(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-05-22
(54)【発明の名称】ガス渦流を有するレーザ強化プラズマ光源
(51)【国際特許分類】
H01J 65/04 20060101AFI20230515BHJP
H01J 61/28 20060101ALI20230515BHJP
【FI】
H01J65/04 Z
H01J61/28 Z
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2022561456
(86)(22)【出願日】2021-04-13
(85)【翻訳文提出日】2022-12-06
(86)【国際出願番号】 US2021026936
(87)【国際公開番号】W WO2021211478
(87)【国際公開日】2021-10-21
(32)【優先日】2020-04-13
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2021-04-06
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】500049141
【氏名又は名称】ケーエルエー コーポレイション
(74)【代理人】
【識別番号】110001210
【氏名又は名称】弁理士法人YKI国際特許事務所
(72)【発明者】
【氏名】ベゼル イリヤ
(72)【発明者】
【氏名】スチェパノフ アンドレイ エヴゲニエビチ
(72)【発明者】
【氏名】ズベデヌク レオニード ボリソビチ
(72)【発明者】
【氏名】クチェンコ ユーリー ゲナディエビチ
(72)【発明者】
【氏名】ポタプキン ボリス ヴァシリーエビチ
(72)【発明者】
【氏名】クマール スミート
(57)【要約】
本発明は、渦ガス流を有するレーザ強化プラズマ(LSP)光源に関する。LSP源は、ガスを収容するためのガス閉じ込め構造体と、ガス閉じ込め構造体内でガスを循環させるように構成された1つ以上のガス入口と、ガス閉じ込め構造体からガスを循環させるように構成された1つ以上のガス出口とを備える。1つ以上のガス入口および1つ以上のガス出口は、ガス閉じ込め構造内に渦ガス流を生成するように配置される。LSP源はまた、渦ガス流の内側の内部ガス流の内側のガス閉じ込め構造体の領域内にプラズマを維持するための光学ポンプを生成するように構成されたレーザポンプ源を含む。光源LSPは、プラズマによって放射される広帯域光の少なくとも一部を集光するように構成された集光素子を含む。
【特許請求の範囲】
【請求項1】
レーザ維持プラズマ光源であって、
ガスを収容するためのガス収容構造と、
前記ガス収容構造に流体的に結合され、前記ガス収容構造内にガスを流すように構成された1つ以上のガス入口と、
前記ガス収容構造に流体的に結合され、前記ガス収容構造からガスを流すように構成された1つ以上のガス出口であって、前記1つ以上のガス入口および前記1つ以上のガス出口は、前記ガス収容構造内に渦ガス流を生成するように構成される、1つ以上のガス出口と、
前記渦ガス流内の内部ガス流内の前記ガス収容構造の領域にプラズマを維持するために光ポンプを生成するように構成されたレーザポンプ源と、
前記プラズマから放出される広帯域光の少なくとも一部を集光するように構成された集光素子と、
を備えるレーザ維持プラズマ光源。
【請求項2】
前記渦ガス流は、1~100m/sのドリフト速度を有する螺旋渦流を含む、請求項1に記載のレーザ維持プラズマ光源。
【請求項3】
前記1つ以上のガス入口は、少なくとも第1のガス入口を含み、前記1つ以上のガス出口は、少なくとも第1のガス出口を含む、請求項1に記載のレーザ維持プラズマ光源。
【請求項4】
前記1つ以上のガス入口は、第1のガス入口および第2のガス入口を備え、前記1つ以上のガス出口は、第1のガス出口および第2のガス出口を備える、請求項3に記載のレーザ維持プラズマ光源。
【請求項5】
前記1つ以上のガス入口は、前記1つ以上のガス出口の反対側の前記ガス収容構造の側に配置される、請求項1に記載のレーザ維持プラズマ光源。
【請求項6】
プラズマ領域を通る渦ガス流方向は、前記1つ以上の入口からの入口ガス流と同じ方向である、請求項5に記載のレーザ維持プラズマ光源。
【請求項7】
前記1つ以上のガス入口は、前記1つ以上のガス出口と同じ前記ガス収容構造の側に配置される、請求項1に記載のレーザ維持プラズマ光源。
【請求項8】
プラズマ領域を通る渦ガス流の方向は、前記1つ以上の入口からの入口ガス流の反対方向である、請求項7に記載のレーザ維持プラズマ光源。
【請求項9】
前記1つ以上のガス入口は、前記ガス収容構造の周辺部分に配置され、前記1つ以上のガス出口は、前記ガス収容構造の中央部に配置される、請求項1に記載のレーザ維持光源。
【請求項10】
前記1つ以上のガス出口は、前記ガス収容構造の周辺部分に配置され、前記1つ以上のガス入口は、前記ガス収容構造の中央部に配置される、請求項1に記載のレーザ維持光源。
【請求項11】
前記1つ以上のガス入口は、前記ガス収容構造の周辺部分に配置され、前記1つ以上のガス出口は、前記ガス収容構造の追加の周辺部分に配置される、請求項1に記載のレーザ維持光源。
【請求項12】
前記1つ以上のガス入口は、前記ガス収容構造を通してガスを流すためのガスノズルを含む、請求項1に記載のレーザ維持光源。
【請求項13】
前記ガスノズルは、ガスジェットを生成するための収束ガスノズルを含む、請求項12に記載のレーザ維持光源。
【請求項14】
前記ガスノズルは、環状流ノズルから25~75mmにプラズマを維持するのに充分なガス速度を有する環状ガスジェットを発生させるための環状流ノズルを含む、請求項12に記載のレーザ維持光源。
【請求項15】
前記環状流ノズルは、流れガイドノーズ部を備える、請求項14に記載のレーザ維持光源。
【請求項16】
前記1つ以上のガス入口からのガス流および前記1つ以上のガス出口へのガス流は、同じ方向に伝播する、請求項1に記載のレーザ維持光源。
【請求項17】
前記1つ以上のガス入口からのガス流および前記1つ以上のガス出口へのガス流は、反対方向に伝搬する、請求項1に記載のレーザ維持光源。
【請求項18】
前記ガス収容構造は、プラズマセル、プラズマバルブ、またはプラズマチャンバのうちの少なくとも1つを含む、請求項1に記載のレーザ維持光源。
【請求項19】
前記ガス収容構造内に含有されるガスは、少なくとも1つのXe、Ar、Ne、Kr、He、N
2、H
2O、O
2、H
2、D
2、F
2、CF
6、または2つ以上のXe、Ar、Ne、Kr、He、N
2、H
2O、O
2、H
2、D
2、F
2、またはCF
6の混合物を含む、請求項1に記載のレーザ維持光源。
【請求項20】
前記集光素子は、楕円形、放物線状、または球形の集光素子を含む、請求項1に記載のレーザ維持プラズマ光源。
【請求項21】
前記ポンプ源は、1以上のレーザを含む、請求項1に記載のレーザ維持プラズマ光源。
【請求項22】
前記ポンプ源は、赤外レーザ、可視レーザ、紫外レーザの少なくともいずれかを含む、請求項21に記載のレーザ維持プラズマ光源。
【請求項23】
前記集光素子は、プラズマからの広帯域赤外線、可視、UV、VUV、またはDUV光のうちの少なくとも1つを集光するように構成される、請求項1に記載のレーザ維持プラズマ光源。
【請求項24】
プラズマからの広帯域光出力を1つ以上の下流の用途に導くように構成された1つ以上の追加の集光光学系をさらに含む、請求項1に記載のレーザ維持プラズマ光源。
【請求項25】
前記1つ以上の下流の用途は、検査または計測のうちの少なくとも1つを含む、請求項24に記載のレーザ維持プラズマ光源。
【請求項26】
特徴付けシステムであって、
レーザ維持光源を備え、
前記レーザ維持光源は、
ガスを収容するためのガス収容構造と、
前記ガス収容構造に流体的に結合され、前記ガス収容構造内にガスを流すように構成された1つ以上のガス入口と、
前記ガス収容構造に流体的に結合され、前記ガス収容構造からガスを流すように構成された1つ以上のガス出口であって、前記1つ以上のガス入口および前記1つ以上のガス出口は、前記ガス収容構造内に渦ガス流を生成するように構成される、1つ以上のガス出口と、
前記渦ガス流内の内部ガス流内の前記ガス収容構造の領域にプラズマを維持するために光ポンプを生成するように構成されたレーザポンプ源と、
