心とし得る。例えば、コンピュータ実装の特徴認識アルゴリズムが使用され得る。
【0059】
mSEMのFOVおよびステージ座標系191の既定のアライメントは、ステージ90に対するmSEM 光学素子912の固定された機械的姿勢によって規定され得る。
【0060】
次に、ボックス1003で、mSEM32は、ステージ90が第1の位置にある間、ウェーハ100の第1の像60を捕捉するように制御され得る。この第1の像601は、ノッチ201の少なくとも一部を含む。特に、第1の像601は、ノッチ201の鞍点202を含む/結像する(image)ことができる。
【0061】
次いで、鞍点202は、放射軸205(
図6および
図7を参照)を決定するために使用され得るが、ボックス1004を参照されたい。より一般的に述べると、ノッチ201およびウェーハ100の中心209に交わる放射軸205は、mSEM32により捕捉された第1の像に基づいて決定され得る。
【0062】
例えば、ノッチ201の接線206が、鞍点202に基づいて決定されてよく、次いで、接線206に対して直交するように放射軸205を決定することが可能である。放射軸205はまた、ノッチ201の対称軸として決定され得る。
【0063】
通則として、接線206および放射軸205は、ウェーハ座標系192の一次軸に対して平行であり得る。故に、ボックス1004は、ウェーハ座標系192の配向を決定するのを助けることができる。
【0064】
放射軸205が決定されると、次に、ボックス1005で、ステージ90は、ウェーハ100をこの放射軸205に沿ってウェーハ100の直径の半分だけシフトするように制御される。ウェーハ100の直径は、先験的知識であり得る。ウェーハサイズは、典型的には、例えば、直径150mmまたは300mmに標準化される。
【0065】
また、放射軸205に対して垂直の任意のオフセット(offset:ずれ)は、ボックス1005で補償され得る。
【0066】
次いで、放射軸205に沿って横断した後、ステージ90は、第2の位置に位置付けられる。ステージ90が第2の位置にある間、mSEM32は、ウェーハ100の1つまたは複数の第2の像602を捕捉するように制御される。
【0067】
第2の像は、ウェーハ100の基準位置を含む。ウェーハ100の基準位置は、ウェーハ100の中心209に対応し得る(
図6および
図7を参照)。他の例において、基準位置は、中心209に対して特定の既定のオフセットを有し得る。以後、簡略性の目的で、基準位置は中心209に対応すると仮定するが、他の例においては、他の基準位置が使用され得る。
【0068】
1つまたは複数の第2の像602は、中心209に、またはその周囲に配置されたウェーハ構造を含む。そのようなウェーハ構造の例は、ダイ通路、位置決めマーカ、半導体構造113、半導体ダイ112の角などである。そのようなウェーハ構造の中心209に対する相対的距離は、例えば、参照データベースまたは設計データから、知られていてもよい。故に、1つまたは複数の第2の像内のデバイス構造の構造認識に基づいて、第2の像602内のウェーハ100の中心209を決定することが可能である。通則として、構造認識は、適切な構造認識アルゴリズムを使用して、コンピュータにより実施され得る。
【0069】
次に、例えば、鞍点202と中心209との間の実際の距離およびステージ90の進行距離の比較に基づいて、ステージ座標系191に対するウェーハ座標系192のいかなる伸張/斜行も決定することが可能である。
【0070】
故に、ウェーハ100の中心209が決定されると(またはより詳細には、第2の像602内の中心209の位置が決定されると)、ウェーハ座標系192は、中心209および放射軸205に基づいて、ステージ座標系191に位置合わせされ得る。例えば、ウェーハ座標系192およびステージ座標系191の間の回転は、放射軸205のアライメントに基づいて決定され得る。ステージ90の第1の位置と第2の位置との間の進行距離を鞍点202と中心209との間の公称寸法と比較することによって、ウェーハ座標系102における距離対ステージ座標系191における距離のいかなる伸張または圧縮も特定することが可能である。例えば、ウェーハ座標系192をステージ座標系191へと変換する、またはその逆である変換行列が獲得され得る。これらは、ステージ座標系191へのウェーハ座標系192の位置合わせをどのように実施するかに関するほんのわずかな例にすぎない。他の実装形態が想起可能である。ウェーハアライメントの一般的な技術は、知られており、ここで再使用され得る。
【0071】
ボックス1006における中心209を決定することに関する詳細は、
図8に関連して例証される。
図8は、中心209における、およびその周辺のウェーハ100の概略図である。特に、隣接する半導体ダイ112-1~112-4が例証される。隣接する半導体ダイ112-1~112-4の間には直交ダイ通路(orthogonal die streets)261~262が存在する。ダイ通路261~262と半導体ダイ112-1~112-4の間には、位置決めマーカ272が存在する。位置決めマーカ272は、
