IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ラム リサーチ コーポレーションの特許一覧

特表2023-527965プラズマツールにおけるセンサデータ圧縮
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-07-03
(54)【発明の名称】プラズマツールにおけるセンサデータ圧縮
(51)【国際特許分類】
   H01L 21/3065 20060101AFI20230626BHJP
   H05H 1/46 20060101ALI20230626BHJP
【FI】
H01L21/302 103
H05H1/46 R
H01L21/302 101G
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2022571156
(86)(22)【出願日】2021-05-10
(85)【翻訳文提出日】2023-01-19
(86)【国際出願番号】 US2021031655
(87)【国際公開番号】W WO2021242512
(87)【国際公開日】2021-12-02
(31)【優先権主張番号】63/030,748
(32)【優先日】2020-05-27
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】592010081
【氏名又は名称】ラム リサーチ コーポレーション
【氏名又は名称原語表記】LAM RESEARCH CORPORATION
(74)【代理人】
【識別番号】110000028
【氏名又は名称】弁理士法人明成国際特許事務所
(72)【発明者】
【氏名】ヴァルコアー・ジョン・ジュニア.
(72)【発明者】
【氏名】ウォン・トラビス・ジョセフ
(72)【発明者】
【氏名】ウー・イン
(72)【発明者】
【氏名】ムダンリ・サンディープ
(72)【発明者】
【氏名】プスト・ボスジャン
【テーマコード(参考)】
2G084
5F004
【Fターム(参考)】
2G084AA01
2G084CC12
2G084CC13
2G084CC33
2G084DD02
2G084DD03
2G084DD53
2G084DD55
2G084HH21
2G084HH22
2G084HH23
2G084HH27
2G084HH28
2G084HH29
2G084HH52
5F004AA16
5F004BA04
5F004BA14
5F004BA20
5F004BB13
5F004BB26
5F004BC03
5F004BD04
5F004BD05
5F004BD06
5F004CA08
5F004CB05
5F004CB06
5F004DA00
5F004DA22
5F004DA23
5F004DA25
5F004DA26
(57)【要約】
【課題】
【解決手段】データを圧縮するためのシステムおよび方法について記載する。方法の1つは、プラズマツールの無線周波数(RF)伝送路に結合された1つまたは複数のセンサから複数の測定信号を受信することを含む。RFジェネレータの出力からプラズマチャンバの電極までがRF伝送路である。この方法は、複数の測定信号をアナログ形式からデジタル形式へ変換してサンプルデータとし、そのデータを処理してデータの量を削減することを含む。データの量は圧縮されて、圧縮データが出力される。この方法は、前記圧縮データを、前記プラズマツールを制御するためのコントローラに送信することを含む。
【選択図】図3F-1
【特許請求の範囲】
【請求項1】
データを圧縮するための方法であって、
RFジェネレータの出力からプラズマツールの電極までの、前記プラズマツールの無線周波数(RF)伝送路に結合された1つまたは複数のセンサからの複数の測定信号を受信することと、
前記複数の測定信号をアナログ形式からデジタル形式へ変換することによってサンプルデータとすることと、
前記サンプルデータを処理することによって圧縮データを出力することと、
前記圧縮データを、前記プラズマツールを制御するためのコントローラに送信することと
を含む、方法。
【請求項2】
請求項1に記載の方法であって、前記複数の測定信号を受信することが、
第1のRF信号に関連付けられた第1のパラメータを表す第1の電気信号を受信することと、
第2のRF信号に関連付けられた第2のパラメータを表す第2の電気信号を受信することと
を含み、
前記複数の測定信号を変換することが、