前記プラズマから放出される広帯域光の少なくとも一部を集光するように構成された集光素子と、
前記レーザ維持光源からの広帯域光を1つ以上のサンプルに向けるように構成された照明光学系のセットと、
前記1つ以上のサンプルから発する光を集光するように構成された集光光学系のセットと、
検出器アセンブリと、
を備える特徴付けシステム。
【請求項27】
プラズマセルであって、
ガスを収容するためのガス収容構造と、
前記ガス収容構造に流体的に結合され、前記ガス収容構造内にガスを流すように構成された1つ以上のガス入口と、
前記ガス収容構造に流体的に結合され、前記ガス収容構造からガスを流すように構成された1つ以上のガス出口であって、前記1つ以上のガス入口および前記1つ以上のガス出口は、前記ガス収容構造内に渦ガス流を生成するように配置され、プラズマ領域を通る渦ガス流の方向は、前記1つ以上のガス入口からの入口ガス流と同じ方向である、1つ以上のガス出口と、
を備え、前記ガス収容構造は、前記渦ガス流内の内部ガス流内でプラズマを維持するために光学ポンプを受け入れるように構成される、プラズマセル。
【請求項28】
プラズマセルであって、
ガスを収容するためのガス収容構造と、
前記ガス収容構造に流体的に結合され、前記ガス収容構造内にガスを流すように構成された1つ以上のガス入口と、
前記ガス収容構造に流体的に結合され、前記ガス収容構造からガスを流すように構成された1つ以上のガス出口であって、前記1つ以上のガス入口および前記1つ以上のガス出口は、前記ガス収容構造内に渦ガス流を生成するように配置され、プラズマ領域を通る渦ガス流の方向は、前記1つ以上のガス入口からの入口ガス流の反対方向である、1つ以上のガス出口と、
を備え、前記ガス収容構造は、前記渦ガス流内の内部ガス流内でプラズマを維持するために光学ポンプを受け入れるように構成される、プラズマセル。
【請求項29】
方法であって、
レーザ持続光源のガス収容構造内に渦ガス流を生成するステップと、
ポンプ照明を生成するステップと、
集光素子を用いて、プラズマを維持するために、ポンプ照明の一部を前記ガス収容構造内の渦ガス流内の内部ガス流に向けるステップと、
プラズマから放射された広帯域光の一部を前記集光素子で集光し、広帯域光の一部を1つ以上の下流の用途に向けるステップと、
を備える方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、概して、レーザ持続プラズマ(LSP)広帯域光源に関し、特に、LSP源のLSP領域を通して組織化するためのガス渦流を含むLSP源に関する。
【背景技術】
【0002】
本出願は、米国仮出願63/008,840(2020年4月13日)の米国特許法119条(e)の利益を主張し、その全体が参照により本明細書に組み込まれる。
【0003】
ますます縮小する半導体デバイスの検査に使用される改善された光源の必要性が高まり続けている。そのような光源の1つは、レーザ維持プラズマ(LSP)広帯域光源を含む。LSP広帯域光源は、高出力広帯域光を生成することができるLSPランプを含む。ほとんどの現在のLSPランプは、高温プラズマプルームの浮力によって引き起こされる自然対流を除いて、ランプを通るガス流を強制するためのいかなる機構も有していないため、容器内のガスは、典型的には停滞している。LSPランプを通してガスを流す以前の試みは、不安定な乱流ガス流によって引き起こされるLSPランプ内の不安定性をもたらした。これらの不安定性は、より高い電力および機械的要素(例えば、ノズル)の場所で増幅され、それによって、これらの機械的要素に対する高い放射熱負荷が生成され、過熱および溶融をもたらす。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】米国特許出願公開第2017/0345639号
【特許文献2】米国特許出願公開第2014/0159572号
【特許文献3】米国特許出願公開第2003/0222586号
【発明の概要】
【発明が解決しようとする課題】
【0005】
したがって、上記で特定された以前のアプローチの欠点を改善するためのシステムおよび方法を提供することが有利であろう。
【課題を解決するための手段】
【0006】
レーザ維持プラズマ(LSP)光源が開示され、例示的な実施形態では、LSP源は、ガスを収容するためのガス収容構造を含む。別の例示的な実施形態では、LSP源は、ガス収容構造に流体的に結合され、ガス収容構造内にガスを流すように構成された1つ以上のガス入口を含む。別の例示的な実施形態では、LSP源は、ガス収容構造に流体的に結合され、ガス収容構造からガスを流すように構成された1つ以上のガス出口を含み、1つ以上のガス入口および1つ以上のガス出口は、ガス収容構造内に渦ガス流を生成するように配置される。別の例示的な実施形態では、LSP源は、渦ガス流内の内部ガス流内のガス収容構造の領域においてプラズマを維持するように光学ポンプを生成するように構成されたレーザポンプ源を含む。別の例示的な実施形態では、LSP源は、プラズマから放出される広帯域光の少なくとも一部を集光するように構成された集光素子を含む。
【0007】
別の例示的な実施形態では、1つ以上のガス入口および1つ以上のガス出口は、プラズマ領域を通る渦ガス流方向が1つ以上の入口からの入口ガス流と同じ方向(すなわち、貫流渦流)になるように、ガス収容構造内に渦ガス流を生成するように配置される。
【0008】
別の例示的な実施形態では、1つ以上のガス入口および1つ以上のガス出口は、プラズマ領域を通る渦ガス流方向が1つ以上の入口からの入口ガス流と反対方向(すなわち、逆渦流)になるように、ガス収容構造内に渦ガス流を生成するように配置される。
【0009】
前述の概要および以下の詳細な説明の両方は、例示的および説明的なものにすぎず、特許請求される本発明を必ずしも限定するものではないことを理解されたい。明細書に組み込まれ、明細書の一部を構成する添付の図面は、本発明の実施形態を示し、全般的な説明とともに、本発明の原理を説明するのに役立つ。
【図面の簡単な説明】
【0010】
本開示の多数の利点は、添付の図面を参照することによって当業者によってよりよく理解され得る:
【
図1】本開示の1つ以上の実施形態によるLSP広帯域光源の概略図である。
【
図2】本開示の1つ以上の実施形態による、LSP広帯域光源で使用するための渦発生ガスセルの概略図である。
【
図3】本開示の1つ以上の実施形態による、LSP広帯域光源で使用するための逆流渦発生ガスセルの概略図である。
【
図4A】本開示の1つ以上の実施形態による、LSP広帯域光源で使用するための単一入口渦発生ガスセルの概略図である。
【
図4B】本開示の1つ以上の実施形態による、LSP広帯域光源で使用するための単一入口渦発生ガスセルの概略図である。
【
図4C】本開示の1つ以上の実施形態による、LSP広帯域光源で使用するための単一入口渦発生ガスチャンバの概略図である。
【
図5A】本開示の1つ以上の実施形態による、LSP広帯域光源で使用するための多重入口渦発生ガスセルの概略図である。
【
図5B】本開示の1つ以上の実施形態による、LSP広帯域光源で使用するための多重入口渦発生ガスセルの概略図である。
【
図5C】本開示の1つ以上の実施形態による、LSP広帯域光源で使用するための複数入口渦発生ガスチャンバの概略図である。
【
図6】本開示の1つ以上の実施形態による、LSP広帯域光源で使用するための複数の側方に配置されたガス入口を含む逆流渦発生ガスセルの概略図である。
【
図7A】本開示の1つ以上の実施形態による、LSP広帯域光源で使用するための複数のガスを導入するためのガス入口を含む渦発生ガスセルの概略図である。
【
図7B】本開示の1つ以上の実施形態による、LSP広帯域光源で使用するための複数のガスを導入するためのガス入口を含む渦発生ガスセルの概略図である。
【
図8】本開示の1つ以上の実施形態による、LSP広帯域光源で使用するための渦発生ガラスセルの概略図である。
【
図9A】本開示の1つ以上の実施形態による、LSP広帯域光源の渦生成セルの入口で使用するための収束ノズルの概略図である。
【
図9B】本開示の1つ以上の実施形態による、LSP広帯域光源の渦生成セルの入口で使用するための環状流ノズルの概略図である。
