IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ テクトロニクス・インコーポレイテッドの特許一覧

特表2023-501715被試験デバイスからの信号の間接的な信号取り込み
<>
  • 特表-被試験デバイスからの信号の間接的な信号取り込み 図1
  • 特表-被試験デバイスからの信号の間接的な信号取り込み 図2
  • 特表-被試験デバイスからの信号の間接的な信号取り込み 図3
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-01-18
(54)【発明の名称】被試験デバイスからの信号の間接的な信号取り込み
(51)【国際特許分類】
   G01R 31/28 20060101AFI20230111BHJP
   G01R 1/06 20060101ALI20230111BHJP
【FI】
G01R31/28 K
G01R1/06 A
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2022528233
(86)(22)【出願日】2020-11-16
(85)【翻訳文提出日】2022-05-16
(86)【国際出願番号】 US2020060803
(87)【国際公開番号】W WO2021097462
(87)【国際公開日】2021-05-20
(31)【優先権主張番号】63/050,053
(32)【優先日】2020-07-09
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/936,305
(32)【優先日】2019-11-15
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】17/098,155
(32)【優先日】2020-11-13
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】391002340
【氏名又は名称】テクトロニクス・インコーポレイテッド
【氏名又は名称原語表記】TEKTRONIX,INC.
(74)【代理人】
【識別番号】100090033
【弁理士】
【氏名又は名称】荒船 博司
(74)【代理人】
【識別番号】100093045
【弁理士】
【氏名又は名称】荒船 良男
(72)【発明者】
【氏名】ストゥリックリング・サム・ジェイ
(72)【発明者】
【氏名】バージェス・デイビッド・エヴァレット
【テーマコード(参考)】
2G011
2G132
【Fターム(参考)】
2G011AA21
2G011AC03
2G011AC04
2G011AC05
2G011AE11
2G132AA20
2G132AB02
2G132AE14
2G132AE16
2G132AE23
2G132AF02
2G132AF05
2G132AF10
2G132AF18
2G132AL04
2G132AL07
(57)【要約】
試験測定プローブ、ユーザ・インタフェース、ロボット及びコントローラを有する被試験デバイス(DUT)から試験測定信号を取り込むシステム。プローブは、DUTから電子信号を取り込むよう構成される。ユーザ・インタフェースは、DUT上の実際のノードに対応する仮想ノードの描写を含む、DUTの物理的な電子回路のデジタル表現を表示する。ロボットは、DUTに対してプローブを自動的に位置決めするよう構成される。コントローラは、物理的な電子回路のデジタル表現の選択されたノードの電子的な指示をユーザ・インタフェースから受けるよう構成され、このとき、選択されたノードは仮想ノードの1つである。コントローラは、実際のノードに対応する物理的な電子回路上の位置にプローブを自動的に位置決めするようにロボットに命令を与えるよう更に構成される。
【特許請求の範囲】
【請求項1】
被試験デバイス(DUT)をプロービングするシステムであって、
試験測定プローブと、
上記DUT上の物理的な回路の実際のノードに対応する仮想ノードを有する上記DUTのデジタル表現を表示するユーザ・インタフェースと、
上記DUTに対して上記試験測定プローブを位置決めするように構成されたロボットと、
上記ユーザ・インタフェースからユーザが選択した仮想ノードの指示を受けて、上記ユーザが選択した仮想ノードに対応する上記DUT上の実際のノードへと上記試験測定プローブを位置決めするための命令をロボットに供給するよう構成されるコントローラと
を具えるシステム。
【請求項2】
上記試験測定プローブが、複数のプローブ・チップを更に有する請求項1のシステム。
【請求項3】
上記ロボットが、上記複数のプローブ・チップの中で取り替えるように更に構成される請求項2のシステム。
【請求項4】
上記DUTの回路構成をスキャンし、上記コントローラと通信するように構成された視覚システムを更に具える請求項1のシステム。
【請求項5】
上記ユーザ・インタフェースが、タッチスクリーンを有する請求項1のシステム。
【請求項6】
上記試験測定プローブが、上記実際のノードから信号を取り込むように構成される請求項1のシステム。
【請求項7】
上記試験測定プローブと動作可能に結合された試験測定装置を更に具える請求項1のシステム。
【請求項8】
物理的な回路を含む被試験デバイス(DUT)からの信号を間接的に取り込む方法であって、
上記物理的な回路のデジタル表現上の選択されたノードの電子的な指示を受ける処理と、
上記デジタル表現上の上記選択されたノードを上記物理的な回路上の実際のノードに相関させる処理と、
上記選択されたノードの上記電子的な指示を受ける処理に応答して、上記実際のノードに対応する上記DUT上の位置に試験測定プローブを自動的に位置決めする処理と、
上記試験測定プローブを使用して、上記実際のノードから信号を取り込む処理と
を具える方法。
【請求項9】
上記選択されたノードの上記電子的な指示を受ける処理が、上記ユーザ・インタフェースを介した入力によって、上記選択されたノードの電子的な指示を受ける処理を有する請求項8の方法。
【請求項10】