前記第1の電気信号をサンプリングして、第1のマスタサンプルセットと第2のマスタサンプルセットとを含む第1の複数のサンプルセットを出力することと、
前記第2の電気信号をサンプリングして、第1のスレーブサンプルセットと第2のスレーブサンプルセットとを含む第2の複数のサンプルセットを出力することと
を含み、
前記サンプルデータを処理することが、
前記第1のマスタサンプルセットおよび前記第2のマスタサンプルセットのうち、前記第1のマスタサンプルセットが最も大きい振れ幅を有すると決定することと、
前記第1のスレーブサンプルセットが前記第1のマスタサンプルセットに対応すると識別することと、
前記第1のスレーブサンプルセットから、最大の大きさ、最小の大きさ、正の交差の時間、および負の交差の時間のうちの少なくとも1つを決定することと
を含む、方法。
【請求項3】
請求項1に記載の方法であって、前記複数の測定信号を受信することが、
第1のRF信号に関連付けられた第1のパラメータを表す第1の電気信号を受信することと、
第2のRF信号に関連付けられた第2のパラメータを表す第2の電気信号を受信することと
を含み、
前記複数の測定信号を変換することが、
前記第1の電気信号をサンプリングして、第1のマスタサンプルセットと第2のマスタサンプルセットとを含む第1の複数のサンプルセットを出力することと、
前記第2の電気信号をサンプリングして、第1のスレーブサンプルセットと第2のスレーブサンプルセットとを含む第2の複数のサンプルセットを出力することと
を含み、
前記サンプルデータを処理することが、
前記第1のマスタサンプルセットおよび前記第2のマスタサンプルセットのうち、前記第1のマスタサンプルセットが最も大きい振れ幅を有すると決定すること、または
前記第1のマスタサンプルセットの最大の大きさを決定すること、または
前記第1のマスタサンプルセットの最大の大きさと前記第2のマスタサンプルセットの最大の大きさから、前記第2のマスタサンプルセットの最大の大きさが最も大きいと決定すること、または
前記第1のマスタサンプルセットの最小の大きさを決定すること、または
前記最小の大きさが、前記第1のマスタサンプルセットの最小の大きさおよび前記第2のマスタサンプルセットの最小の大きさのうちの最小値であると決定すること、または
前記第1のマスタサンプルセット内の正の交差の位置を決定すること、または
前記第1のマスタサンプルセット内の負の交差の位置を決定すること、または
前記第1のマスタサンプルセットおよび前記第2のマスタサンプルセットの正と負の交差の間の差の合計を決定すること、または
前記決定のうちの2つ以上の組み合わせ
を含む、方法。
【請求項4】
請求項1に記載の方法であって、前記複数の測定信号を受信することが、
第1のRF信号に関連付けられた第1のパラメータを表す第1の電気信号を受信することと、
第2のRF信号に関連付けられた第2のパラメータを表す第2の電気信号を受信することと
を含み、
前記複数の測定信号を変換することが、
前記第1の電気信号をサンプリングして、第1のマスタサンプルセットと第2のマスタサンプルセットとを含む第1の複数のサンプルセットを出力することと、
前記第2の電気信号をサンプリングして、第1のスレーブサンプルセットと第2のスレーブサンプルセットとを含む第2の複数のサンプルセットを出力することと
を含み、
前記サンプルデータを処理することが、
前記第1のスレーブサンプルセットおよび前記第2のスレーブサンプルセットのうち、前記第1のスレーブサンプルセットが最も大きい振れ幅を有すると決定すること、または
前記第1のスレーブサンプルセットの最大の大きさを決定すること、または
前記第1のスレーブサンプルセットの最大の大きさと前記第2のスレーブサンプルセットの最大の大きさから、前記第2のスレーブサンプルセットの最大の大きさが最も大きいと決定すること、または
前記第1のスレーブサンプルセットの最小の大きさを決定すること、または
前記最小の大きさが、前記第1のスレーブサンプルセットの最小の大きさおよび前記第2のスレーブサンプルセットの最小の大きさのうちの最小値であると決定すること、または
前記第1のスレーブサンプルセット内の正の交差の位置を決定すること、または
前記第1のスレーブサンプルセット内の負の交差の位置を決定すること、または
前記第1のスレーブサンプルセットおよび前記第2のスレーブサンプルセットの正と負の交差の間の差の合計を決定すること、または、
前記決定のうちの2つ以上の組み合わせ
を含む、方法。
【請求項5】
請求項1に記載の方法であって、
前記複数の測定信号を受信することが、