【
図10】環状流ノズルのガス流速をノズルからの軸方向距離の関数としての収束ノズルのガス流速と比較する比較線プロットを示す図である。
【
図11A】本開示の1つ以上の実施形態による、多重環状流動ノズルの概略図である。
【
図11B】本開示の1つ以上の実施形態による、多重環状流動ノズルの概略図である。
【
図12】本開示の1つ以上の実施形態による、
図5A~
図5Cのいずれかに示すLSP広帯域光源を実装する光学特性評価システムの簡略化された概略図である。
【
図13】本開示の1つ以上の実施形態による、反射率測定および/または偏光解析構成に配置された光学特性評価システムの簡略化された概略図を示す。
【発明を実施するための形態】
【0011】
本開示は、特定の実施形態およびその特定の特徴に関して具体的に示され、説明されてきた。本明細書に記載される実施形態は、限定的ではなく例示的であると解釈される。本開示の精神および範囲から逸脱することなく、形態および詳細における種々の変更および修正が行われ得ることが、当業者に容易に明白となるはずである。ここで、添付の図面に示される開示された主題を詳細に参照する。
【0012】
本開示の実施形態は、LSP光源のLSP領域を通るガス流を組織化するために渦流または逆渦流を実施するLSP光源を対象とし、本開示の実施形態は、LSP動作に必要な高圧ガス、ガス入口ジェットを収容するために使用される透明なバルブ、セル、またはチャンバを対象とする。また、ガス出口は、渦ガス流または逆渦ガス流を生成するために使用される。一実施形態では、ガス入口およびガス出口は、ガス流の同じ全体方向を強制するセルの両側に配置される。別の実施形態では、ガス入口およびガス出口は、逆渦流パターンを形成するセルの同じ側に配置され、流れの全体的な方向はセル内で変化する。
【0013】
本開示の実施形態は、2つのガス流領域、すなわち、セル壁の近くに位置する外側領域と、セル中心軸の近くに位置する内側領域とを形成するために使用され得る。LSPは、セルの対称軸の近くの中央位置に維持され得、流れの内側部分によって影響を受けやすい。本開示の構成には様々な利点がある。例えば、プラズマ領域を通る高速ガス流が生成され、その結果、プラズマサイズが小さくなり、したがってプラズマ輝度が高くなる。プラズマから出現する高温プルームは、ポンプレーザ伝搬経路から除去され、「空気揺れ」収差を生じず、したがって、より安定したプラズマ動作をもたらす。ガス流は渦配置で安定化され、より安定したプラズマ動作を可能にする。高温プラズマプルームは、セル壁から離れて維持され、これは、壁への熱負荷を低減し、過熱に敏感な光学材料の使用を可能にする。内側および外側の流れの分離は、セル壁の冷却を可能にし、好ましい光化学環境および放射線遮断を作り出す。
【0014】
光維持プラズマの生成はまた、概して、米国特許7,435,982号(2008年10月14日)に記載され、その全体が参照することによって本明細書に組み込まれる。プラズマの生成はまた、概して、米国特許7,786,455号(2010年8月31日)で説明され、その全体が参照することによって本明細書に組み込まれる。プラズマの生成はまた、概して、米国特許7,989,786号(2011年8月2日)で説明され、参照することによって、全体として本明細書に組み込まれる。プラズマの生成はまた、概して、米国特許8,182,127号(2012年5月22日)で説明され、参照することによって、全体として本明細書に組み込まれる。プラズマの生成はまた、全体が参照により本明細書に組み込まれる米国特許8,309,943号(2012年11月13日)に概して記載されている。プラズマの生成はまた、全体が参照により本明細書に組み込まれる米国特許8,525,138号(2013年2月9日)に概して記載されている。プラズマの生成はまた、全体が参照により本明細書に組み込まれる米国特許8,921,814号(2014年12月30日)に概して記載されている。プラズマの生成はまた、全体が参照により本明細書に組み込まれる米国特許9,318,311号(2016年4月19日)に概して記載されている。プラズマの生成はまた、その全体が参照により本明細書に組み込まれる米国特許9,390,902号(2016年7月12日)にも概して記載されている。一般的な意味で、本開示の様々な実施形態は、当技術分野で知られている任意のプラズマベースの光源にまで及ぶと解釈されるべきである。プラズマ生成の文脈で使用される光学システムは、概して米国特許7,1205,331号(2010年4月27日)に記載されており、その全体が参照により本明細書に組み込まれる。
【0015】
図1は、本開示の1つ以上の実施形態による、渦流を有するLSP光源100の概略図である。LSP源100は、プラズマ110を維持するための光ポンプ104を生成するように構成されたポンプ源102を含む。例えば、ポンプ源102は、プラズマ110をポンピングするのに適したレーザ照明のビームを放出することができる。実施形態では、集光素子(要素)106は、プラズマ110を点火および/または維持するために、光ポンプ104の一部分を渦生成ガス収容構造108内に封じ込められたガスに向けるように構成される。ポンプ源102は、プラズマを点火および/または維持するのに適した当技術分野で知られている任意のポンプ源を含むことができる。例えば、ポンプ源102は、1つ以上のレーザ(すなわち、ポンプレーザ)を含んでもよい。ポンプビームは、可視、IR放射線、NIR放射線、および/またはUV放射線を含むが、それらに限定されない、当技術分野で公知の任意の波長または波長範囲の放射線を含んでもよい。
【0016】
集光素子106は、プラズマ110から放出される広帯域光115の一部を集光するように構成される。ガス収容構造108は、ガス収容構造108の内部に渦ガス流124を形成するように配置された1つ以上のガス入口120および1つ以上のガス出口122を含むことができる。プラズマ110から放出される広帯域光115は、1つ以上の下流の用途(例えば、検査、計測、またはリソグラフィ)で使用するために、1つ以上の追加の光学系(例えば、コールドミラー112)を介して集光されてもよい。LSP光源100は、限定はしないが、1つ以上の下流の用途の前に広帯域光115を調整するためのフィルタ117またはホモジナイザ119など、任意の数の追加の光学素子(要素)を含むことができる。ガス収容構造108は、プラズマセル、プラズマバルブ(またはランプ)、またはプラズマチャンバを含むことができる。
【0017】
図2は、本開示の1つ以上の実施形態による、渦生成ガス収容構造108として使用するのに適した渦セル200の簡略化された概略図を示す。実施形態では、渦セル200は、ガスを渦セル200内に流すように構成された1つ以上のガス入口と、ガスを渦セル200から流出させるように構成された1つ以上のガス出口とを含む。例えば、渦セル200は、渦セル200の周辺位置(例えば、底部コーナ)に位置する第1のガス入口202aと、渦セル200の中心位置(例えば、底部中心)に位置する第2のガス入口202bとを含む。渦セル200はまた、渦セル200の周辺位置(例えば、上部角)に位置する第1のガス出口204aと、渦セル200の中心位置(例えば、上部中心)に位置する第2のガス出口204bとを含む。実施形態では、1つ以上のガス入口および1つ以上の第1のガス出口は、渦セル200内に渦流206を生成するように配置される。この実施形態では、ガス入口202a、202bは、渦セル200の片側(例えば、底部側)に位置し、ガス出口204a、204bは、渦セル200の反対側(例えば、頂部側)に位置し、これは、渦セル200を通るガスの一方向渦運動を確実にする。
【0018】
実施形態では、渦流は、プラズマ110に近い位置で1~100m/sのドリフト速度を有する螺旋渦流である。ガス内の接線速度は、いくつかの要因によってドリフト速度を超え得ることに留意されたい。渦セル200の渦ガス流206は、内側流れ領域208および外側流れ領域210を含む。この実施形態では、渦セル200は、フロースルー渦セルとして機能し、それによって、内側ガス流208は、外側ガス流210と同じ方向に(
