(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-12-15
(54)【発明の名称】基板処理システムにおけるロードロックのための自動クリーニング
(51)【国際特許分類】
H01L 21/304 20060101AFI20221208BHJP
H01L 21/677 20060101ALI20221208BHJP
H01L 21/205 20060101ALI20221208BHJP
H01L 21/3065 20060101ALI20221208BHJP
C23C 16/44 20060101ALI20221208BHJP
【FI】
H01L21/304 645Z
H01L21/68 A
H01L21/205
H01L21/302 101H
C23C16/44 J
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2022521072
(86)(22)【出願日】2020-10-05
(85)【翻訳文提出日】2022-06-07
(86)【国際出願番号】 US2020054217
(87)【国際公開番号】W WO2021071767
(87)【国際公開日】2021-04-15
(32)【優先日】2019-10-08
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】592010081
【氏名又は名称】ラム リサーチ コーポレーション
【氏名又は名称原語表記】LAM RESEARCH CORPORATION
(74)【代理人】
【識別番号】110000028
【氏名又は名称】弁理士法人明成国際特許事務所
(72)【発明者】
【氏名】ベイトマン・アダム・パトリック
(72)【発明者】
【氏名】テイラー・トラヴィス・アール.
【テーマコード(参考)】
4K030
5F004
5F045
5F131
5F157
【Fターム(参考)】
4K030DA06
4K030EA03
4K030FA01
5F004AA15
5F004BA03
5F004BB13
5F004BB22
5F004BC03
5F004BC05
5F004BD04
5F045DP03
5F045EB06
5F045EB08
5F045EE04
5F045EF05
5F045EH12
5F045EH18
5F131AA02
5F131BA01
5F131BA03
5F131BA04
5F131BA17
5F131BA23
5F131BA24
5F131BA37
5F131CA12
5F131CA13
5F131CA32
5F131DA32
5F131DA33
5F131DA36
5F131DA42
5F131EA03
5F131EA04
5F131EA24
5F131EB11
5F131EB82
5F131JA09
5F131JA16
5F131JA23
5F131JA24
5F131JA34
5F131JA35
5F157AA73
5F157BG13
5F157BG96
5F157CC21
5F157CC31
5F157CD15
5F157CE05
5F157CE53
5F157CE54
5F157CE57
5F157CE63
5F157CF04
5F157CF14
5F157CF16
5F157CF34
5F157CF38
5F157CF42
5F157CF44
5F157CF46
5F157CF90
(57)【要約】
【解決手段】基板処理システムにおけるロードロックをクリーニングする方法は、第1の期間において、ガス源と流体連通している第1のバルブを開いて、第1のベントを通してロードロックのガス容積内へとガスを供給することを含む。ガスは、ロードロックの表面から粒子を擾乱させるのに十分な圧力及び流量で供給される。この方法は、第1の期間に続く第2の期間において、第1のバルブが開かれた状態で、ポンプと流体連通している第2のバルブを開き、ポンプをオンにして、ロードロックのガス容積からガス及び粒子をフラッシュすることと、第2の期間に続く第3の期間において、第2のバルブを通してロードロックのガス容積からガス及び粒子をポンプで送り出し続けながら、第1のバルブを閉じることと、を含む。
【選択図】
図3
【特許請求の範囲】
【請求項1】
基板処理システムのロードロックをクリーニングするための方法であって、前記方法は、
(a)第1の期間において、ガス源と流体連通している第1のバルブを開いて、第1のベントを通して前記ロードロックのガス容積内へとガスを供給することであって、前記ガスは、前記ロードロックの表面から粒子を擾乱させるのに十分な圧力及び流量で供給される、ことと、
(b)前記第1の期間に続く第2の期間において、前記第1のバルブが開かれた状態で、(i)ポンプと流体連通している第2のバルブを開き、(ii)前記ポンプをオンにして、前記ガス及び前記粒子を前記ロードロックの前記ガス容積からフラッシュすることと、
(c)前記第2の期間に続く第3の期間において、前記第2のバルブを通して前記ロードロックの前記ガス容積から前記ガス及び前記粒子をポンプで送り出し続けながら、前記第1のバルブを閉じることと、を含む方法。
【請求項2】
請求項1に記載の方法であって、
前記第1のベントは、前記ロードロックの外周を取り囲む環状ベントに対応する、方法。
【請求項3】
請求項1に記載の方法であって、
前記第1のベントは、前記ロードロックの底部を通る底部ベントに対応する、方法。
【請求項4】
請求項1に記載の方法であって、
前記第1のベントは、前記ロードロックの蓋を通る上部ベントに対応する、方法。
【請求項5】
請求項1に記載の方法であって、
前記ガスは、少なくとも170標準リットル毎分の流量で前記第1のベントを通して供給される、方法。
【請求項6】
請求項1に記載の方法であって、
前記第1の期間は、0~10秒である、方法。
【請求項7】
請求項1に記載の方法であって、
前記第1の期間は、1秒未満である、方法。
【請求項8】