第1のRF信号に関連付けられた第1のパラメータを表す第1の電気信号を受信することと、
第2のRF信号に関連付けられた第2のパラメータを表す第2の電気信号を受信することと
を含み、
前記複数の測定信号を変換することが、
前記第1の電気信号をサンプリングして第1の複数のサンプルセットを出力することと、
前記第2の電気信号をサンプリングして第2の複数のサンプルセットを出力することと
を含み、
前記サンプルデータを処理することが、
前記第1の複数のサンプルセットから第1の最大ピーク・トゥ・ピーク値を決定すること、または
第2の複数のサンプルセットから第2の最大ピーク・トゥ・ピーク値を決定すること、または
前記第1の複数のサンプルセットから統計周波数値を決定すること、または
前記第1の複数のサンプルセットおよび前記第2の複数のサンプルセットから統計位相値を決定すること、または
前記決定のうちの2つ以上の組み合わせ
を含む、方法。
【請求項6】
請求項5記載の方法であって、
前記第1の電気信号のサンプリングと前記第2の電気信号のサンプリングが、クロック信号に同期して実行され、前記第1の最大ピーク・トゥ・ピーク値の決定、前記第2の最大ピーク・トゥ・ピーク値の決定、前記統計周波数値の決定、および前記統計位相値の決定が、前記クロック信号に同期して実行される、方法。
【請求項7】
請求項5に記載の方法であって、
前記サンプルデータの処理が、前記第1の最大ピーク・トゥ・ピーク値、前記第2の最大ピーク・トゥ・ピーク値、前記統計周波数値、および前記統計位相値を決定した後に、前記第1の複数のサンプルセットおよび前記第2の複数のサンプルセットのその後の使用
を不可能にすることを含む、方法。
【請求項8】
請求項5に記載の方法であって、
前記圧縮データの送信が、前記第1の最大ピーク・トゥ・ピーク値、前記第2の最大ピーク・トゥ・ピーク値、前記統計周波数値、および前記統計位相値のうちの1つまたは複数に基づいて前記プラズマツールを制御するための前記コントローラに、前記第1の最大ピーク・トゥ・ピーク値、前記第2の最大ピーク・トゥ・ピーク値、前記統計周波数値、および前記統計位相値を伝送することを含む、方法。
【請求項9】
請求項5に記載の方法であって、
前記第1のRF信号が、前記RFジェネレータからRFケーブルを介してインピーダンス整合回路に送信され、
前記第2のRF信号が、プラズマチャンバから前記インピーダンス整合回路を介して前記RFジェネレータに向かって反射される、
方法。
【請求項10】
請求項5に記載の方法であって、
前記第1のRF信号が、前記RFジェネレータからRFケーブルを介してインピーダンス整合回路に送信され、
前記第2のRF信号が、前記インピーダンス整合回路からRF伝送線を介してプラズマチャンバに送信される、
方法。
【請求項11】
請求項5に記載の方法であって、
前記サンプルデータの処理が、前記第1の複数のサンプルセットのそれぞれについて、最大値と最小値を決定することを含み、
前記第1の最大ピーク・トゥ・ピーク値が、前記第1の複数のサンプルセットから決定された最大値と最小値から決定され、
前記サンプルデータの処理が、前記第2の複数のサンプルセットのそれぞれについて、最大値と最小値を決定することを含み、
前記第2の最大ピーク・トゥ・ピーク値が、前記第2の複数のサンプルセットから決定された最大値と最小値から決定される、方法。
【請求項12】
請求項5に記載の方法であって、前記サンプルデータの処理が、
前記第1の複数のサンプルセットのそれぞれについて、最大値と最小値を決定することと、
前記第1の複数のサンプルセットのそれぞれについて、前記最大値に関連付けられた時間および前記最小値に関連付けられた時間を決定することと、を含み、前記統計周波数値が、前記第1の複数のサンプルセットの前記最大値それぞれに関連付けられた各時間に基づき、かつ前記第1の複数のサンプルセットの前記最小値それぞれに関連付けられた各時間に基づいて決定される、方法。
【請求項13】
請求項5に記載の方法であって、前記サンプルデータの処理が、
前記第1の複数のサンプルセットのそれぞれについて、最大値と最小値を決定することと、
前記第2の複数のサンプルセットのそれぞれについて、最大値と最小値を決定することと、
前記第1の複数のサンプルセットのそれぞれについて、前記最大値に関連付けられた時間および前記最小値に関連付けられた時間を決定することと、
前記第2の複数のサンプルセットのそれぞれについて、前記最大値に関連付けられた時間と前記最小値に関連付けられた時間を決定することとを含み、