図2では上向きに)流れる。これに関して、プラズマ領域を通る渦ガス流の方向は、1つ以上の入口からの入口ガス流と同じ方向であってもよい。実施形態では、ポンプ源102は、光学ポンプ照明104を渦セル200の中央領域に向け、ポンプ照明が内側流れ領域208にさらされるようにする。内側流れ208と外側流れ210の分離は、セル壁の冷却を可能にし、好ましい光化学的環境を作り出し、放射線を遮断する。
【0019】
渦セル200は、プラズマ形成ガスを収容し、光ポンプ照明104および広帯域光115を伝送するように構成された光伝送素子(要素)106を含む。例えば、透明壁212は、ポンプ照明104および広帯域光115の少なくとも一部に対して透明な材料から形成された円筒を含んでもよい。例えば、光伝送素子106は、サファイア、水晶、CaF2、MgF2、または溶融石英から形成され得るが、これらに限定されない。渦セル200の渦流206は、渦セル200の壁からのプラズマ110の高温プルームを維持し、壁への熱ヘッド負荷を低減し、過熱(例えば、ガラス、CaF2、MgF2、水晶等である)に敏感な光学材料の使用を可能にすることに留意されたい。
【0020】
実施形態では、渦セル200は、透明光学素子(要素)106を終端/封止するための1つ以上のフランジを含む。例えば、渦セル200は、頂部フランジ214および底部フランジ216を含んでもよいが、これらに限定されない。実施形態では、上部および/または底部フランジ214、216は、入口および/または出口パイプまたは管ならびに付加的な機械的および電子的構成要素を固定してもよい。フランジ付きプラズマセルの使用は、少なくとも米国特許出願9,775,226号(2017年9月26日);及び米国特許9,185,788号(2015年11月10日)に記載されており、これらはそれぞれ、参照によりその全体が本明細書に組み込まれる。
【0021】
図3は、本開示の1つ以上の実施形態による、渦生成ガス収容構造108として使用するのに適した逆流渦セル300の簡略化された概略図を示す。
図2に関連する説明は、特に断らない限り、
図3の実施形態にまで及ぶと解釈されるべきであることに留意されたい。実施形態では、逆流渦セル300は、ガス入口302およびガス出口304を含む。加えて、逆流渦セル300は、底部フランジ216および上部フランジ214を含む。この例では、上部フランジ214は、止まりフランジまたはキャップを含むことができる。
【0022】
この実施形態では、渦セル300は、逆流構成で配置される。逆渦構成では、外側渦流310は、内側渦流308a、308bと反対方向に伝搬する。逆流構成は、逆流渦セル300のガス出口304と同じ側(例えば、底部)にガス入口302を配置することによって生成することができる。加えて、ガス入口302は、底部フランジ216の周囲または側面に位置付けられてもよく、これは、セル300のガス流内に渦流を生成するのに役立つ。この実施形態では、渦ガス流は、渦セル300の周囲を上方に移動する。次いで、頂部フランジ316の狭窄空洞は、外側渦流310を渦セル300の中心領域内にロールダウンするように作用する。ガスが渦セル300を通って連続的に流れると、これは、上方に移動する外側渦領域310と、外側渦領域310を通って下方に移動する内側渦領域308a、308bとを生成する。この構成では、上部内側渦流308aは、プラズマ110に向かって方向付けられ、下部内側渦流308bは、プラズマ110のプルームを下方に運ぶ。この点に関して、プラズマ領域を通る渦ガス流の方向は、1つ以上の入口からの入口ガス流とは反対方向であってもよい。
【0023】
図4Aは、本開示の1つ以上の実施形態による、渦生成ガス収容構造108として使用するのに適した単一入口渦セル400の簡略化された概略図を示す。この実施形態では、単一の中央に位置する入口402および出口404を利用して、渦セル400のプラズマ形成領域を通る高速ガス流(例えば、1~100m/sである)を生成する。単一の入口402および出口404の中心位置により、ガス流は比較的最小の渦性を有する。他の実施形態では、
図4Bに示されるように、単一の入口402は、セル410の周辺位置(例えば、縁部)に位置し、斜めの角度でセル内に向けられ、渦セル400のプラズマ形成領域を通る高速高渦度ガス流(例えば、1~100m/sである)を生成するために利用される。単一の入口402の周辺位置および単一の出口404の中心位置により、ガス流は比較的高い渦性を有する。
【0024】
図4Cは、本開示の1つ以上の実施形態による、渦生成ガス収容構造108としての使用に好適な単一入口渦チャンバ410の簡略化された概略図を図示する。本実施形態では、
図1に示すプラズマセルをプラズマチャンバ410に置き換えてもよい。
図1~
図4Bに関して本明細書で先に説明した実施形態は、特に断らない限り、
図4Cの実施形態にまで及ぶと解釈されるべきであることに留意されたい。ガス収容構造としてのガスチャンバの使用は、米国特許9,099,292号(2015年8月4日);米国特許9,263,238号(2016年2月16日);米国特許9,390,902号(2016年7月12日)に記載されており、これらはそれぞれ、参照によりその全体が本明細書に組み込まれる。
【0025】
この実施形態では、光集光素子(要素)106は、窓412とともに、ガス収容構造を形成するように構成され得る。例えば、集光素子106は、集光素子106および窓412の表面によって画定される体積内にガスを含有するように、窓412で密閉されてもよい。この例では、プラズマセルまたはプラズマバルブなどの内部ガス閉じ込め構造は必要とされず、集光素子106の表面および1つ以上の窓412がプラズマチャンバ410を形成する。この場合、集光素子106の開口部は、ポンプ照明104およびプラズマ広帯域光115の両方がそれを通過することを可能にするように、窓412(例えば、ガラス窓)で密閉されてもよい。
【0026】
実施形態では、プラズマチャンバ410は、単一の入口402および出口404を含む。単一の入口402および出口404は、渦チャンバ410のプラズマ形成領域を通る高速ガス流(例えば、1~20m/sである)を生成するために利用される。単一の入口402および出口404の整列により、ガス流は比較的最小の渦性を有する。入口402および出口404は、集光素子106の任意の部分に沿って配置され得ることに留意されたい。本開示の任意のノズル構成は、本明細書でさらに論じるように、
図4A~4Cの入口402において使用され得ることに留意されたい。
【0027】
図5Aは、本開示の1つ以上の実施形態による、渦生成ガス収容構造108として使用するのに適したマルチ入口渦セル500の簡略化された概略図を示す。この実施形態では、複数の中央に位置する入口502および出口504を利用して、渦セル500のプラズマ形成領域を通る高速ガス流(例えば、1~20m/sである)を生成する。入口502および出口504の中心位置により、ガス流は比較的最小の渦性を有する。渦セル500は、任意の数の入口を含み得ることに留意されたい。例えば、
図5Aの上面図に示すように、渦は4つの入口を含む。渦セル500は、限定されないが、2つの入口、3つの入口、5つの入口等の他の数の入口を含んでもよい。他の実施形態では、
図5Bに示されるように、複数の入口502は、セル510の周辺位置(例えば、縁)に位置し、セルの中へ斜めに配向され、渦セル510のプラズマ形成領域を通して高速高渦度ガス流(例えば、1~100m/sである)を生成するために利用される。入口502の周辺位置および出口504の中心位置により、ガス流は比較的高い渦性を有する。セル500の周囲の周りに入口を配置することにより、渦セル510内の渦度が向上する。
【0028】
別の実施形態では、
図5Cに示すように、複数の入口502をプラズマチャンバ510内に実装することができる。入口502は、集光素子106に沿った任意の場所に位置付けられてもよく、それらの相対位置は、プラズマチャンバ510内の必要な渦度を確立するために利用されてもよい。本開示の任意のノズル構成は、本明細書でさらに議論されるように、
図5A-5Cの入口で使用されてもよいことに留意されたい。
【0029】
任意の数の周辺または中心入口セットが、本開示のセルまたはチャンバ内で利用されてもよい。入口および出口ならびにそれらを通る流速は、所望の流動様式に応じて構成される。例えば、逆渦流を確立するために、主出口は、主入口と同じセルの側の中心に配置されてもよい。所望の流動様式を達成するために、追加の入口および出口をセル/チャンバの反対側に配置することができる。