上記試験測定プローブを自動的に位置決めする処理が、上記試験測定プローブをロボットによって自動的に位置決めする処理を有する請求項8の方法。
【請求項11】
上記実際のノードからの上記信号の表現を表示する処理を更に具える請求項8の方法。
【請求項12】
上記選択されたノードを上記実際のノードに相関させる処理が、上記物理的な電子回路の回路構成をスキャンし、上記デジタル表現上の上記選択されたノードに基づいて上記物理的な回路上の上記実際のノードを識別するのに視覚システムを使用する処理を有する請求項8の方法。
【請求項13】
上記選択されたノードを上記実際のノードに相関させる処理が、上記物理的な回路に固定された2自由度グリッドを、上記物理的な回路のデジタル表現に固定された2自由度グリッドと相関させる処理を有する請求項8の方法。
【請求項14】
上記選択されたノードを上記実際のノードに相関させる処理が、上記物理的な回路用のプリント回路基板(PCB)設計ファイル内の、上記選択されたノードと上記実際のノードとに対応する試験ポイントを識別する処理を有する請求項8の方法。
【請求項15】
上記物理的な回路の上記デジタル表現上の上記選択されたノードの電子的な指示を受ける処理と、
上記デジタル表現上の上記選択されたノードを上記物理的な回路上の上記実際のノードに相関させる処理と、
上記選択されたノードの上記電子的な指示を受ける処理に応答して、上記実際のノードに対応する上記DUT上の位置に上記試験測定プローブを自動的に位置決めする処理と、
上記試験測定プローブを使用して、上記実際のノードからの上記信号を取り込む処理と、
コンピュータ記憶媒体に上記実際のノードからの上記信号を記憶する処理と、
上記実際のノードからの上記信号を基準値と比較する処理と
を反復して繰り返す処理を更に具える請求項8の方法。
【請求項16】
上記実際のノードからの上記信号を上記基準値と比較する処理が、上記実際のノードからの上記信号を、上記実際のノードからの上記信号に対する期待値と比較する処理を有する請求項15に記載の方法。
【請求項17】
コンピューティング・デバイスによる実行に応答して、該コンピューティング・デバイスに複数の工程を実行させるコンピュータ実行可能な命令を記憶させた非一時的コンピュータ可読媒体であって、上記複数の工程が、
物理的な回路のデジタル表現上の選択されたノードの電子的な指示を受ける工程と、
上記デジタル表現上の上記選択されたノードを上記物理的な回路上の実際のノードに相関させる工程と、
上記実際のノードに対応する上記物理的な回路上の位置に試験測定プローブを自動的に位置決めするための命令をロボットに提供する工程と、
上記実際のノードから取り込まれる信号を上記試験測定プローブから受ける工程と
具える非一時的コンピュータ可読媒体。
【請求項18】
上記物理的な回路の上記デジタル表現上の上記選択されたノードの上記電子的な指示を受ける工程が、上記物理的な回路の上記デジタル表現上の上記選択されたノードの上記電子的な指示をユーザ・インタフェースから受ける工程を有する請求項17の非一時的コンピュータ可読媒体。
【請求項19】
上記複数の工程が、
物理的な回路のデジタル表現上の選択されたノードの電子的な指示を受ける工程と、
上記デジタル表現上の上記選択されたノードを上記物理的な回路上の実際のノードに相関させる工程と、
上記実際のノードに対応する上記物理的な回路上の位置に試験測定プローブを自動的に位置決めするための命令をロボットに提供する工程と、
上記実際のノードから取り込まれる信号を上記試験測定プローブから受ける工程と、
上記実際のノードからの上記信号を記憶する工程と、
上記実際のノードからの上記信号を基準値と比較する工程と
を反復して繰り返す工程を更に具える請求項17の非一時的コンピュータ可読媒体。
【請求項20】
上記実際のノードからの上記信号を上記基準値と比較する工程が、上記実際のノードからの上記信号を上記実際のノードからの上記信号に対する期待値と比較する工程を有する請求項19の非一時的コンピュータ可読媒体。
【発明の詳細な説明】
【技術分野】
【0001】
本特許出願は、2019年11月15日に出願された米国仮特許出願第62/936,305号の利益を主張すると共に、2020年7月9日に出願された米国仮特許出願第63/050,053号の利益を主張する。これら出願は、それぞれ、この参照により、本開示に組み込まれる。
【0002】
主題は、試験測定システムに関し、特に、被試験デバイス(DUT)を間接的にプロービングするためのシステム及び方法に関する。
【背景技術】
【0003】
試験測定プローブは、通常、プリント回路基板(PCB)上の特定の集積回路(IC)のピンなど、DUT上の試験ポイントと、オシロスコープなどの試験測定装置の入力との間に、電気的、物理的、又は、時には光学的接続を確立するために使用され、試験測定装置は、DUTが期待どおりに動作しているかを検証するために、その試験ポイントの目的の信号を測定する。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】米国特許公開第2008/0235970号明細書
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかし、DUTを手動でプロービングすることが、困難な場合がある。第1に、ユーザは、試験ポイントと目的の信号に使用するプローブの正しいタイプを決定する必要がある。第2に、ユーザは、DUT上の正しい試験ポイントを物理的に見つける必要があるが、これが困難なことがあって、回路図上のポイントをDUT上の対応する物理的な位置に変換することもできるが、この物理的な位置にはラベルが付いていないことがある。
【0006】
第3に、ユーザは、プローブをユーザの手で保持するか、三脚又は他の付属装置を使用してプローブを保持することによって、試験ポイントに接触するようにプローブを物理的に配置しなければならず、試験全体を通して試験ポイントとの接触を維持する必要があり、これは現代の電気部品のサイズが小さく、現代のPCBの部品密度が高いことを考えると、非常に困難である可能性がある。更に、所望の物理的位置は、埋もれていたり、見えなかったり、基板の向きの観点から、人間の技量では到達不能である可能性がある。