請求項1に記載の方法であって、
前記第2の期間は、1~60秒である、方法。
【請求項9】
請求項1に記載の方法であって、
前記第2の期間は10秒未満である、方法。
【請求項10】
請求項1に記載の方法であって、
前記第3の期間は、0.5~1.5秒である、方法。
【請求項11】
請求項1に記載の方法であって、
(a)、(b)、及び(c)を繰り返すことを更に含む、方法。
【請求項12】
請求項1に記載の方法であって、
前記方法は、前記第1の期間において、前記ガス源と流体連通している第3のバルブを開いて、第3のベントを通して前記ロードロックの前記ガス容積内へと前記ガスを供給することを更に含む、方法。
【請求項13】
請求項12に記載の方法であって、
前記第1の期間において前記第1のバルブと前記第3のバルブとを交互に開くことを更に含む、方法。
【請求項14】
請求項1に記載の方法であって、前記方法は、
(d)第4の期間において、前記ガス源と流体連通している第3のバルブを開いて、第3のベントを通して前記ロードロックの前記ガス容積内へと前記ガスを供給することと、
(e)前記第4の期間に続く第5の期間において、前記第3のバルブが開かれた状態で、(i)前記第2のバルブを開き、(ii)前記ポンプをオンにして、前記ロードロックの前記ガス容積から前記ガス及び前記粒子をフラッシュすることと、
(f)前記第5の期間に続く第6の期間において、前記第2のバルブを通して前記ロードロックの前記ガス容積から前記ガス及び前記粒子をポンプで送り出し続けながら、前記第3のバルブを閉じることと、を含む方法。
【請求項15】
基板処理システムにおけるロードロックをクリーニングするためのシステムであって、前記システムは、
ガス源及び前記ロードロックのガス容積と流体連通している第1のバルブと、
ポンプ及び前記ガス容積と流体連通している第2のバルブと、
コントローラであって、
(a)第1の期間において、前記第1のバルブを開いて、第1のベントを通して前記ロードロックの前記ガス容積内へと、前記ロードロックの表面から粒子を擾乱させるのに十分な圧力及び流量で供給されるガスを供給し、
(b)前記第1の期間に続く第2の期間において、前記第1のバルブが開かれた状態で、(i)前記第2のバルブを開き、(ii)前記ポンプをオンにして、前記ロードロックの前記ガス容積から前記ガス及び前記粒子をフラッシュし、
(c)前記第2の期間に続く第3の期間において、前記第2のバルブを通して前記ロードロックの前記ガス容積から前記ガス及び前記粒子をポンプで送り出し続けながら、前記第1のバルブを閉じる、ように構成されている、コントローラと、
を備えるシステム。
【請求項16】
請求項15に記載のシステムであって、
前記第1のベントは、前記ロードロックの外周を取り囲む環状ベントに対応する、システム。
【請求項17】
請求項15に記載のシステムであって、
前記第1のベントは、前記ロードロックの底部を通る底部ベントに対応する、システム。
【請求項18】
請求項15に記載のシステムであって、
前記第1のベントは、前記ロードロックの蓋を通る上部ベントに対応する、システム。
【請求項19】
請求項15に記載のシステムであって、
前記コントローラは、前記第1のベントを通る前記ガスの供給を、少なくとも170標準リットル毎分の流量で制御するように構成されている、システム。
【請求項20】
請求項15に記載のシステムであって、
前記第1の期間は、0~10秒である、システム。
【請求項21】
請求項15に記載のシステムであって、
前記第1の期間は1秒未満である、システム。
【請求項22】
請求項15に記載のシステムであって、
前記第2の期間は、1~60秒である、システム。
【請求項23】
請求項15に記載のシステムであって、
前記第2の期間は10秒未満である、システム。
【請求項24】
請求項15に記載のシステムであって、
前記第3の期間は、0.5~1.5秒である、システム。
【請求項25】
請求項15に記載のシステムであって、
前記コントローラは、(a)、(b)、及び(c)を繰り返すように構成されている、システム。
【請求項26】
請求項15に記載のシステムであって、
前記第1の期間において、前記コントローラは、前記ガス源と流体連通している第3のバルブを開いて、第3のベントを通して前記ロードロックの前記ガス容積内へと前記ガスを供給するように構成されている、システム。
【請求項27】
請求項26に記載のシステムであって、
前記コントローラは、前記第1の期間において前記第1のバルブと前記第3のバルブとを交互に開くように構成されている、システム。
【請求項28】
請求項15に記載のシステムであって、
前記コントローラは、
(d)第4の期間において、前記ガス源と流体連通している第3のバルブを開いて、第3のベントを通して前記ロードロックの前記ガス容積内へと前記ガスを供給し、
(e)前記第4の期間に続く第5の期間において、前記第3のバルブが開かれた状態で、(i)前記第2のバルブを開き、(ii)前記ポンプをオンにして、前記ロードロックの前記ガス容積から前記ガス及び前記粒子をフラッシュし、
(f)前記第5の期間に続く第6の期間において、前記第2のバルブを通して前記ロードロックの前記ガス容積から前記ガス及び前記粒子をポンプで送り出し続けながら、前記第3のバルブを閉じる、
ように更に構成されている、システム。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、2019年10月8日に出願された米国仮特許出願第62/912,584号の利益を主張する。上記で参照された出願の開示の全体が参照により本明細書に組み込まれる。
【0002】
技術分野
本開示は、基板処理システムにおける構成要素のクリーニングに関する。
【背景技術】
【0003】
本明細書で提供される「背景技術」の記載は、本開示の文脈を概略的に提示することを目的としている。本明細書の「背景技術」に記載されている範囲における、本明細書にて名前を挙げた発明者の業績、並びに、出願時点で先行技術と見なされないかも知れない本明細書の態様は、明示的にも暗黙的にも本開示に対する先行技術として認められていない。