【0030】
図6は、本開示の1つ以上の実施形態による、システム100のガス収容構造108として使用するための側壁位置決めガス入口を含む逆流渦セル600の簡略化された概略図を示す。実施形態では、逆流渦セル600は、底部フランジ216内に位置する第1の入口602aと、上部フランジ214内に位置する第2の入口602bとを含む。入口は、セル600の端部フランジおよび/または側壁内に配置され得ることに留意されたい。出口604は、セル600の中心に配置される。入口602a、602bの側面位置および出口の中心位置は、セル600内に著しい渦を生成する。
図6は、入口602a、602bをセル600の周辺に位置するものとして示しているが、この構成は本開示の範囲を限定するものではないことに留意されたい。代替の実施形態では、1つ以上の出口がセル600の周辺に位置してもよく、1つ以上の入口がセル600の上部または底部の中央に位置する。
【0031】
図7Aおよび
図7Bは、本開示の1つ以上の実施形態による、システム100のガス収容構造108として使用するための複数のガス入口を含む逆流渦セル700の簡略化された概略図を示す。実施形態では、入口のそれぞれは、異なるガスまたはガス混合物をセル700内に運ぶことができる。
図7A及び
図7Bを参照すると、第1のガス710aは、第1の入口702aを介してセル700に導入されてもよく、第2のガス710bは、第2の入口702bを介してセル700に導入されてもよい。この点に関して、セル壁付近およびプラズマ付近のガス組成は、独立して制御することができる。内部ガス領域708aは、プラズマ110内に導かれるガス流であり、内部ガス流708bは、プラズマ110の高温プルームを運び去るガス流である。例えば、
図7Aに示されるように、第1の入口702aおよび第2の入口702bは、第1のガスおよび第2のガスがセル700を通って同じ方向に流れる共伝搬構成で配置される。内部ガス流の別の例として、
図7Bに示されるように、第1の入口702aおよび第2の入口702bは、逆伝搬構成で配置され、それによって、第1のガスおよび第2のガスは、セル700を通って反対方向に流れる。
【0032】
ガスまたはガス混合物の任意の組み合わせがセル700内で使用され得ることに留意されたい。例えば、第1のガスは純粋なArであり得るが、第2のガスはO2添加剤を有するArである。この例では、酸素添加物は、ガラス壁に損傷を与えるArプラズマ放射の一部を吸収し、それによってガラス壁の近くに有益な化学環境を生成するために使用され得る。第1のガス710a/第2のガス710bの組み合わせの非限定的な例は、以下の通りである:Xe-Ar;空気(N2/O2)-Ar;Ar/Xe-Ar;Ar/O2-Ar;Ar/Xe/O2-Ar;Ar/Xe/F2-Ar;Ar/CF6-Ar;Ar/CF6-Ar/Xe等。
【0033】
図8は、本開示の1つ以上の実施形態による、システム100のガス収容構造108として使用するためのガラス逆流渦セル800の簡略化された概略図を示す。セル800は、セル800の同じ側(例えば、底部フランジ810)に配置されたガス入口802およびガス出口804を含む。実施形態では、セル800は、ガラス(例えば、ブローガラス)から形成される。実施形態では、セル800は、入口および出口のために使用される金属フランジ810にシールされ、ガス流806を制御するために必要とされ得る金属部品を冷却する、透明ガラス(例えば、溶融シリカ)本体から形成される。内部ガス流808aは、プラズマ110に向かって下向きに方向付けられ、内部ガス流808bは、プラズマ110の高温プルームを運び去る。従来のランプと比較したそのようなセルの使用の利点は、LSP110から生じる対流プルームが、内部渦ガス流808bによって運ばれ、ガラス壁と接触せず、したがって、セル800のガラス壁に対する熱負荷を低減することであることに留意されたい。ガラスからフロースルーセルを製作することは、標準的なガラス成形技術を通してアクセス可能な様々な形状を可能にする。これらの形状は、対流を助け、また、レーザポンプおよび集光された光に対する光学収差を低減する助けとなり得る。
【0034】
図9Aおよび9Bは、本開示のセルの1つ以上の入口における使用に好適なノズルの概略図を図示する。実施形態では、
図9Aに示されるように、収束ノズル900は、システム100の種々のセルの1つ以上の入口で使用されてもよい。他の実施形態では、
図9Bに示すように、環状流ノズル910を、システム100の様々なセルの1つ以上の入口に使用することができる。環状流ノズル910は、フローガイドノーズ(流れ誘導ノーズ)914を含んでもよい。環状流ノズル910の利用により、LSP110をノズルから充分な距離に配置して、構成要素の過熱を回避することが可能になる。
図9A及び
図9Bに示すように、環状流ノズル910のフローストリーム912は、収束ノズル900のフローストリーム902に対して著しく延長される。環状流ノズル910のフローストリームは、加圧セルの下端付近にフローガイドノーズを追加することによって作り出される。関心のある流速を作り出すために必要とされる追加の圧力ヘッドは、これらの場合の動作圧力と比較して重要ではない。流速は収束ジェットに対して急速に減衰する。しかしながら、環状の流入口を使用し、収束ノーズに沿って流れを案内することによって、流速をはるかに遠い距離で維持することができる。この構成では、プラズマは、フローガイドからより遠く安全な距離で点火することができる。さらに、ノズルは、水冷することができ、溶融の懸念なしに安全な動作温度で動作することができる。
【0035】
図10は、環状流ノズル910のフローガイドノーズ構成について、ノーズガイドから約50mm離れたところでプラズマを点火することができ、先端速度の50%を超えるフロー速度を依然として保持することができることを示す比較線プロットを示す。収束ノズル900および/または環状流ノズル910は、本開示全体にわたって論じられる渦または逆流渦セルのガス入口のいずれか内に実装され得ることに留意されたい。
【0036】
図11Aおよび11Bは、本開示の1つ以上の実施形態による、複数のジェットを含む環状ノズル配列の概略図を図示する。
図11Aは、複数のジェットを有する環状流ノズルの断面を示し、
図11Bは、複数のジェットを有する環状流ノズルの上面図を示す。実施形態では、環状流ノズル1100は、入口チャネル1102内に位置するノズルヘッド1106を含む。実施形態では、複数の流出ジェット1104は、下にある円錐ガイド1108の周りに螺旋状に巻かれ、流出ガス1110内に流出渦流パターンをもたらす。複数のジェット環状流ノズル1100は、本開示全体を通して論じられる渦または逆流渦セルのガス入口のいずれか内に実装され得ることに留意されたい。
【0037】
概して
図1~
図11Bを参照すると、ポンプ源102は、プラズマを維持するための光学ポンプとして機能することができる、当技術分野で知られている任意のレーザシステムを含むことができる。例えば、ポンプ源102は、電磁スペクトルの赤外、可視、および/または紫外部分の放射を放出することができる、当技術分野で公知の任意のレーザシステムを含んでもよい。
【0038】