【0007】
更に、DUTが、例えば、ダブル・データ・レート第2世代(DDR2)、ダブル・データ・レート第4世代(DDR4)、PCIe(Peripheral Component Interconnect Express)第4世代といった現代の高速信号バスを利用することがあり、これらは、多くの場合、差動シグナリングを使用するため、これらの信号の測定に使用するプローブは、2つの試験ポイントと同時に電気的に接触できる必要がある。これは、2つの試験ポイントが異なる平面上にある場合、更に困難になる可能性がある。
【0008】
最後に、所望のポイントは、危険な電圧、電流、温度又は他の危険な環境にあるため、人による方法でプローブするのは、安全ではないかもしれない。
【0009】
開示技術の構成は、従来技術における欠点に対処する。
【図面の簡単な説明】
【0010】
図1図1は、構成例による、被試験デバイスからの信号の間接的な取り込みを可能にするシステムを図式に表したものである。
図2図2は、構成例による、被試験デバイスから信号を間接的に取り込む方法の例を示す。
図3図3は、ピンのアレイを有し、ダイナミックに構成変更可能な試験装置を有する構成例による、被試験デバイスからの信号の間接的な取り込みを可能にするシステムの一部を示す。
【発明を実施するための形態】
【0011】
本願に記載されるように、態様は、被試験デバイス(DUT)を間接的にプロービングするためのシステム及び方法に関する。構成例によれば、ユーザ/オペレータは、DUT上のノードを、例えば、ユーザ・インタフェースを用いて、DUTのデジタル的な表現(representation:描写)上の対応するノードを指し示すことによって、選択することが可能となる。ユーザ/オペレータによる選択に応答して、DUTの回路配置と選択したノードで予期されるの信号の形式とに基づいて、試験測定プローブが自動的に選択され、被試験ノードに対応するDUT上の位置に(例えば、ロボットによって)移動される。次いで、試験測定プローブは、大まかに言えば、試験測定装置と連動して、ノードから電子信号を取り込む(acquire)。いくつかの構成では、システムのコンポーネント間の通信が、ネットワーク(例えば、ローカル・エリア・ネットワーク又はインターネット)経由で行われても良い。
【0012】
このように、開示技術の態様によれば、例えば、ユーザ/オペレータが遠隔地からロボットを操作できるため、リモート(遠隔)作業が容易になる。更に、複数のユーザ/オペレータが、同じDUTに対して、遠隔(DUTから、そして互いに、の両方)から作業することもでき、ユーザ/オペレータがDUTの実物を手元に置く必要がない。従って、例えば、複数のユーザ/オペレータが、DUTに対して遠隔から(リモートで)作業しているときでも、DUT自体は、安全で機密の研究室(Lab)内に維持したままとすることもできる。また、構成例によれば、ユーザ/オペレータは、高電圧、大電流、液体冷却バス、危険な環境、又は、DUTに存在する可能性のあるその他の条件を回避できる。更に、開示技術の態様によれば、危険な環境にあるDUTのそのままの位置でのプロービングが可能になるため、試験プロセスにおいて、DUTの設計の最適化を、より早く行うことができる。更に、開示技術の態様は、人間の技量とエラーのために読み取りがうまくいかない困難な領域へ繰り返し行うプロービング、生産性向上のための自動的な試験、そして、再設計を通じた洞察を維持できると同時に変更も可能な設計文書の試験手順の自動的なセットアップ、といった問題にも対処するものである。
【0013】
本開示で使用される場合、間接的なアクイジション(acquisition:信号取り込み)又は間接的なプロービングとは、ユーザ/オペレータが、例えば、プローブを保持し、DUT上の所望のノードを手動でプローブすることによってDUTを直接的にプローブすることはしないことを意味する。その代わりに、オペレータは、DUTのデジタル的な表現を介して、おそらくDUTから遠隔において、ロボットような別個の装置が、DUTに対するプロービング操作を実行する。
【0014】
図1は、構成例による、被試験デバイス102からの信号の間接的なアクイジション(acquisition:信号取り込み)を可能にするシステムの一部を図式に表したものである。図1に示すように、システム100には、被試験デバイス(DUT)102からの信号を取り込むよう構成される試験測定プローブ101があっても良い。DUT102には、電子回路があっても良く、取り込まれる信号は、例えば、DUT102からの電力、電圧又は電流の中の1つ以上の電気信号であっても良い。別の例では、DUT102は、光学回路を含んでも良く、取り込まれる信号は、光信号であっても良い。別の例としては、システム100が、DUT102から別のタイプのアナログ信号を取り込むように構成された試験測定プローブ101を有していても良い。アナログ信号は、例えば、DUT102の抵抗値、静電容量、絶縁特性、熱質量(thermal mass)又は熱のうちの1つ以上を表しても良い。試験測定プローブ101は、試験測定装置110に結合されても良く、これは、試験測定プローブ101と連動して使用されて、DUTからの信号を取り込んでも良い。上述したように、試験測定装置110は、例えば、オシロスコープであっても良い。変形形態としては、試験測定プローブ101が、DUTから電子信号を取り込むのに代えて、又は、これに加えて、電子信号をDUT102に注入するように構成される。例えば、試験測定プローブ101は、時間領域反射率測定(time-domain reflectometry:TDR)又は時間領域透過率測定(time-domain transmissometry:TDT)プローブであっても良く、これは、DUTの試験ポイントに高速ステップ信号又はパルス刺激信号を注入する信号生成回路に加えて、注入された刺激信号に応答したDUTからの信号を測定する回路を含む。
【0015】