【0004】
半導体ウェハーなどの基板を処置するために、基板処理システムを使用する場合がある。基板上で実施できるプロセスの例には、化学蒸着(CVD)、原子層堆積(ALD)、導体エッチング、急速熱処理(RTP)、イオン注入、物理蒸着(PVD)、及び/又は他のエッチング、堆積、若しくはクリーニングプロセスが含まれるが、これらに限定されない。基板は、基板処理システムの処理チャンバ内の、ペデスタル、静電チャック(ESC)などの基板支持体上に配置されてよい。処理中に、1つ以上の前駆体を含むガス混合物が処理チャンバ内へと導入されてよく、プラズマを使用して化学反応が開始されてよい。
【発明の概要】
【0005】
基板処理システムにおけるロードロックをクリーニングする方法は、第1の期間において、ガス源と流体連通している第1のバルブを開いて、第1のベントを通してロードロックのガス容積内へとガスを供給することを含む。ガスは、ロードロックの表面から粒子を擾乱させるのに十分な圧力及び流量で供給される。この方法は、第1の期間に続く第2の期間において、第1のバルブが開かれた状態で、ポンプと流体連通している第2のバルブを開き、ポンプをオンにして、ロードロックのガス容積からガス及び粒子をフラッシュすることと、第2の期間に続く第3の期間において、第2のバルブを通してロードロックのガス容積からガス及び粒子をポンプで送り出し続けながら、第1のバルブを閉じることと、を含む。
【0006】
他の機能では、第1のベントは、ロードロックの外周を取り囲む環状ベントに対応する。第1のベントは、ロードロックの底部を通る底部ベントに対応する。第1のベントは、ロードロックの蓋を通る上部ベントに対応する。ガスは、少なくとも170標準リットル毎分の流量で第1のベントを通して供給される。第1の期間は0~10秒である。第1の期間は1秒未満である。第2の期間は1~60秒である。第2の期間は10秒未満である。第3の期間は0.5~1.5秒である。この方法は更に、第1のバルブを開くこと、第2のバルブを開きポンプをオンにすること、及び第1のバルブを閉じることを繰り返すことを含む。
【0007】
他の特徴では、この方法は、第1の期間に、ガス源と流体連通している第3のバルブを開いて、第3のベントを通してロードロックのガス容積内へとガスを供給することを更に含む。この方法は、第1の期間において第1のバルブと第3のバルブとを交互に開くことを更に含む。この方法は、第4の期間において、ガス源と流体連通している第3のバルブを開いて、第3のベントを通してロードロックのガス容積内へとガスを供給することと、第4の期間に続く第5の期間において、第3のバルブが開かれた状態で、第2のバルブを開き、ポンプをオンにして、ロードロックのガス容積からガス及び粒子をフラッシュすることと、第5の期間に続く第6の期間において、第2のバルブを通してロードロックのガス容積からガス及び粒子をポンプで送り出し続けながら、第3のバルブを閉じることと、を更に含む。
【0008】
基板処理システムにおけるロードロックをクリーニングするためのシステムは、ガス源及びロードロックのガス容積と流体連通している第1のバルブと、ポンプ及びガス容積と流体連通している第2のバルブと、第1の期間に、第1のバルブを開いて、第1のベントを通してロードロックのガス容積内へとガスを供給するように構成されているコントローラと、を含む。ガスは、ロードロックの表面から粒子を擾乱させるのに十分な圧力及び流量で供給される。コントローラは、第1の期間に続く第2の期間において、第1のバルブが開かれた状態で、第2のバルブを開きポンプをオンにして、ロードロックのガス容積からガス及び粒子をフラッシュし、第2の期間に続く第3の期間において、第2のバルブを通してロードロックのガス容積からガス及び粒子をポンプで送り出し続けながら、第1のバルブを閉じる、ように更に構成されている。
【0009】
他の機能では、第1のベントは、ロードロックの外周を取り囲む環状ベントに対応する。第1のベントは、ロードロックの底部を通る底部ベントに対応する。第1のベントは、ロードロックの蓋を通る上部ベントに対応する。コントローラは、第1のベントを通るガスの供給を、少なくとも170標準リットル毎分の流量で制御するように構成されている。第1の期間は0~10秒である。第1の期間は1秒未満である。第2の期間は1~60秒である。第2の期間は10秒未満である。第3の期間は0.5~1.5秒である。コントローラは、第1のバルブを開くこと、第2のバルブを開くこと、ポンプをオンにすること、及び第1のバルブを閉じることを繰り返すように構成されている。
【0010】
他の特徴では、第1の期間において、コントローラは、ガス源と流体連通している第3のバルブを開いて、第3のベントを通してロードロックのガス容積内へとガスを供給するように構成されている。コントローラは、第1の期間において第1のバルブと第3のバルブとを交互に開くように構成されている。コントローラは、第4の期間において、ガス源と流体連通している第3のバルブを開いて、第3のベントを通してロードロックのガス容積内へとガスを供給し、第4の期間に続く第5の期間において、第3のバルブが開かれた状態で、第2のバルブを開き、ポンプをオンにして、ロードロックのガス容積からガス及び粒子をフラッシュし、第5の期間に続く第6の期間において、第2のバルブを通してロードロックのガス容積からガス及び粒子をポンプで送り出し続けながら、第3のバルブを閉じる、ように更に構成されている。
【0011】
本開示の適用可能な更なる領域が、「発明を実施するための形態」、「特許請求の範囲」、及び図面から明らかとなるであろう。「発明を実施するための形態」及び具体例は、例示のみを目的としており、開示の範囲を限定することを意図していない。
【0012】
本開示は、詳細な説明及び添付の図面からより完全に理解されるであろう。