実施形態では、ポンプ源102は、連続波(CW)レーザ放射を放出するように構成されたレーザシステムを含むことができる。例えば、ポンプ源102は、1つ以上のCW赤外線レーザ源を含んでもよい。実施形態では、ポンプ源102は、実質的に一定のパワーでプラズマ110にレーザ光を供給するように構成された1つ以上のレーザを含むことができる。実施形態では、ポンプ源102は、変調されたレーザ光をプラズマ110に提供するように構成された1つ以上の変調レーザを含むことができる。実施形態では、ポンプ源102は、プラズマにパルスレーザ光を供給するように構成された1つ以上のパルスレーザを含むことができる。実施形態では、ポンプ源102は、1つ以上のダイオードレーザを含んでもよい。例えば、ポンプ源102は、ガス収容構造内に収容されたガス種の任意の1つ以上の吸収線に対応する波長で放射を放出する1つ以上のダイオードレーザを含むことができる。ポンプ源102のダイオードレーザは、ダイオードレーザの波長が、当技術分野で公知の任意のプラズマの任意の吸収線(例えば、イオン遷移線)またはプラズマ生成ガスの任意の吸収線(例えば、高励起中性遷移線)に同調されるように、実装のために選択されてもよい。したがって、所与のダイオードレーザ(またはダイオードレーザのセット)の選択は、光源100内で使用されるガスの種類に依存するであろう。実施形態では、ポンプ源102は、イオンレーザを含んでもよい。例えば、ポンプ源102は、当技術分野で知られている任意の希ガスイオンレーザを含むことができる。例えば、アルゴンベースのプラズマの場合、アルゴンイオンをポンピングするために使用されるポンプ源102は、Arレーザを含み得る。実施形態では、ポンプ源102は、1つ以上の周波数変換レーザシステムを含んでもよい。実施形態では、ポンプ源102は、ディスクレーザを含んでもよい。実施形態では、ポンプ源102は、ファイバレーザを含んでもよい。実施形態では、ポンプ源102は広帯域レーザを含むことができる。実施形態では、ポンプ源102は、1つ以上の非レーザ源を含んでもよい。ポンプ源102は、当技術分野で知られている任意の非レーザ光源を含むことができる。例えば、ポンプ源102は、電磁スペクトルの赤外、可視または紫外部分において離散的または連続的に放射を放出することができる、当技術分野で公知の任意の非レーザシステムを含んでもよい。
【0039】
実施形態では、ポンプ源102は、2つ以上の光源を含んでもよい。実施形態では、ポンプ源102は、2つ以上のレーザを含んでもよい。例えば、ポンプ源102(または「源」)は、複数のダイオードレーザを含んでもよい。実施形態では、2つ以上のレーザのそれぞれは、源100内のガスまたはプラズマの異なる吸収線に調整されたレーザ放射を放出してもよい。
【0040】
集光素子106は、プラズマ生成の技術分野で知られている任意の集光素子を含むことができる。例えば、集光素子106は、1つ以上の楕円形反射器、1つ以上の球形反射器、および/または1つ以上の放物面反射器を含んでもよい。集光素子106は、プラズマベースの広帯域光源の技術分野で知られているプラズマ110から任意の波長の広帯域光を集光するように構成することができる。例えば、集光素子106は、プラズマ110から赤外光、可視光、紫外(UV)光、近紫外(NUV)、真空UV(VUV)光、及び/又は深紫外(DUV)光を集光するように構成することができる。
【0041】
源100のガス収容構造の透過部分(例えば、透過素子、バルブまたは窓)は、プラズマ110および/またはポンプ光104によって生成される広帯域光115に対して少なくとも部分的に透明である、当技術分野で知られている任意の材料から形成され得る。実施形態では、ガス収容構造(例えば、透過素子、バルブまたは窓)の1つ以上の透過部分は、ガス収容構造内で生成されるVUV放射、DUV放射、UV放射、NUV放射、および/または可視光に対して少なくとも部分的に透過性である、当技術分野で知られている任意の材料から形成され得る。さらに、ガス収容構造の1つ以上の透過部分は、ポンプ源102からのIR放射、可視光および/またはUV光に対して少なくとも部分的に透過性である当技術分野で知られている任意の材料から形成され得る。実施形態では、ガス収容構造の1つ以上の透過部分は、ポンプ源102(例えば、IR源)からの放射およびプラズマ110によって放出される放射(例えば、VUV、DUV、UV、NUV放射線および/または可視光)の両方に対して透過性である、当技術分野で公知の任意の材料から形成されてもよい。
【0042】
ガス収容構造108は、ポンプ照明の吸収時にプラズマを生成するのに適した当技術分野で知られている任意の選択されたガス(例えば、アルゴン、キセノン、水銀など)を含むことができる。実施形態では、ポンプ源102からのポンプ照明510のガス体積への集束は、エネルギーをガス収容構造内のガスまたはプラズマ(例えば、1つ以上の選択された吸収線を介する)によって吸収させ、それによって、プラズマ110を生成および/または維持するためにガス種を「ポンピング」する。実施形態では、図示されていないが、ガス収容構造は、ガス収容構造108の内部容積内でプラズマ110を開始するための電極のセットを含むことができ、それによって、ポンプ源102からの照明は、電極による点火後にプラズマ110を維持する。
【0043】
源100は、様々なガス環境においてプラズマ110を開始および/または維持するために利用され得る。実施形態では、プラズマ110を開始および/または維持するために使用されるガスは、不活性ガス(例えば、希ガスまたは非希ガス)または非不活性ガス(例えば、水銀)を含んでもよい。実施形態では、プラズマ110を開始および/または維持するために使用されるガスは、ガスの混合物(例えば、不活性ガスの混合物、不活性ガスと非不活性ガスとの混合物、または非不活性ガスの混合物)を含んでもよい。例えば、源100における実施に適したガスとしては、Xe、Ar、Ne、Kr、He、N2、H2O、O2、H2、D2、F2、CH4、CF6の1つまたはそれ以上の金属ハロゲン化物、ハロゲン、Hg、Cd、Zn、Sn、Ga、Fe、Li、Na、Ar:Xe、ArHg、KrHg、XeHg及びそれらの任意の混合物が挙げられるが、これらに限定されない。本開示は、ガス収容構造内でプラズマを維持するのに適した任意のガスにまで及ぶと解釈されるべきである。
【0044】
実施形態では、LSP光源100は、プラズマ110からの広帯域光115を1つ以上の下流の用途に導くように構成された1つ以上の追加の光学系をさらに含む。1つ以上の追加の光学系は、1つ以上のミラー、1つ以上のレンズ、1つ以上のフィルタ、1つ以上のビームスプリッタ等を含むが、それらに限定されない、当技術分野で公知の任意の光学要素を含んでもよい。集光素子106は、プラズマ110によって放出される可視光、NUV、UV、DUV、および/またはVUV放射のうちの1つまたは複数を集光し、広帯域光115を1つ以上の下流の光学素子に向けることができる。例えば、集光素子106は、赤外放射、可視放射、NUV放射、UV放射、DUV放射、および/またはVUV放射を、検査ツール、計測ツール、またはリソグラフィツールなどであるがこれらに限定されない、当技術分野で知られている任意の光学特性評価システムの下流の光学素子に送達することができる。この点に関して、広帯域光115は、検査ツール、計測ツール、またはリソグラフィツールの照明光学系に結合され得る。
【0045】
図12は、本開示の1つ以上の実施形態による、
図11から
図11のいずれか(またはそれらの任意の組合せ)に示すLSP広帯域光源100を実装する光学特性評価システム1200の概略図である。
【0046】
本明細書では、システム1200は、任意の画像化、検査、計測、リソグラフィ、または当技術分野で知られている他の特徴付け/製作システムを備え得ることに留意されたい。この点に関して、システム1200は、試料1207上で検査、光学計測、リソグラフィ、および/または撮像を行うように構成されてもよい。試料1207は、限定はしないが、ウェハ、レチクル/フォトマスクなどを含む、当技術分野で知られている任意のサンプル(試料)を含むことができる。システム1200は、本開示全体にわたって説明されるLSP広帯域光源100の様々な実施形態のうちの1つまたは複数を組み込むことができることに留意されたい。
【0047】
実施形態では、試料1207は、試料1207の移動を容易にするためにステージアセンブリ1212上に配置される。ステージアセンブリ1212は、限定はしないが、X-Yステージ、R-θステージなどを含む、当技術分野で知られている任意のステージアセンブリ1212を含み得る。実施形態では、ステージアセンブリ1212は、検査または撮像中に試料1207の高さを調整して、試料1207上の焦点を維持することができる。
【0048】
実施形態では、照明光学系のセット1203は、広帯域光源100からの照明を試料1207に向けるように構成される。照明光学系1203のセットは、当技術分野で公知の任意の数およびタイプの光学構成素子(要素)を含んでもよい。実施形態では、照明光学のセット1203は、限定ではないが、1つ以上のレンズ1202、ビームスプリッタ1204、および対物レンズ1206等の1つ以上の光学素子を含む。これに関して、照明光学系のセット1203は、LSP広帯域光源100からの照明を試料1207の表面上に集束させるように構成することができる。1つ以上の光学素子は、1つ以上のミラー、1つ以上のレンズ、1つ以上の偏光子、1つ以上の格子、1つ以上のフィルタ、1つ以上のビームスプリッタ等を含むが、それらに限定されない、当技術分野で公知の任意の光学素子または光学素子の組み合わせを含んでもよい。