また、システム100は、DUT102の物理的な電子回路のデジタル表現103を有していても良い。デジタル表現103は、例としては、DUT102の電子回路の回路図又は電子回路のPCB設計ファイルであっても良い。PCB設計ファイルとしては、色々なオプションがあるが、例えば、ガーバー・ファイル(Gerber file)、CAD(コンピューター支援設計)ファイル又はCAM(コンピューター支援製造)ファイルなどであっても良い。デジタル表現103としては、例えば、DUT102上の実際のノードに対応する仮想ノードの描写がある。本開示で使用される場合では、ノードは、2つの回路要素の間にある電子回路の領域である。従って、本願で使用される仮想ノードは、DUT102内の実際の電子回路における物理的なノードのデジタル表現である。デジタル表現103がDUTの電子回路の回路図である実施形態では、システム100は、回路図内の仮想ノードを対応するPCB設計ファイル内の対応する仮想ノードに、これは、次いで、DUT102内の実際の電子回路内の物理的なノードに自動的に相関させても良い。
【0016】
図1に示されるように、デジタル表現103は、例えば、ユーザ・インタフェース104の画面又はタッチスクリーンなど、ユーザ・インタフェース104上に表示されても良い。デジタル表現103は、DUT102の物理的な電子回路の1対1スケールの表現であっても良いし、デジタル表現103が異なるスケールであっても良い。例えば、デジタル表現103を、DUT102の物理的な電子回路に対して拡大して、詳細を示し、ユーザ/オペレータが所望のノードをより容易に選択できるようにしても良い。
【0017】
ユーザ・インタフェース104は、ディスプレイの外部にあるか、又はディスプレイと統合されていても良い。例えば、ユーザ・インタフェース104は、ロボット106上に位置する物理的なボタン(以下で説明される)を有していても良い。他の例では、ユーザ・インタフェース104は、ディスプレイのタッチ・センサ式機能であっても良い。ユーザ・インタフェース104は、ロボット106上に配置されても良いし、コンピュータ、スマートフォン、タブレットなどのリモート・デバイス上に配置されても良い。変形形態としては、ユーザ・インタフェース104が、拡張現実(AR)ハードウェア又は仮想現実(VR)ハードウェアの一部であっても良いし、拡張現実(AR)ハードウェア又は仮想現実(VR)ハードウェアを有していても良い。変形形態としては、ユーザ・インタフェース104が、試験測定装置110の一部であっても良い。図1に示されるように、ユーザ・インタフェース104が、ロボット106から遠隔にあると、ユーザ/オペレータがDUT102から遠隔にいることが可能になる。ユーザ・インタフェース104には、マウス、デジタル・ペン、スタイラス、1つ以上のユーザの指、ジェスチャ(gesture)、又は、他の選択デバイスなどの入力デバイス105があっても良く、ユーザ/オペレータは、入力デバイス105を使用して複数の仮想ノードの中の1つを選択することによって、デジタル表現103の選択されたノードを電子的に指し示すができる。
【0018】
また、システム100は、DUT102に対して試験測定プローブ101を自動的に位置決めする手段を含んでも良い。例えば、図1に示されるように、システム100は、試験測定プローブ101を自動的に位置決めするように構成されたロボット106を有していても良い。ロボット106は、例えば、ロボット・アーム、2軸位置決め装置、3軸位置決め装置、又は、他の多自由度機械装置であっても良い。ロボット106がロボット・アームである場合、このロボット・アームは、例えば、水平多関節ロボット・アーム(Selective Compliance Articulated Robot Arm:SCARA、スカラ)106であっても良い。別の構成では、試験測定プローブ101が固定位置にあっても良く、DUT102は、ロボット106に取り付けられるか又はロボット106によって保持されても良く、ロボット106は、固定された試験測定プローブ101に対して、DUT102を自動的に位置決めするように構成されても良い。
【0019】
図3は、ピンのアレイを含むダイナミックに構成変更可能な試験装置を有する構成例による、被試験デバイスからの信号の間接的なアクイジション(信号取り込み)を可能にするシステムの一部を示す。図3に示されるように、変形形態としては、図2に描かれたロボット106の代わりに、DUT102に対して試験測定プローブ101を自動的に位置決めする手段が、試験装置111を有していても良く、この場合、DUT102が、多数のピン112に隣接して配置され、ピン112を個々に作動させて、DUT102上の所望のノード又は他のポイントに接触させる。このような変形形態では、試験測定プローブ101が、試験装置111の1つ以上のピン112であっても良く、1つ以上のピン112が自動的に位置決めされても良い。ピン112は、例えば、DUT102の所望の部分に接触するように、必要に応じて、1つ以上のピン112を伸ばしたり又は引っ込めたりさせることによって自動的に位置決めされても良い。
【0020】
更に別の変形形態では、試験測定プローブ101をDUT102に対して自動的に位置決めする手段が、はるかに小さいサイズの装置、例えば、MEMS(microelectromechanical systems:微小電気機械システム)を利用した装置であっても良い。このようなMEMSベースの装置は、例えば、回転動作(rolling)、摺動(sliding:スライド動作)、ゆるやかな移動動作(walking)、クローリング(crawling:徐行動作)、伸縮動作(telescoping)などの任意の組み合わせによって、それ自身を動作させて、一体化された試験測定プローブをDUT上の所望の試験ポイントに位置決めできる。このようなMEMSベースの装置は、DUT102自体に配置されても良い。
【0021】