前記統計位相値が、前記第1の複数のサンプルセットの前記最大値それぞれに関連付けられた各時間、前記第2の複数のサンプルセットの前記最大値それぞれに関連付けられた各時間、前記第1の複数のサンプルセットの前記最小値それぞれに関連付けられた各時間、および前記第2の複数のサンプルセットの前記最小値それぞれに関連付けられた各時間から決定される、方法。
【請求項14】
請求項5に記載の方法であって、前記サンプルデータの処理が、
前記第1の複数のサンプルセットのそれぞれについて、正のゼロ交差に関連付けられた時間と負のゼロ交差に関連付けられた時間を決定することを含み、
前記統計周波数値が、前記第1の複数のサンプルセットの前記正のゼロ交差それぞれに関連付けられた各時間に基づき、かつ前記第1の複数のサンプルセットの前記負のゼロ交差それぞれに関連付けられた各時間に基づいて決定される、方法。
【請求項15】
請求項5に記載の方法であって、前記サンプルデータの処理が、
前記第1の複数のサンプルセットのそれぞれについて、正のゼロ交差に関連付けられた時間と負のゼロ交差に関連付けられた時間を決定することと、
前記第2の複数のサンプルセットのそれぞれについて、正のゼロ交差に関連付けられた時間と負のゼロ交差に関連付けられた時間を決定することとを含み、
前記統計位相値が、前記第1の複数のサンプルセットの前記正のゼロ交差それぞれに関連付けられた各時間、前記第2の複数のサンプルセットの前記正のゼロ交差それぞれに関連付けられた各時間、前記第1の複数のサンプルセットの前記負のゼロ交差それぞれに関連付けられた各時間、および前記第2の複数のサンプルセットの前記負のゼロ交差それぞれに関連付けられた各時間から決定される、方法。
【請求項16】
請求項1に記載の方法であって、前記プラズマツールを、
前記圧縮データに基づいて決定されるプラズマ制御状態、または
前記圧縮データに基づいて決定されるRF遷移シーケンス、または
前記圧縮データに基づいて決定されるRFトリガーイベント、または
前記圧縮データに基づいて決定されるRFプリカーサーイベント、または
前記圧縮データに基づいて決定されるRF障害イベント、または
それらの組み合わせ
に基づいて制御し、
前記プラズマ制御状態、または前記RFトリガーイベント、またはプラズマチャンバ内の圧力の制御、または前記プラズマチャンバ内のガス流の制御、またはインピーダンス整合回路の制御、または前記プラズマチャンバ内の温度の制御、または前記プラズマチャンバ内の制御もしくはギャップ、またはそれらの組み合わせによって、ウエハ処理の利点の達成を促進する、方法。
【請求項17】
請求項1に記載の方法であって、前記1つまたは複数のセンサのうちの1つがインピーダンス整合回路の出力と前記電極との間に結合され、前記インピーダンス整合回路が前記RFジェネレータの出力に結合される、方法。
【請求項18】
請求項1に記載の方法であって、前記1つまたは複数のセンサのうちの1つが、前記RFジェネレータ内に配置される、方法。
【請求項19】
請求項1に記載の方法であって、前記1つまたは複数のセンサのうちの1つが、前記RFジェネレータに結合されたマッチ内に配置される、方法。
【請求項20】
データを圧縮するための圧縮統合システムであって、
RFジェネレータの出力からプラズマツールの電極までの、前記プラズマツールの無線周波数(RF)伝送路に結合された1つまたは複数のセンサから複数の測定信号を受信し、前記複数の測定信号をアナログ形式からデジタル形式へ変換することによってサンプルデータとするように構成されたアナログ/デジタルコンバータと、
前記アナログ/デジタルコンバータに結合され、前記サンプルデータを処理することによって圧縮データを出力するように構成されたデータ圧縮ユニットと、
前記データ圧縮ユニットに結合され、前記プラズマツールを制御するためのコントローラに前記圧縮データを送信するように構成されたトランスミッタと
を含む、圧縮統合システム。
【請求項21】
請求項20に記載の圧縮統合システムであって、前記複数の測定信号を受信するために、前記アナログ/デジタルコンバータが、
第1のRF信号に関連付けられた第1のパラメータを表す第1の電気信号を受信し、
第2のRF信号に関連付けられた第2のパラメータを表す第2の電気信号を受信するように構成され、
前記複数の測定信号を変換するために、前記アナログ/デジタルコンバータが、
前記第1の電気信号をサンプリングして、第1のマスタサンプルセットと第2のマスタサンプルセットとを含む第1の複数のサンプルセットを出力し、