【図面の簡単な説明】
【0013】
【
図1】
図1は、本開示の原理による例示的な基板処理システムである。
【0014】
【
図2】
図2は、本開示の原理による例示的な自動クリーニングシステムの一例である。
【0015】
【
図3】
図3は、本開示の原理による、ロードロックに対して自動クリーニングプロセスを実施するための例示的な方法である。
【0016】
【
図4A】
図4Aは、本開示の原理による例示的なロードロック構成の例である。
【
図4B】
図4Bは、本開示の原理による例示的なロードロック構成の例である。
【
図4C】
図4Cは、本開示の原理による例示的なロードロック構成の例である。
【発明を実施するための形態】
【0017】
図面において、参照番号は、類似の及び/又は同一の要素を識別するために再利用される場合がある。
【0018】
基板処理システムにおいて、基板が、機器のフロントエンドモジュール、ロードロック、及び/又は真空搬送モジュールを含むがこれらに限定されない、様々なモジュール又は対応する容積を画定するチャンバを通して、処理チャンバに又は処理チャンバから搬送され得る。基板が基板処理システム全体にわたって搬送される際に、時間の経過と共に粒子が様々なチャンバ内に蓄積する。例えば、粒子は、チャンバの構成要素の間、又はチャンバの構成要素と入ってくる基板及び/又はプロセス基板との間、などの機械的接触を介して形成され得る。
【0019】
典型的には、チャンバ及びそれぞれの構成要素は、組み立て前に精密クリーニングされる(例えば、酸、塩基、超音波処理、洗剤などを含む様々なプロセスを使用して)。組み立て後は、精密クリーニングはより困難になり、大部分の基板処理システムでは実行できない場合がある。例えば、精密クリーニングのために、一部の構成要素だけが比較的簡単に取り外すことができる。チャンバの壁を含む他の構成要素の精密クリーニングを実施することは、分解、クリーニング施設への搬送、及びその後の再取り付けを必要とし得る。したがって、組み立て後の精密クリーニングは、時間を要し、作業費用を増加させる。
【0020】
いくつかの例では、様々なクリーニングプロセスが実施されてよい。例えば、所定量の粒子が蓄積した後(例えば、基板上で測定された粒子数が所定の閾値を超えた場合)、生産を中断してチャンバを開け、ウェットクリーニングプロセスが実施され得る。例えば、チャンバの内部は、クリーンルームワイプを使用してウェットクリーニングされる場合がある。しかしながら、ウェットクリーニングを実施するために生産を中断すると、スループットが低下する。更に、ウェットクリーニングは、蓄積した粒子の全てを効率的に除去するわけではない。
【0021】
他の例では、ポンプ及びベントのクリーニングプロセスが実施される場合がある。ポンプ/ベントサイクルでは、ガスがチャンバ内へとポンプで送られ、その後、ベントされる。しかしながら、複数のポンプ/ベントサイクルを使用するクリーニング効率は非常に低い。例えば、ロードロックなどのチャンバをクリーニングするには、数千回のポンプ/ベントサイクル(例えば、9000回以上)が必要になる場合がある。
【0022】
本開示による自動クリーニングシステム及び方法は、効率的な除去のために、チャンバ内に蓄積された粒子を、ガス容積内へとロフトするように構成されている。ロードロックなどのチャンバの従来のベントは、蓄積された粒子の擾乱を防止するために、流れ及び流体速度を最小限に抑えている。したがって、粒子はロフトされる(すなわち、容積内で空中に浮遊される)ことはなく、粒子の除去は限定される。逆に、本開示の自動クリーニングシステム及び方法は、1つ以上の交替するロフト、フラッシュ、及びポンプサイクルにおいて、チャンバ内で流れ及び速度の増加をもたらして、粒子除去速度を増加させる。
【0023】
ロードロックに関して説明されているが、本開示の原理は、真空搬送モジュール(VTM)、プロセスモジュールなどを含むがこれらに限定されない、基板処理システムの他のチャンバ内でも実装されてよい。
【0024】
図1を参照すると、例示的な基板処理システム100が示されている。例としてのみ、基板処理システム100は、RFプラズマ及び/又は他の好適な基板処理を使用して堆積及び/又はエッチングを実施するために使用されてよい。基板処理システム100は、基板処理システム100の他の構成要素を取り囲みRFプラズマを含有する処理チャンバ102を含む。処理チャンバ102は、上部電極104と、静電チャック(ESC)などの基板支持体106とを含む。動作中、基板108は、基板支持体106上に配置される。特定の基板処理システム100及び処理チャンバ102が例として示されているが、本開示の原理は、他のタイプの基板処理システム及びチャンバ、例えば、プラズマをインサイチュで生成する基板処理システム、リモートプラズマの生成と送達(例えば、プラズマ管、マイクロ波管を使用して)を実装する基板処理システムなど、に適用されてよい。
【0025】
例としてのみ、上部電極104は、プロセスガスを導入及び分配するガス分配装置、例えばシャワーヘッド109、を含んでよい。シャワーヘッド109は、処理チャンバ102の上部表面に接続されている一端を含むステム部分を含んでよい。ベース部分は略円筒形であり、処理チャンバ102の上部表面から間隔を空けて配置された位置において、ステム部分の反対側の端部から半径方向外向きに延びている。シャワーヘッド109のベース部分の、基板に面する表面又はフェースプレートは、プロセスガス、又はパージガスが流れる複数の穴を含む。代わりに、上部電極104は導電性プレートを含んでよく、プロセスガスは別の方法で導入されてよい。
【0026】