図1に戻ると、変形例では、試験測定プローブ101に、複数のプローブ・チップがあっても良く、ロボット106は、これらプローブ・チップの中で取り替えるように構成されても良い。よって、例えば、ロボット106は、電力を測定するプローブ・チップと、電圧を測定するプローブ・チップと、電流を測定するプローブ・チップの中で取り替えても良い。変形形態では、システム100には、複数のロボット106があっても良く、各ロボット106は、対応する試験測定プローブ101を自動的に位置決めするように構成される。各試験測定プローブ101は、同じ種類のプローブであっても良いし、異なっていても良い。例えば、第1のロボット106は、DUT102の特定のノードに注入される刺激信号を提供する第1の試験測定プローブ101を自動的に位置決めするように構成されても良く、一方で、第2のロボット106は、この刺激信号に応答してDUT102の別のノードを測定する第2の試験測定プローブ101を自動的に位置決めするように構成されても良い。
【0022】
変形形態では、DUT102から取り込まれた電子信号、又は電子信号の描写(representation:表現したもの)を、ユーザ/オペレータに対して表示しても良い。電子信号は、例えば、ロボット106上の画面上又はユーザ・インタフェース104上に表示されても良い。上述のように、変形形態では、ユーザ・インタフェース104が、拡張現実ハードウェア又は仮想現実ハードウェアの一部であっても良いし、拡張現実ハードウェア又は仮想現実ハードウェアを有していても良い。従って、電子信号は、拡張現実ハードウェア又は仮想現実ハードウェア上に表示しても良い。変形形態では、DUT102から取り込まれた電子信号は、アンドン光(Andon light)によって表しても良く、この場合、例えば、電子信号は、人間のオペレータに見える1つ以上の色付きの光によって表される。
【0023】
システム100には、コントローラ107があっても良い。コントローラ107は、例えば、ロボット106に、DUT102に対して試験測定プローブ101を自動的に位置決めするように命令を与えるか、又は、ユーザ・インタフェース104に対して命令若しくはデータを提供するか、若しくは、ユーザ・インタフェース104からの命令若しくはデータを受信できる。
【0024】
コントローラ107は、プロセッサを含んでいても良く、これは、限定するものではないが、マイクロプロセッサ、特定用途向け集積回路(ASIC)、プログラマブル論理回路など、任意の処理回路として実装されても良い。コントローラ107は、プロセッサに結合されたコンピュータ記憶媒体を更に含んでも良い。コンピュータ記憶媒体は、非一時記憶媒体であっても良く、これは、プロセッサによって読み出され、読み出し時に実行されるように構成されたプログラムを含む。プロセッサは、コンピュータ記憶媒体からの命令を実行するように構成されても良く、そのような命令によって示される任意の方法又は関連する動作を実行しても良い。コンピュータ記憶媒体は、プロセッサ・キャッシュ、ランダム・アクセス・メモリ(RAM)、読み取り専用メモリ(ROM)、ソリッド・ステート・メモリ、ハード・ディスク・ドライブや他の任意のメモリ形式として実装されても良い。コンピュータ記憶媒体は、ロボット106に対する命令、ユーザ・インタフェース104に対する命令、開示された動作の結果として取得されたデータ、コンピュータ・プログラム・プロダクトその他の命令及びデータなどのデータを記憶するための媒体として動作する。コントローラ107は、1つ以上のコントローラから構成されても良い。
【0025】
コントローラ107は、ロボット106若しくはユーザ・インタフェース104、又は、その両方から独立して配置されても良く、有線又は無線接続を介して、ロボット106若しくはユーザ・インタフェース104、又はその両方と通信しても良い。同様に、コントローラ107は、コンピュータ記憶媒体とは別個に配置されても良く、有線又は無線接続を介してコンピュータ記憶媒体と通信しても良い。ロボット106は、特にコントローラ107がロボット106又はユーザ・インタフェース104内にある場合に、有線又は無線接続を介して、ユーザ・インタフェース104と通信しても良い。図1は、これらの構成要素間の無線接続108を図示する。当業者には理解できるように、コントローラ107は、また、例えば、限定するものではないが、通信装置、試験測定装置110、別の試験測定装置、DUT設計データのリポジトリ、視覚システム109(後述)など、様々な他の装置と電子的に通信する状態にあっても良い。
【0026】
図1に示されるように、システム100は、また、DUT102の回路構成(topology)をスキャンするように構成された視覚システム(vision system)109を含んでも良い。以下で更に説明するように、視覚システム109は、デジタル表現103の選択された仮想ノードをDUT102の対応する実際のノードに関連付けるために使用されても良い。視覚システム109は、有線又は無線接続を介して、コントローラ107、ロボット106、又はユーザ・インタフェース104と通信しても良い。変形形態では、視覚システム109は、従来の2D可視光画像化(イメージング)を利用しても良い。他の変形形態では、2D可視光画像化に加えて、又は、これに代わるものとして、視覚システム109が、任意の形式のカメラと、いくつか例を挙げると、3D可視光画像化、マルチスペクトル画像化、ハイパー・スペクトル画像化、赤外光画像化、ライン・スキャン画像化、X線画像化その他の放射線画像化などの画像化(イメージング)技術を利用しても良い。
【0027】
図2は、構成例による被試験デバイス102から信号を間接的に取り込む方法の例を示す。図1及び図2の両方を参照すると、DUT102から信号を間接的に取り込む方法200は、物理的な電子回路のデジタル表現103上の選択されたノードを電子的に指し示す処理201と、デジタル表現103上の選択されたノードを物理的な電子回路上の実際のノードに相関させる処理202と、選択されたノードを電子的に指し示す処理に応答して、実際のノードに対応するDUT102上の位置に試験測定プローブ101を自動的に位置決めする処理203と、試験測定プローブ101を用いて実際のノードから電子信号を取り込む処理204とを有していても良い。