図8に例証されるように、繰り返し配置を有し得る。第2の像602内の中心209の位置は、直交ダイ通路261~262の構造認識を実施し、次いで、直交ダイ通路261~262の間のそれぞれの交差点の中心を特定し、以て中心209を決定することによって、決定され得る。例えば、ダイ通路261~262は、ダイ通路261~262内の試験構造(試験構造は
図8には例証されない)に基づいて、および/または隣接する位置決めマーカ272に基づいて認識され得る。
【0072】
再度
図5を参照すると、ボックス1007を実行した結果として、ウェーハアライメントが得られる。時として、ステージ座標系191への1つまたは複数のダイ座標系193の位置合わせも含むことが望ましい場合がある。次いで、次のボックス1008~1010が実行され得る。ボックス1008~1010を実行するための別の理由は、ステージ座標系191へのウェーハ座標系192の位置合わせの精度を増大させることであり得る。
【0073】
ボックス1008で、ウェーハ100の1つまたは複数のさらなる軸が決定される。これは、ウェーハ座標系192に基づき得る。初期位置合わせが利用可能であるため(ボックス1007から)、ボックス1009で、ステージ90を1つまたは複数のさらなる軸に沿って横断するように制御することも可能である。1つまたは複数のさらなる軸に沿って横断している間、mSEM32は、1つまたは複数の第3の像603を捕捉するように制御される(ステージ90は、1つまたは複数の第3の像603を捕捉するとき停止することができる)。第3の像603は、ダイ112の半導体構造113を含む。ボックス1010において、半導体構造113を認識すること(すなわち、構造認識を使用して第3の像603内の半導体構造113の位置を決定すること)、次いで、ボックス1011において、相応に規定されたダイ座標系193をステージ座標系191に位置合わせすることが可能である。再度、任意のシフトまたは並進が、(i)中心209とダイ112-1~112-4および半導体構造113との間の実際に進行した距離と、(ii)例えば、CADまたはデータベースから得られる、公称寸法との間の逸脱(deviation:ずれ)によって特定され得る。
【0074】
これらのさらなる軸に関する詳細は、
図8に関連して説明される。特に、
図8は、そのようなさらなる軸215の第1の例示的実装形態、およびそのようなさらなる軸216の第2の例示的実装形態を例証する。さらなる軸215は、中心209に交わる放射軸である。軸215は、ダイ通路262と整列され、故に、放射軸205に直交である。別の例においては、軸215と比較した場合にオフセット219を有するさらなる軸216を決定することも可能である。例えば、オフセット219は、ダイ通路261、262の幅に基づいて、またはより一般的には、隣接する半導体ダイ112-1~112-4間の距離に基づいて、決定され得る。ダイ通路261、262の幅は、隣接する半導体ダイ112-1~112-4の間の距離と相関する。したがって、このとき、mSEM32のFOV301は、さらなる軸216に沿って横断するとき、半導体ダイ112-1、112-3の角271と整列されることが可能である。故に、半導体ダイ内の半導体構造113のより良好なカバレッジが、オフセットしたさらなる軸216を使用するときに獲得され得る。これは、
図8に例証されるように、ダイ通路261、262の幅が、例えば、オフセット219の幅の60%~140%程度である場合、mSEMのFOV301が、典型的には同じ規模にあることが理由である。さらなる軸215、216に沿って配置された複数の隣接する半導体ダイ112-1、112-3のための複数の第3の像を捕捉することが可能である。次いで、隣接する半導体ダイの繰り返し半導体構造113が、例えば、複数の第3の像を互いと比較することによって、複数の第3の像において認識され得る。そして、ウェーハアライメントのために使用される。
【0075】
次いで、各ダイ112-1~112-4の特定の位置が決定され得る。これは、それぞれのダイ座標系193を、ステージ座標系191に、および/またはウェーハ座標系192に位置合わせするために使用され得る。また、ステージ座標系191へのウェーハ座標系192の位置合わせの精度が増大され得る。
【0076】
要約すると、ウェーハアライメントの上記技術が説明されている。光学顕微鏡を使用したプリアライメントが使用される。ウェーハアライメントと関連付けられた後続ステップは、光学顕微鏡の使用に依存せず、むしろmSEM像を使用する。そのような技術は、光学顕微鏡および限定FOV SEMなどの他の結像モダリティの非一軸配置に起因するオフセットが回避されるという利点を有する。本技術は、高速かつ高信頼性で実施され得る。
【0077】
本発明は、特定の好ましい実施形態に関して示され、説明されているが、等価物および修正形態は、本明細書の読解および理解の際に当業者に想起されるものとする。本発明は、すべてのそのような等価物および修正形態を含み、添付の特許請求の範囲によってのみ制限される。
【0078】
例えば、特定の実装形態は、自動特徴認識に関して例証されているが、いくつかの例において、特徴認識は手動で実施され得る。
【国際調査報告】