基板支持体106は、下部電極として機能する導電性ベースプレート110を含む。ベースプレート110は、セラミック層112を支持する。いくつかの例では、セラミック層112は、セラミックマルチゾーン加熱プレートなどの加熱層を備えてよい。耐熱性層114(例えば、結合層)が、セラミック層112とベースプレート110との間に配置されてよい。ベースプレート110は、ベースプレート110を通して冷却剤を流すための1つ以上の冷却剤チャネル116を含んでよい。基板支持体106は、基板108の外周を取り囲むように配置されたエッジリング118を含んでよい。
【0027】
RF生成システム120は、RF電圧を生成し、上部電極104及び下部電極(例えば、基板支持体106のベースプレート110)のうちの一方に出力する。上部電極104及びベースプレート110のうちの他方は、DC接地、AC接地、又はフローティングであってよい。例としてのみ、RF生成システム120は、整合及び分配ネットワーク124によって上部電極104又はベースプレート110に供給されるRF電圧を生成するRF電圧発生器122を含んでよい。他の例では、プラズマは、誘導的に又はリモートで生成されてよい。RF生成システム120は、例示的な目的で、容量結合プラズマ(CCP)システムに対応するように示されているが、本開示の原理はまた、例えば、トランス結合プラズマ(TCP)システム、CCPカソードシステム、リモートマイクロ波プラズマ生成及び送達システムなど、他の好適なシステムにも実装されてよい。
【0028】
ガス送達システム130は、1つ以上のガス源132-1、132-2、…、及び132-N(総称してガス源132)を含み、ここでNはゼロより大きい整数である。ガス源は、1つ以上のガス混合物を供給する。ガス源はまた、パージガスを供給してよい。気化した前駆体も使用してよい。ガス源132は、バルブ134-1、134-2、…、及び134-N(総称してバルブ134)と、マスフローコントローラ136-1、136-2、…、及び136-N(総称してマスフローコントローラ136)とによってマニホールド140に接続されている。マニホールド140の出力は、処理チャンバ102に供給される。例としてのみ、マニホールド140の出力はシャワーヘッド109に供給される。
【0029】
温度コントローラ142は、セラミック層112内に配置された熱制御要素(TCE)144などの複数の加熱要素に接続されてよい。例えば、加熱要素144は、マルチゾーン加熱プレート内のそれぞれのゾーンに対応するマクロ加熱要素、及び/又はマルチゾーン加熱プレートの複数のゾーンにわたって配置されたマイクロ加熱要素のアレイを含んでよいが、これらに限定されない。温度コントローラ142を使用して、複数の加熱要素144を制御して、基板支持体106及び基板108の温度を制御してよい。
【0030】
温度コントローラ142は、冷却剤アセンブリ146と通信して、チャネル116を流れる冷却剤の流れを制御してよい。例えば、冷却剤アセンブリ146は、冷却剤ポンプ及びリザーバを含んでよい。温度コントローラ142は、冷却剤アセンブリ146を操作して、冷却剤を、チャネル116を通して選択的に流して基板支持体106を冷却する。
【0031】
バルブ150及びポンプ152を使用して、反応物質を処理チャンバ102から排気してよい。システムコントローラ160を使用して、基板処理システム100の構成要素を制御してよい。1つ以上のロボット170を使用して、基板を基板支持体106上へと送達し、基板を基板支持体106から除去してよい。例えば、ロボット170は、EFEM171とロードロック172との間、ロードロックとVTM173との間、VTM173と基板支持体106の間、などで基板を搬送してよい。温度コントローラ142は別個のコントローラとして示されているが、システムコントローラ160内に実装されてよい。いくつかの例では、セラミック層112とベースプレート110との間の結合層114の周辺の周りに保護シール176が設けられてよい。
【0032】
基板処理システム100は、本開示の原理に従って、ロードロック172(及び/又はEFEM171、VTM173などの他のチャンバ)から粒子を除去するための自動クリーニングシステム及び方法のために構成されている。例えば、システムコントローラ160は、ガス送達システムを制御するように構成されてよい。
【0033】
図2を参照すると、ロードロック204に対して自動クリーニング(例えば、ポンプ/ベント)プロセスを実施するように構成された例示的な自動クリーニングシステム200がより詳細に説明されている。ロードロック204は、自動クリーニングプロセスの間、閉じたままである(すなわち、大気に対して開かれていない)。換言すれば、自動クリーニングプロセスはin situで実施される。
【0034】
自動クリーニングシステム200は、ガス送達システム208を含み、これは、
図1に示されるようなガス送達システム130に対応してよい、又は別のガス送達システムに対応してよい。ガス送達システム208は、少なくとも1つのガス源212及びバルブ216を含む。ガス源212は、クリーニング又はパージガス(例えば、分子窒素、又はN
2)、ガスの混合物などを貯蔵する。ガス源212は、加圧されてよい(すなわち、加圧下で液体として貯蔵されてよい)。(例えば、システムコントローラ160に対応する)コントローラ220は、バルブ216を選択的に開閉して、加圧ガスをロードロック204内へと流す。ロードロック204内へと流入するガスは、ロードロック204の内面上に蓄積された粒子をガス容積224内へとロフトする。逆に、コントローラ220は、バルブ228及びポンプ232を制御して、ガス及び空気中の粒子をロードロック204からフラッシュし(すなわち、排気し)、ロードロック204を真空圧までポンプで減圧するように構成されている。コントローラ220は、ユーザ入力及び対応するセンサ236から受信された信号、を含むがこれらに限定されない入力に応答してよい。
【0035】
単一のバルブ216及び対応するベント位置240で示されているが、いくつかの例では、ロードロック204は、複数のベント位置及び対応するバルブを含んでよい。例えば、ベント位置は、ロードロック204の側面、上面、及び底面を含んでよいが、これらに限定されない。