【0028】
構成例において、選択されたノードを電子的に指し示す処理201は、ユーザ・インタフェース104を介した入力によって行われても良い。一例として、ユーザ・インタフェース104及び入力デバイス105は、タッチスクリーンと関連するスタイラスであっても良い。この構成例において、ユーザ/オペレータは、タッチスクリーン104上で回路の電子的な回路図を見て、スタイラス105を使用して、タッチスクリーン上に表示される電子的な回路図中の対応するノードの画像をタッチするか、丸で囲むか、又はその他の方法で選択することによって、DUT102中の目的のノードを特定(identify:識別)しても良い。ユーザ/オペレータは、また、例えば、実行する特定の試験又は得ようする特定の測定値を指定することによって、どの電子信号を取り込むかを指定しても良い。例えば、ユーザ/オペレータは、ユーザ・インタフェースを介して、物理的な電子回路のデジタル表現103上の特定の差動増幅器を指し示し、更に、ユーザ・インタフェースを介して、この特定の差動増幅器の入力で差動電圧測定値を得たいという希望を示しても良い。
【0029】
ユーザ/オペレータが選択されたノードを電子的に指し示すのに応答して、試験測定プローブ101を自動的に位置決めするためには、物理的な電子回路のデジタル表現103を、最初に、物理的な電子回路自身に相関される必要があるかもしれない。
【0030】
構成例において、選択されたノードを実際のノードに相関させる処理202は、物理的な電子回路に固定(key:ピンなどで固定)された2自由度グリッドを、物理的な電子回路のデジタル表現103に固定(key)された2自由度グリッドと相関させる処理を含む。物理的な電子回路用の2自由度グリッドは、物理的な電子回路の主面(primary plane)に対して原点と直交するx軸及びy軸を有する。この主面は、例えば、物理的な電子回路の基板と一致していても良い。又は、別の例として、主面が、物理的な電子回路の最も外側の導電層、例えば、最上層又は最下層と一致しても良い。従って、例えば、2つのグリッドを相関させる処理は、2つのグリッドの原点と、各グリッドのx軸及びy軸とを、概念的にアライメント(整列)させる処理を有していても良い。
【0031】
構成においては、ロボットの試験測定プローブ101の位置決めが、固定グリッド及び共有された共通の原点ではなくて、DUT102上の構成要素(コンポーネント)の相対的な位置に結び付けられても良い。その結果としては、構成要素がDUT102に追加又は削除されない限り、DUT102の設計が進展しても、再マッピング又は再相関を必要としないであろう。
【0032】
構成例において、選択されたノードを実際のノードに相関させる処理202が、デジタル表現103上の選択されたノードに基づいて、物理的な電子回路上の実際のノードを識別(特定)するために、物理的な電子回路の回路構成(topology)をスキャンするのに視覚システム109を使用する処理を有していても良い。視覚システム109は、例えば、物理的な電子回路が2自由度グリッドに対して傾いているか又は角度がついている場合に有用なことがある。視覚システム109は、また、例えば、物理的な電子回路がフレキシブル(可撓性)で湾曲している場合か、又は、そうでなければ非平面である場合にも有用なことがある。視覚システム109は、例えば、固定された範囲(rigid bounds)を必要とせずに、参照及びプロービングを可能にするための主要な回路構成をマッピングできる。
【0033】
構成例において、選択されたノードを実際のノードに相関させる処理202は、物理的な電子回路用のPCB設計ファイル内の試験ポイントを識別(特定)する処理を有していても良く、このとき、試験ポイントは、選択されたノード及び実際のノードに対応する。従って、例えば、コントローラ107は、選択されたノードを指し示したもの(indication:指示)を受け、次いで、選択されたノードをPCB設計ファイル内の対応する試験ノードにマッピングしても良い。変形形態では、PCBその他の設計ファイルが、クラウドに存在していても良い。
【0034】
構成例では、ロボット106が、選択されたノードを電子的に指し示す処理に応答して、試験測定プローブ101を自動的に位置決めしても良い。上述のように、ロボット106は、例えば、ロボット・アーム、2軸位置決め装置、3軸位置決め装置、又は、他の多自由度機械装置であっても良い。
【0035】
構成例において、本方法は、オプションで、実際のノードから取り込まれた電子信号を表すもの(representation:描写、表現)を表示する処理205を有していても良い。これは、先に、図1の説明の中で説明している。
【0036】
構成例において、この方法は、オプションで、実際のノードからの電子信号又はその電子信号を表すもの(representation:描写、表現)を、コンピュータ記憶媒体に記憶する処理206を有していても良い。
【0037】
構成例において、この方法は、オプションで、実際のノードからの電子信号を基準値と比較する処理207を含んでも良い。例えば、基準値は、実際のノードから取り込まれる電子信号に対する期待値であっても良い。期待値は、例えば、物理的な電子回路の設計に基づく実際のノードにおける予想電圧や動作パラメータ(物理的な電子回路に印加される電圧や物理的な電子回路内の回路素子の状態など)などの所定値であっても良い。別の例として、期待値は、方法の以前の反復において実際のノードから取り込まれた電子信号に基づいても良い(下記参照)。従って、期待値は、例えば、方法の以前の反復において実際のノードから取り込まれた電子信号の平均値又は中央値であっても良い。別の例として、期待値が、回路シミュレーションに由来する数学的計算に基づいても良い。変形形態では、実際のノードから取り込まれた信号は、取り込まれた波形であり、基準値は、基準波形などの複数の基準値からなるシリーズ(一連の複数の基準値)であっても良いし、取り込まれた波形は、基準波形と比較されても良い。
【0038】