【0049】
実施形態では、集光光学系1205のセットは、試料1207から反射、散乱、回折、および/または放出された光を集光するように構成される。実施形態では、集束レンズ710等であるが、それらに限定されない、集光光学系1205のセットは、サンプル1207からの光を検出器アセンブリ1214のセンサ1216に指向および/または集束させてもよい。センサ1216および検出器アセンブリ1214は、当技術分野で知られている任意のセンサおよび検出器アセンブリを含み得ることに留意されたい。例えば、センサ1216は、電荷結合素子(CCD)検出器、相補型金属酸化膜半導体(CMOS)検出器、時間遅延積分(TDI)検出器、光電子増倍管(PMT)、アバランシェフォトダイオード(APD)などを含むことができるが、これらに限定されない。さらに、センサ1216は、ラインセンサまたは電子衝撃ラインセンサを含んでもよいが、それらに限定されない。
【0050】
実施形態では、検出器アセンブリ1214は、1つ以上のプロセッサ1220およびメモリ媒体1222を含むコントローラ1218に通信可能に結合される。たとえば、1つ以上のプロセッサ1220は、メモリ1222に通信可能に結合され得、1つ以上のプロセッサ1220は、メモリ1222に記憶されたプログラム命令のセットを実行するように構成される。実施形態では、1つ以上のプロセッサ1220は、検出器アセンブリ1214の出力を分析するように構成される。実施形態では、プログラム命令のセットは、1つ以上のプロセッサ1220に試料1207の1つ以上の特性を分析させるように構成される。実施形態では、プログラム命令のセットは、試料1207および/またはセンサ1216への焦点を維持するために、1つ以上のプロセッサ1220にシステム1200の1つ以上の特性を修正させるように構成される。例えば、1つ以上のプロセッサ1220は、LSP広帯域光源100からの照明を試料1207の表面に集束させるために、対物レンズ1206または1つ以上の光学素子1202を調整するように構成されてもよい。別の例として、1つ以上のプロセッサ1220は、試料1207の表面から照明を集光し、集光された照明をセンサ1216上に集束させるために、対物レンズ1206および/または1つ以上の光学素子1202を調整するように構成され得る。
【0051】
システム1200は、暗視野構成、明視野配向等を含むが、それらに限定されない、当技術分野で公知の任意の光学構成で構成されてもよいことに留意されたい。
【0052】
図13は、本開示の1つ以上の実施形態による、反射率測定および/または偏光解析構成に配置された光学特性評価システム1300の簡略化された概略図を示す。
図1~
図12に関して説明した様々な実施形態および構成要素は、
図13のシステムに拡張すると解釈され得ることに留意されたい。システム1300は、当技術分野で知られている任意のタイプの計測システムを含むことができる。
【0053】
実施形態では、システム1300は、LSP広帯域光源100と、照明光学系1316のセットと、集光光学系1318のセットと、検出器アセンブリ1328と、1つ以上のプロセッサ1220およびメモリ1222を含むコントローラ1218とを含む。
【0054】
この実施形態では、LSP広帯域光源100からの広帯域照明は、照明光学系1316のセットを介して試料1207に向けられる。実施形態では、システム1300は、集光光学系1318のセットを介して試料から発する照明を集光する。照明光学系のセット1316は、広帯域ビームを修正および/または調整するのに適した1つ以上のビーム調整構成素子(要素)1320を含むことができる。例えば、1つ以上のビーム調整構成素子1320は、1つ以上の偏光子、1つ以上のフィルタ、1つ以上のビームスプリッタ、1つ以上の拡散器、1つ以上のホモジナイザ、1つ以上のアポダイザ、1つ以上のビーム整形器、または1つ以上のレンズを含んでもよいが、それらに限定されない。
【0055】
実施形態では、照明光学系のセット1316は、第1の集束要素1322を利用して、試料ステージ1312上に配置された試料207上にビームを集束および/または方向付けることができる。実施形態では、集光光学系1318のセットは、試料1207からの照明を集光するための第2の集束要素1326を含んでもよい。
【0056】
実施形態では、検出器アセンブリ1328は、集光光学系1318のセットを通して試料1207から発する照明を捕捉するように構成される。例えば、検出器アセンブリ1328は、試料1207から反射または散乱された照明(例えば、鏡面反射、拡散反射などを介する)を受け取ることができる。別の例として、検出器アセンブリ1328は、試料1207によって生成された照明(例えば、ビームの吸収に関連するルミネッセンス発光など)を受け取ることができる。検出器アセンブリ1328は、当技術分野で知られている任意のセンサおよび検出器アセンブリを含み得ることに留意されたい。例えば、センサは、CCD検出器、CMOS検出器、TDI検出器、PMT、APD等を含み得るが、それらに限定されない。
【0057】
集光光学系1318のセットはさらに、限定ではないが、1つ以上のレンズ、1つ以上のフィルタ、1つ以上の偏光子、または1つ以上の位相板を含む、任意の数の集光ビーム調整要素1330を含み、第2の集束要素1326によって集光される照明を指向および/または修正してもよい。
【0058】
システム1300は、限定はしないが、1つ以上の照明角度を有する分光エリプソメータ、ミュラー行列要素を測定するための分光エリプソメータ(たとえば、回転補償器を使用して)、単波長エリプソメータ、角度分解エリプソメータ(たとえば、ビームプロファイルエリプソメータ)、分光反射率計、単波長反射率計、角度分解反射率計(例えば、ビームプロファイル反射率計)、撮像システム、瞳撮像システム、スペクトル撮像システム、またはスキャトロメータなど、当技術分野で知られている任意のタイプの計測ツールとして構成され得る。
【0059】
本開示の様々な実施形態における実施に適した検査/計測ツールの説明は、2001年9月2日に発行された米国特許7,957,066号(”Split Field Inspection System Using Small Catadioptric Objectives,”、2011年6月7日);米国特許7,345,825号(”Beam Delivery System for Laser Dark- Field Illumination in a Catadioptric Optical System,”、2018年3月18日);米国特許5,999,310号(”Ultra-broadband UV Microscope Imaging System with Wide Range Zoom Capability,”、1999年12月7日);米国特許7,525,649号(”Surface Inspection System Using Laser Line Illumination with Two Dimensional Imaging,”、2009年4月28日);米国特許9,228,943号(”Dynamically Adjustable Semiconductor Metrology System,”、2016年1月5日);米国特許5,608,526号(”Focused Beam Spectroscopic Ellipsometry Method and System, by Piwonka-Corle et al.,1997年3月4日発行);米国特許6,297,880号(”Apparatus for Analyzing Multi-Layer Thin Film Stacks on Semiconductors,”、2001年10月2日発行)に提供されており、これらはそれぞれ、参照によりその全体が本明細書に組み込まれる。
【0060】