【0036】
引き続き
図2を参照しながら、ここで
図3を参照すると、本開示によるロードロックに対して自動クリーニングプロセスを実施するための例示的な方法300が、304において始まる。308において、方法300は、自動クリーニングプロセスを実施するかどうかを判断する。例えば、コントローラ220は、ロードロック204内の特定の蓄積の量を定期的に、条件付きで、などで示す1つ以上の信号(例えば、センサ236のうちの対応するものからの信号)に応答して、自動クリーニングプロセスを開始してよい。例としてのみ、センサ236のうちの1つ以上が、センサ上への粒子の蓄積を検出する粒子カウンタとして機能するように構成されてよい。コントローラ220は、ロードロック204内で処理された及び/又は搬送された基板の所定の数などに応答して、自動クリーニングプロセスが実施された以前のインスタンスに続く所定の期間にわたって、自動クリーニングプロセスをトリガーするように構成されてよい。いくつかの例では、コントローラ220は、ユーザ入力に応答して自動クリーニングプロセスを実施してよい。
【0037】
308における結果が真の場合、方法300は312に続く。偽の場合、方法300は308に戻る。312において、方法300は、ロフトステップ又は期間において、ロードロック204内の粒子をガス容積224内へとロフトする。例えば、コントローラ220は、バルブ216を開いて、ガス源212からの加圧ガスを、ロードロック204の表面から粒子を擾乱させ空中に浮遊させるのに十分な流量で、ロードロック204内へと供給する。バルブ228は、ロフト期間中は閉じたままである。
【0038】
例としてのみ、N2又は別のガス(又はガス混合物)が約70psi(例えば、65~75psi)で供給されて、少なくとも170標準リットル毎分(SLM)の流量が実現される。いくつかの例では、ガスの流量は180~250SLMである。ロフト期間は0~10秒であってよい。いくつかの例では、ロフト期間は1秒未満(例えば、0.5秒)である。ロフト期間の前に、ロードロック204内の圧力は、真空圧力(例えば、1トール未満)であってよい。ロードロック204内の圧力は、ロフト期間中に増加してよい(例えば、700~800トールまで)。
【0039】
ロフト期間に続いて、方法300は、316におけるフラッシュステップ又は期間において、擾乱されロフトされた粒子をロードロック204からフラッシュする。例えば、バルブ216は開いたままであり、コントローラ200はバルブ228を開き、ポンプ232をオンにする。例としてのみ、ポンプ232は、少なくとも1700SLMのポンプ速度で動作する。バルブ216及び228が開いた状態で、加圧ガスは、バルブ216を通ってロードロック内へと流入し続けて、ロードロック204から粒子及びガスの両方をバルブ228を通してフラッシュする。フラッシュ期間中のガス及び粒子の流量は、少なくとも170SLM(例えば、180~250SLM)であってよい。フラッシュ期間は1~60秒であってよい。いくつかの例では、フラッシュ期間は1~10秒である。ロードロック204内の圧力は、ロフト期間中に700~800トールから1トール未満に減少する場合がある。
【0040】
いくつかの例では、ポンプ速度は、フラッシュ期間中にロードロック204内を所望の圧力に維持するように制御されてよい。例えば、フラッシング効率は、様々なロードロック又は他のチャンバに対して、圧力により変化する場合がある。したがって、ポンプ速度は、フラッシュ期間中に圧力を所望の範囲(例えば、10~100トール)内に維持するように制御されてよい。例としてのみ、センサ236は、ロードロック204内の圧力を示す信号を提供するように構成された圧力センサを含んでよい。センサ236はまた、ロードロック204内の様々な位置での流量/速度を含むがこれらに限定されない、ロードロック204内の他のパラメータを測定するように構成されている対応するセンサを含んでよい。このように、それぞれの期間に対して圧力、ポンプ速度などを制御して、所望の流量が実現されてよい。
【0041】
フラッシュ期間に続いて、方法300は、320におけるポンプステップ又は期間にて、残りのロフトされた粒子をロードロック204から除去し、ロードロック204を所望の真空圧までポンプダウンする。例えば、バルブ228は開いたままであり、コントローラ200はバルブ216を閉じる。バルブ228が開き、ポンプがオンになり(例えば、1700SLM以上で)、バルブ216が閉じた状態で、残りのガス及び擾乱された粒子がロードロック204からポンプで排出される。ポンプ期間は約1秒(例えば、0.5~1.5秒)であってよい。ポンプ期間中、ロードロック204内の圧力は1トール未満に維持され得る。いくつかの例では、ポンプ期間は、所望の圧力(例えば、40ミリトール未満)に到達するまで継続されてよい。
【0042】
フラッシュ期間に続いて、方法300は、324において、追加の自動クリーニングサイクルを実施するかどうかを判断する。例えば、1つの自動クリーニングサイクルは、1つのロフト期間、1つのフラッシュ期間、及び1つのポンプ期間を含んでよく、自動クリーニングプロセスは、2つ以上の自動クリーニング(ロフト/フラッシュ/ポンプ)サイクルを含んでよい。いくつかの例では、所定の数の自動クリーニングサイクルが実施される(例えば、2~1000サイクル)。他の例では、自動クリーニングサイクルは、(例えば、センサ236を介して)感知された粒子レベルが所定の閾値を下回るまで繰り返されてよい。324における結果が真の場合、方法300は312に続く。偽の場合、方法300は328において終了する。
【0043】