構成例において、この方法は、オプションで、上述の動作を反復する処理208を有していても良い。

実施例
【0039】
以下では、開示技術の理解に有益な実施例が提示される。この技術の特定の実施形態は、以下で記述する実施例の1つ以上及び任意の組み合わせを含んでいても良い。
【0040】
実施例1は、被試験デバイス(DUT)をプロービングするシステムであって、試験測定プローブと、DUT上の物理的な回路の実際のノードに対応する仮想ノードを有するDUTのデジタル表現を表示するユーザ・インタフェースと、DUTに対して試験測定プローブを位置決めするように構成されたロボットと、ユーザ・インタフェースからユーザが選択した仮想ノードの指示(indication)を受けて、ユーザが選択した仮想ノードに対応するDUT上の実際のノードへと試験測定プローブを位置決めするための命令をロボットに供給するよう構成されるコントローラとを具えている。
【0041】
実施例2は、実施例1のシステムであって、試験測定プローブが、複数のプローブ・チップを更に有している。
【0042】
実施例3は、実施例2のシステムであって、ロボットは、複数のプローブ・チップの中で取り替えるように更に構成されている。
【0043】
実施例4は、実施例1~3のいずれかのシステムであって、DUTの回路構成(topology)をスキャンし、コントローラと通信するように構成された視覚システムを更に具えている。
【0044】
実施例5は、実施例1~4のいずれかのシステムであって、ユーザ・インタフェースがタッチスクリーンを有している。
【0045】
実施例6は、実施例1~5のいずれかのシステムであって、試験測定プローブが、実際のノードから信号を取り込むように構成されている。
【0046】
実施例7は、実施例1~6のいずれかのシステムであって、試験測定プローブと動作可能に結合された試験測定装置を更に具えている。
【0047】
実施例8は、物理的な電子回路を含む被試験デバイス(DUT)からの試験測定信号を間接的に取り込む方法であって、物理的な電子回路のデジタル表現上の選択されたノードを電子的に指し示す処理と、デジタル表現上の選択されたノードを物理的な電子回路上の実際のノードに相関させる処理と、選択されたノードを電子的に指し示す処理に応答して、実際のノードに対応するDUT上の位置に試験測定プローブを自動的に位置決めする処理と、試験測定プローブを使用して、実際のノードから電子信号を取り込む処理とを具えている。
【0048】
実施例9は、実施例8の方法であって、選択されたノードを電子的に指し示す処理が、選択されたノードをユーザ・インタフェースを介した入力によって電子的に指し示す処理を有する。
【0049】
実施例10は、実施例8~9のいずれかの方法であって、試験測定プローブを自動的に位置決めする処理が、試験測定プローブを、ロボットによって、自動的に位置決めする処理を有する。
【0050】
実施例11は、実施例8~10のいずれかの方法であって、実際のノードからの電子信号の表現を表示する処理を更に具えている。
【0051】
実施例12は、実施例8~11のいずれかの方法であって、選択されたノードを実際のノードに相関させる処理が、物理的な電子回路の回路構成をスキャンし、デジタル表現上の選択されたノードに基づいて、物理的な電子回路上の実際のノードを識別するのに視覚システムを使用する処理を有する。
【0052】
実施例13は、実施例8~12のいずれかの方法であって、選択されたノードを実際のノードに相関させる処理が、物理的な電子回路に固定された2自由度グリッドを、物理的な電子回路のデジタル表現に固定された2自由度グリッドと相関させる処理を有する。
【0053】
実施例14は、実施例8~13のいずれかの方法であって、選択されたノードを実際のノードに相関させる処理が、物理的な電子回路のためのプリント回路基板(PCB)設計ファイル内の、選択されたノード及び実際のノードに対応する試験ポイントを識別する処理を有する。
【0054】
実施例15は、実施例8~14のいずれかの方法であって、物理的な電子回路のデジタル表現上の選択されたノードを電子的に指し示す処理と、デジタル表現上の選択されたノードを物理的な電子回路上の実際のノードに相関させる処理と、選択されたノードを電子的に指し示す処理に応答して、実際のノードに対応するDUT上の位置に試験測定プローブを自動的に位置決めする処理と、試験測定プローブを使用して、実際のノードから電子信号を取り込む処理と、コンピュータ記憶媒体に実際のノードからの電子信号を記憶する処理と、実際のノードからの電子信号を基準値と比較する処理と、を反復して繰り返す処理を更に具えている。
【0055】
実施例16は、実施例15の方法であって、実際のノードからの電子信号を基準値と比較する処理が、実際のノードからの電子信号を実際のノードからの電子信号に対する期待値と比較する処理を有している。
【0056】
実施例17は、コンピューティング・デバイスによる実行に応答して、該コンピューティング・デバイスに複数の工程を実行させるコンピュータ実行可能な命令を記憶させた非一時的コンピュータ可読媒体であって、上記複数の工程が、物理的な電子回路のデジタル表現上の選択されたノードの電子的な指示を受ける工程と、デジタル表現上の選択されたノードを物理的な電子回路上の実際のノードに相関させる工程と、実際のノードに対応する物理的な電子回路上の位置に試験測定プローブを自動的に位置決めするための命令をロボットに提供する工程と、実際のノードから取り込まれた電子信号を試験測定プローブから受ける工程と具えている。
【0057】
実施例18は、実施例17の非一時的コンピュータ可読媒体であって、物理的な電子回路のデジタル表現上の選択されたノードの電子的な指示を受ける工程が、物理的な電子回路のデジタル表現上の選択されたノードの電子的な指示をユーザ・インタフェースから受ける工程を有する。
【0058】