コントローラ1218の1つ以上のプロセッサ1220は、当技術分野で知られている任意のプロセッサまたは処理要素を含むことができる。本開示の目的のために、「プロセッサ」または「処理要素」という用語は、1つ以上の処理または論理要素(例えば、1つ以上のマイクロプロセッサデバイス、1つ以上の特定用途向け集積回路(ASIC)デバイス、1つ以上のフィールドプログラマブルゲートアレイ(FPGA)、または1つ以上のデジタル信号プロセッサ(DSP))を有する任意のデバイスを包含するように広く定義され得る。この意味で、1つ以上のプロセッサ1220は、メモリ媒体1222からアルゴリズムおよび/または命令(たとえば、メモリに記憶されたプログラム命令)を実行するように構成された任意のデバイスを含み得る。メモリ媒体1222は、関連する1つ以上のプロセッサ1220によって実行可能なプログラム命令を記憶するのに適した、当技術分野で知られている任意の記憶媒体を含み得る。
【0061】
実施形態では、LSP光源100およびシステム1200、1300は、本明細書で説明するように、プロセスツールに物理的に結合されていないツールとして本明細書で解釈される「スタンドアロンツール」として構成することができる。他の実施形態では、そのような検査または計測システムは、有線および/または無線部分を含み得る伝送媒体によってプロセスツール(図示せず)に結合することができる。プロセスツールは、リソグラフィツール、エッチング・ツール、堆積ツール、研磨ツール、めっきツール、洗浄ツール、またはイオン注入ツールなど、当技術分野で知られている任意のプロセスツールを含むことができる。本明細書で説明されるシステムによって実行される検査または測定の結果を使用して、フィードバック制御技術、フィードフォワード制御技術、および/またはインサイチュー制御技術を使用して、プロセスまたはプロセスツールのパラメータを変更することができる。プロセス又はプロセスツールのパラメータは、手動で又は自動的に変更することができる。
【0062】
当業者は、本明細書で説明される構成要素動作、デバイス、オブジェクト、およびそれらに付随する議論が、概念的明確性のために例として使用されること、および種々の構成修正が検討されることを認識するであろう。したがって、本明細書で使用されるように、記載される特定の例および付随する議論は、それらのより一般的なクラスの代表であることが意図される。概して、任意の特定の例の使用は、そのクラスを表すことが意図され、特定の構成要素、動作、デバイス、およびオブジェクトの非包含は、限定として解釈されるべきではない。
【0063】
本明細書における実質的に任意の複数形および/または単数形の用語の使用に関して、当業者は、文脈および/または用途に適切であるように、複数形から単数形に、および/または単数形から複数形に変換することができる。様々な単数形/複数形の置き換えは、理解しやすいように、本明細書で明確に記載されない。
【0064】
本明細書で説明される主題は、場合によっては、他の構成要素内に含まれる、または他の構成要素と接続される、異なる構成要素を図示する。そのような描写されたアーキテクチャは、単なる例示であり、実際には、同じ機能性を達成する多くの他のアーキテクチャが実装され得ることを理解されたい。概念的な意味では、同じ機能を達成するための構成要素の任意の配置は、所望の機能が達成されるように効果的に「関連付けられる」。したがって、特定の機能を達成するために組み合わされた本明細書の任意の2つの構成要素は、アーキテクチャまたは中間構成要素にかかわらず、所望の機能が達成されるように互いに「関連付けられる」と見なすことができる。同様に、そのように関連付けられた任意の2つの構成要素は、所望の機能を達成するために互いに「接続」または「結合」されていると見なすこともでき、そのように関連付けられることが可能な任意の2つの構成要素は、所望の機能を達成するために互いに「結合可能」であると見なすこともできる。結合可能の具体例は、物理的に嵌合可能及び/又は物理的に相互作用するコンポーネント及び/又は無線で相互作用可能及び/又は無線で相互作用するコンポーネント及び/又は論理的に相互作用する及び/又は論理的に相互作用可能なコンポーネントを含むが、これらに限定されない。
【0065】
さらに、本発明は添付の特許請求の範囲によって定義されることを理解されたい。一般に、本明細書および特に添付の特許請求の範囲(例えば、添付の特許請求の範囲の本体)で使用される用語は一般に「オープン」用語(例えば、「含む(including)」という用語は、「含む(including)がこれに限定されない」と解釈されるべきであり、「有する(having)」という用語は「少なくとも有する(having)」と解釈されるべきであり、「含む(includes)」という用語は「含む(includes)がこれに限定されない」と解釈されるべきである等である)として意図されることが当業者には理解されよう。導入される請求項の記載の具体的な数が意図される場合、そのような意図は、その請求項において明示的に記載されることになり、そのような記載がない場合、そのような意図は存在しないことが、当業者にはさらに理解されよう。例えば、理解の助けとして、以下の添付の特許請求の範囲は、導入句「少なくとも1つの(at least one)」および「1つ以上の(one or more)」を使用して請求項の記載を導くことを含むことができる。しかしながら、そのような語句の使用は、不定冠詞「a」または「an」による請求項の記載の導入が、そのような導入された請求項の記載を含む任意の特定の請求項を、1つのそのような記載のみを含む発明に限定することを意味すると解釈されるべきではない。同じ請求項が「1つ以上」または「少なくとも1つ」という導入句および「a」または「an」(例えば、「a」および/または「an」は、典型的には、「少なくとも1つ」または「1つ以上」を意味すると解釈されるべきである)などの不定冠詞を含む場合でも、同じことが、請求項の記載を紹介するために使用される明確な記事の使用にも当てはまる。また、導入される請求項の記載の具体的な数が明示的に列挙されている場合でも、そのような記載は、典型的には少なくとも列挙された数(例えば、他の修飾因子を伴わない「2つの列挙」の裸の列挙は、典型的には、少なくとも2つの列挙、または2つ以上の列挙を意味する)を意味すると解釈されるべきであることを、当業者は認識されよう。さらに、「A、B、およびCのうちの少なくとも1つなど」に類似する慣例表現が使用される事例では、概して、そのような構成は、当業者が慣例表現(例えば、「A、B、およびCのうちの少なくとも1つを有するシステム」は、Aのみ、Bのみ、Cのみ、AおよびBを共に、AおよびCを共に、BおよびCを共に、および/またはA、B、およびCを共に有するシステムを含むが、それらに限定されない)を理解するであろう意味で意図される。「A、B、またはCのうちの少なくとも1つなど」に類似する慣例表現が使用される事例では、概して、そのような構成は、当業者が慣例表現(例えば、「A、B、またはCのうちの少なくとも1つを有するシステム」は、Aのみ、Bのみ、Cのみ、AおよびBを共に、AおよびCを共に、BおよびCを共に、および/またはA、B、およびCを共に有するシステムを含むが、それらに限定されない)を理解するであろう意味で意図される。2つ以上の代替用語を提示する事実上いかなる離接する語および/または句も、説明、特許請求の範囲、または図面のどこにあっても、その用語の一方(one of the terms)、その用語のいずれか(either of the terms)、または両方の用語(both terms)を含む可能性を企図すると理解されるべきであることが、当業者にはさらに理解されよう。例えば、「AまたはB」という語句は、「A」または「B」または「AおよびB」の可能性を含むと理解されるであろう。
【0066】
本開示およびその付随する利点の多くは、前述の説明によって理解されるであろうと考えられ、開示される主題から逸脱することなく、またはその物質的利点の全てを犠牲にすることなく、構成要素の形態、構造、および配置において種々の変更が行われ得ることが明白となるであろう。説明される形態は単なる説明であり、そのような変更を包含し、含むことが以下の特許請求の範囲の意図である。さらに、本発明は添付の特許請求の範囲によって定義されることを理解されたい。
【国際調査報告】