バルブ216及びベント位置240の制御に関して説明されているが、いくつかの例では、複数のバルブを別々に制御して、対応するベント位置を介してガスをロードロック204に供給してよい。例えば、自動クリーニングプロセスは、第1の自動クリーニングサイクルのロフト及びフラッシュ期間において、第1のベント位置に対応する第1のバルブを開くこと、第2の自動クリーニングサイクルのロフト及びフラッシュ期間において、第2のベント位置に対応する第2のバルブを開くことと、第3の自動クリーニングサイクルのロフト及びフラッシュ期間において、第3のベント位置に対応する第3のバルブを開くことと、を含んでよい。いくつかの例では、各ベントは、所定数の自動クリーニングサイクルにおいて開けられてよい。同じベントが、連続した自動クリーニングサイクルで開けられてよい、又は開けられたベントは、連続する自動クリーニングサイクルで異なってよい(すなわち、開けられたベントは交互になっていてよい)。
【0044】
ここで
図4A、
図4B、及び
図4Cを参照すると、本開示によるロードロック400の例示的な構成が示されている。ロードロック400は、それぞれの基板を保持するように構成された第1及び第2のチャンバ404及び408を含む。チャンバ404及び408は、それぞれのガス容積412及び416を画定している。
図4Aに示すように、ロードロック400は、環状ベント420を含む。例えば、環状ベント420は、ロードロック400の上部領域の外周を取り囲むか、又は部分的に取り囲む。上述したように、ロフト期間中に、環状ベント420を介してチャンバ404及び408内へとガスが供給されて、ガス容積412及び416内の粒子をロフトする。例えば、ガスは、環状ベント420を通して内向きに供給され、チャンバ404及び408の内壁424に沿って下向きに向けられる。ガス及び粒子は、概ね、破線矢印で示されている経路をたどる。したがって、ガスは、内壁424上に蓄積された粒子を擾乱させ、粒子をガス容積412及び416内へとロフトする。ガス及び粒子は、チャンバ404及び408から、それぞれのポンプベント428及び432を介して、フラッシュされる及び/又はポンプで排出される。
【0045】
図4Bに示すように、ロードロック400は、ガスを(例えば、ロードロック400の蓋444を通して)、対応するチャンバ404及び408内へと供給するように構成されている上部ベント436及び440を含む。上述したように、ロフト期間中に、上部ベント436及び440を介してチャンバ404及び408内へとガスが供給されて、ガス容積412及び416内の粒子をロフトする。例えば、ガスは、上部ベント436及び440を通して下向きに供給され、底面448に沿って半径方向外向きに、次いでチャンバ404及び408の内壁424に沿って上向きに導かれる。ガス及び粒子は、概ね、破線矢印で示されている経路をたどる。
【0046】
図4Cに示すように、ロードロック400は、ガスを(例えば、ロードロック400の蓋444を通して)、対応するチャンバ404及び408内へと供給するように構成されている底部ベント452及び456を含む。上述したように、ロフト期間中に、底部ベント452及び456を介してチャンバ404及び408内へとガスが供給されて、ガス容積412及び416内の粒子をロフトする。例えば、ガスは、底部ベント452及び456を通して上向きに供給され、上面460に沿って半径方向外向きに、次いでチャンバ404及び408の内壁424に沿って下向きに導かれる。ガス及び粒子は、概ね、破線矢印で示されている経路をたどる。
【0047】
図4A、
図4B、及び
図4Cでは、ロードロック400の別々の構成が示されているが、他の例では、ロードロック400は、2つ以上の位置にベントを含んでよい。例えば、ロードロック400は、環状ベント420、上部ベント436及び440、並びに底部ベント452及び456、のうちの2つ以上を含んでよい。したがって、チャンバ404及び408の内壁424、底面448、及び上面460の各々から、対応するベントを通してガスを供給することにより、粒子は擾乱されロフトされ得る。例えば、環状ベント420、上部ベント436及び440、並びに底部ベント452及び456に対応するそれぞれのバルブは、対応する自動クリーニングサイクルにおいて、例えば、同じロフト期間において、異なるロフト期間において、順次開けられてよい。
【0048】
前述の説明は本質的に単なる例示に過ぎず、本開示、その適用又は使用を限定することは決して意図されていない。本開示の広範な教示は、様々な形で実現され得る。したがって、本開示は特定の例を含むが、図面、明細書、及び以下の特許請求の範囲を検討すると、他の修正形態が明らかになるであろうから、本開示の真の範囲はそのように限定されるべきではない。方法における1つ以上の工程は、本開示の原理を変更することなく、異なる順序で(又は同時に)実行されてよいことを理解すべきである。更に、実施形態の各々は、特定の特徴を有するものとして上述されているが、本開示の任意の実施形態に関して記載されているこれらの特徴のうちのいずれか1つ以上を、他の実施形態のいずれかに実装することができ、及び/又は、他の実施形態のいずれかの特徴と組み合わせることができ、その組み合わせは、たとえ明示的に説明されていなくてよい。換言すれば、記載した実施形態は相互排他的ではなく、1つ以上の実施形態の順序を互いに並べ換えることは、本開示の範囲内に留まる。
【0049】
要素間の空間的及び機能的関係(例えば、モジュール間、回路要素間、半導体層間など)は、「接続された」、「係合された」、「結合された」、「隣接する」、「隣の」、「上の」、「上方の」、「下方の」、「配置された」を含む様々な用語を使用して説明される。「直接」であると明示的に記載されていない限り、上述した開示に、第1の要素と第2の要素との間の関係が記載されている場合、その関係は、第1の要素と第2の要素との間に他の介在要素が存在しない直接的な関係であり得るが、1つ以上の介在要素が(空間的又は機能的のいずれかで)第1の要素と第2の要素との間に存在する間接的な関係でもあり得る。本明細書で使用する場合、A、B、及びCのうちの少なくとも1つ、という語句は、非排他的論理和ORを使用した論理(A OR B OR C)を意味すると解釈されるべきであり、「Aのうちの少なくとも1つ、Bのうちの少なくとも1つ、及びCのうちの少なくとも1つ」を意味すると解釈されるべきではない。