実施例19は、実施例17~18のいずれかの非一時的コンピュータ可読媒体であって、上記複数の工程が、物理的な電子回路のデジタル表現上の選択されたノードの電子的な指示を受ける工程と、デジタル表現上の選択されたノードを物理的な電子回路上の実際のノードに相関させる工程と、実際のノードに対応する物理的な電子回路上の位置に試験測定プローブを自動的に位置決めするための命令をロボットに提供する工程と、実際のノードから取り込まれた電子信号を試験測定プローブから受ける工程と、実際のノードからの電子信号を記憶する工程と、実際のノードからの電子信号を基準値と比較する工程と、を反復して繰り返す工程を更に具えている。
【0059】
実施例20は、実施例19の非一時的コンピュータ可読媒体であって、実際のノードからの電子信号を基準値と比較する工程が、実際のノードからの電子信号を実際のノードからの電子信号に対する期待値と比較する工程を有する。
【0060】
態様は、特別に作成されたハードウェア、ファームウェア、デジタル・シグナル・プロセッサ又はプログラムされた命令に従って動作するプロセッサを含む特別にプログラムされた汎用コンピュータ上で動作できる。本願における「コントローラ」又は「プロセッサ」という用語は、マイクロプロセッサ、マイクロコンピュータ、ASIC及び専用ハードウェア・コントローラ等を意図する。本開示技術の態様は、1つ又は複数のコンピュータ(モニタリング・モジュールを含む)その他のデバイスによって実行される、1つ又は複数のプログラム・モジュールなどのコンピュータ利用可能なデータ及びコンピュータ実行可能な命令で実現できる。概して、プログラム・モジュールとしては、ルーチン、プログラム、オブジェクト、コンポーネント、データ構造などを含み、これらは、コンピュータその他のデバイス内のプロセッサによって実行されると、特定のタスクを実行するか、又は、特定の抽象データ形式を実現する。コンピュータ実行可能命令は、ハードディスク、光ディスク、リムーバブル記憶媒体、ソリッド・ステート・メモリ、RAMなどのコンピュータ可読記憶媒体に記憶しても良い。当業者には理解されるように、プログラム・モジュールの機能は、様々な実施例において必要に応じて組み合わせられるか又は分散されても良い。更に、こうした機能は、集積回路、フィールド・プログラマブル・ゲート・アレイ(FPGA)などのようなファームウェア又はハードウェア同等物において全体又は一部を具体化できる。特定のデータ構造を使用して、本開示技術の1つ以上の態様をより効果的に実施することができ、そのようなデータ構造は、本願に記載されたコンピュータ実行可能命令及びコンピュータ使用可能データの範囲内と考えられる。
【0061】
開示された態様は、場合によっては、ハードウェア、ファームウェア、ソフトウェア又はこれらの任意の組み合わせで実現されても良い。開示された態様は、1つ以上のプロセッサによって読み取られ、実行され得る1つ又は複数のコンピュータ可読媒体によって運搬されるか又は記憶される命令として実現されても良い。そのような命令は、コンピュータ・プログラム・プロダクトと呼ぶことができる。本願で説明するコンピュータ可読媒体は、コンピューティング装置によってアクセス可能な任意の媒体を意味する。限定するものではないが、一例としては、コンピュータ可読媒体は、コンピュータ記憶媒体及び通信媒体を含んでいても良い。
【0062】
コンピュータ記憶媒体とは、コンピュータ読み取り可能な情報を記憶するために使用することができる任意の媒体を意味する。限定するものではないが、例としては、コンピュータ記憶媒体としては、ランダム・アクセス・メモリ(RAM)、読み出し専用メモリ(ROM)、電気消去可能プログラマブル読み出し専用メモリ(EEPROM)、フラッシュメモリやその他のメモリ技術、コンパクト・ディスク読み出し専用メモリ(CD-ROM)、DVD(Digital Video Disc)やその他の光ディスク記憶装置、磁気カセット、磁気テープ、磁気ディスク記憶装置やその他の磁気記憶装置、及び任意の技術で実装された任意の他の揮発性又は不揮発性の取り外し可能又は取り外し不能の媒体を含んでいても良い。コンピュータ記憶媒体としては、信号そのもの及び信号伝送の一時的な形態は除外される。
【0063】
通信媒体とは、コンピュータ可読情報の通信に利用できる任意の媒体を意味する。限定するものではないが、例としては、通信媒体には、電気、光、無線周波数(RF)、赤外線、音又はその他の形式の信号の通信に適した同軸ケーブル、光ファイバ・ケーブル、空気又は任意の他の媒体を含んでも良い。
【0064】
開示された主題の上述の変形形態(versions)は、記述したか又は当業者には明らかであろう多くの効果を有する。それでも、開示された装置、システム又は方法のすべての変形形態において、これらの効果又は特徴のすべてが要求されるわけではない。
【0065】
加えて、本願の記述は、特定の特徴に言及している。本明細書における開示には、これらの特定の特徴の全ての可能な組み合わせが含まれると理解すべきである。ある特定の特徴が特定の態様又は実施例に関連して開示される場合、その特徴は、可能である限り、他の態様及び実施例との関連においても利用できる。
【0066】
また、本願において、2つ以上の定義されたステップ又は工程を有する方法に言及する場合、これら定義されたステップ又は工程は、状況的にそれらの可能性を排除しない限り、任意の順序で又は同時に実行しても良い。
【0067】
更に、用語「を具える(comprises)」及びその文法的に等価なものは、本願において、他のコンポーネント(components)、機能(features)、ステップ、処理(processes)、工程(operations)がオプションで存在することを示すのに使用される。例えば、コンポーネントA、B及びC「を具える(comprising)」又は「何かが」コンポーネントA、B及びC「を具える(which comprises)」という条件は、コンポーネントA、B及びCだけを含んでも良いし、又は、コンポーネントA、B及びCと共に1つ以上の他のコンポーネントを含んでいても良い。
【0068】
説明の都合上、具体的な構成例を説明しているが、本開示の要旨及び範囲を逸脱することなく、種々の変更が可能なことが理解できよう。
図1
図2
図3
【国際調査報告】