【0050】
いくつかの実現形態では、コントローラは、上述した実施例の一部であってよいシステムの一部である。このようなシステムは、処理ツール(単数又は複数)、チャンバ(単数又は複数)、処理用プラットフォーム(単数又は複数)、及び/又は特定の処理構成要素(ウェハーペデスタル、ガスフローシステムなど)を含む、半導体処理装置を備えることができる。これらシステムは、半導体ウェハー又は基板の処理前、処理中、及び処理後の作業を制御するための電子機器に組み込まれてよい。電子機器は、システム(単数又は複数)の様々な構成要素又は副部品を制御してよい「コントローラ」と呼ばれてよい。コントローラは、処理要件及び/又はシステムのタイプに応じて、処理ガスの送達、温度設定(例えば、加熱及び/又は冷却)、圧力設定、真空設定、電力設定、無線周波数(RF)発生器設定、RF整合回路設定、周波数設定、流量設定、流体送達設定、位置及び作業設定、特定のシステムと接続しているか又はインターフェースしているツール及び他の搬送ツール並びに/又はロードロックに対するウェハーの搬出入、を含む、本明細書に開示されるプロセスのいずれをも制御するようにプログラムされてよい。
【0051】
大まかに言って、コントローラは、様々な集積回路、ロジック、メモリ、及び/又はソフトウェアを有し、命令を受信し、命令を発行し、作業を制御し、クリーニング作業を有効にし、エンドポイント測定を有効にするなどのような電子機器として定義されてよい。集積回路は、プログラム命令を記憶するファームウェアの形態のチップ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)として定義されたチップ、及び/又は1つ以上のマイクロプロセッサ、又はプログラム命令(例えば、ソフトウェア)を実行するマイクロコントローラ、を含んでよい。プログラム命令は、様々な個別設定(又はプログラムファイル)の形態でコントローラに通信される命令であって、特定のプロセスを、半導体ウェハー上で若しくは半導体ウェハーに対して、又はシステムに対して実施するための作業パラメータを定義してよい。いくつかの実施形態では、作業パラメータは、1つ以上の層、材料、金属、酸化物、シリコン、二酸化シリコン、表面、回路、及び/又はウェハーダイの作製時に、1つ以上の処理工程を実現するために、プロセスエンジニアにより定義されるレシピの一部であってよい。
【0052】
いくつかの実現形態では、コントローラは、システムに組み込まれた、システムに結合された、若しくはシステムにネットワーク接続された、又はこれらの組み合わせである、コンピュータの一部であるか、又はそのコンピュータに結合されていてよい。例えば、コントローラは「クラウド」内にあるか、又はファブホストコンピュータシステムの全て若しくは一部であってよく、それによりウェハー処理のリモートアクセスが可能になり得る。コンピュータは、システムへのリモートアクセスを可能にして、製造作業の現在の進行状況を監視し、過去の製造作業の履歴を調査し、複数の製造作業から傾向又は性能の指標を調査して、現在の処理のパラメータを変更し、現在の処理に続く処理工程を設定するか、又は新しいプロセスを開始してよい。いくつかの例では、リモートコンピュータ(例えば、サーバ)は、ローカルネットワーク又はインターネットを含んでよいネットワークを経由して、プロセスレシピをシステムに提供することができる。リモートコンピュータは、パラメータ及び/又は設定の入力若しくはプログラミングを可能にするユーザインターフェースを含んでよく、パラメータ及び/又は設定は次いで、リモートコンピュータからシステムに通信される。いくつかの例では、コントローラは、1つ以上の作業中に実施される各処理工程のためのパラメータを指定するデータ形式の命令を受信する。パラメータは、実施されるプロセスのタイプ、及びコントローラがインターフェースするか、又は制御するように構成されているツールのタイプに固有のものであってよいことを理解されたい。したがって、上述したように、コントローラは、1つ以上の個別のコントローラを備え、これらが一緒にネットワーク化され、本明細書に記載されるプロセス及び制御などの共通の目的に向けて動作することなどによって分散されてよい。そのような目的のための分散コントローラの例は、遠隔に位置する(例えば、プラットフォームレベルで、又はリモートコンピュータの一部として)1つ以上の集積回路と通信状態にあるチャンバ上の1つ以上の集積回路であってよく、これらが組み合わされてチャンバでのプロセスを制御する。
【0053】
限定するわけではないが、例示的なシステムは、プラズマエッチングチャンバ又はモジュール、堆積チャンバ又はモジュール、スピンリンスチャンバ又はモジュール、金属めっきチャンバ又はモジュール、クリーニングチャンバ又はモジュール、ベベルエッジエッチングチャンバ又はモジュール、物理蒸着(PVD)チャンバ又はモジュール、化学蒸着(CVD)チャンバ又はモジュール、原子層堆積(ALD)チャンバ又はモジュール、原子層エッチング(ALE)チャンバ又はモジュール、イオン注入チャンバ又はモジュール、トラックチャンバ又はモジュール、及び半導体ウェハーの作製及び/又は製造に関連するか若しくは使用されてよい任意の他の半導体処理システム、を含んでよい。
【0054】
上述したように、ツールにより実施されるプロセス工程に応じて、コントローラは、他のツール回路又はモジュール、他のツール構成要素、クラスタツール、他のツールインターフェース、隣接ツール、隣り合うツール、工場全体に位置するツール、メインコンピュータ、別のコントローラ、又は半導体製造工場内のツール位置及び/又はロードポートとの間でウェハー容器を搬出入する材料搬送で使用されるツール、のうちの1つ以上と通信し得る。
【国際調査報告】