前記第2の電気信号をサンプリングして、第1のスレーブサンプルセットと第2のスレーブサンプルセットとを含む第2の複数のサンプルセットを出力するように構成され、
前記サンプルデータを処理するために、前記データ圧縮ユニットが、
前記第1のマスタサンプルセットおよび前記第2のマスタサンプルセットのうち、前記第1のマスタサンプルセットが最も大きい振れ幅を有すると決定し、
前記第1のスレーブサンプルセットが前記第1のマスタサンプルセットに対応すると識別し、
前記第1のスレーブサンプルセットから、最大の大きさ、最小の大きさ、正の交差の時間、および負の交差の時間のうちの少なくとも1つを決定するように構成された、圧縮統合システム。
【請求項22】
請求項20に記載の圧縮統合システムであって、前記複数の測定信号を受信するために、前記アナログ/デジタルコンバータが、
第1のRF信号に関連付けられた第1のパラメータを表す第1の電気信号を受信し、
第2のRF信号に関連付けられた第2のパラメータを表す第2の電気信号を受信するように構成され、
前記複数の測定信号を変換するために、前記アナログ/デジタルコンバータが、
前記第1の電気信号をサンプリングして、第1のマスタサンプルセットと第2のマスタサンプルセットとを含む第1の複数のサンプルセットを出力し、
前記第2の電気信号をサンプリングして、第1のスレーブサンプルセットと第2のスレーブサンプルセットとを含む第2の複数のサンプルセットを出力するように構成され、
前記サンプルデータを処理するために、前記データ圧縮ユニットが、
前記第1のマスタサンプルセットおよび前記第2のマスタサンプルセットのうち、前記第1のマスタサンプルセットが最も大きい振れ幅を有すると決定するか、または
前記第1のマスタサンプルセットの最大の大きさを決定するか、または
前記第1のマスタサンプルセットの最大の大きさと前記第2のマスタサンプルセットの最大の大きさから、前記第2のマスタサンプルセットの最大の大きさが最も大きいと決定するか、または
前記第1のマスタサンプルセットの最小の大きさを決定するか、または
前記最小の大きさが、前記第1のマスタサンプルセットの最小の大きさおよび前記第2のマスタサンプルセットの最小の大きさのうちの最小値であると決定するか、または
前記第1のマスタサンプルセット内の正の交差の位置を決定するか、または
前記第1のマスタサンプルセット内の負の交差の位置を決定するか、または
前記第1のマスタサンプルセットおよび前記第2のマスタサンプルセットの正と負の交差の間の差の合計を決定するか、または
前記決定の2つ以上の組み合わせを行うように構成された、圧縮統合システム。
【請求項23】
請求項20に記載の圧縮統合システムであって、前記複数の測定信号を受信するために、前記アナログ/デジタルコンバータが、
第1のRF信号に関連付けられた第1のパラメータを表す第1の電気信号を受信し、
第2のRF信号に関連付けられた第2のパラメータを表す第2の電気信号を受信するように構成され、
前記複数の測定信号を変換するために、前記アナログ/デジタルコンバータが、
前記第1の電気信号をサンプリングして、第1のマスタサンプルセットと第2のマスタサンプルセットとを含む第1の複数のサンプルセットを出力し、
前記第2の電気信号をサンプリングして、第1のスレーブサンプルセットと第2のスレーブサンプルセットとを含む第2の複数のサンプルセットを出力するように構成され、
前記サンプルデータを処理するために、前記データ圧縮ユニットが、
前記第1のスレーブサンプルセットおよび前記第2のスレーブサンプルセットのうち、前記第1のスレーブサンプルセットが最も大きい振れ幅を有すると決定するか、または
前記第1のスレーブサンプルセットの最大の大きさを決定するか、または
前記第1のスレーブサンプルセットの最大の大きさおよび前記第2のスレーブサンプルセットの最大の大きさから、前記第2のスレーブサンプルセットの最大の大きさが最も大きいと決定するか、または
前記第1のスレーブサンプルセットの最小の大きさを決定するか、または
前記最小の大きさが、前記第1のスレーブサンプルセットの最小の大きさおよび前記第2のスレーブサンプルセットの最小の大きさのうちの最小値であると決定するか、または
前記第1のスレーブサンプルセット内の正の交差の位置を決定するか、または
前記第1のスレーブサンプルセット内の負の交差の位置を決定するか、または
前記第1のスレーブサンプルセットおよび前記第2のスレーブサンプルセットの正と負の交差の間の差の合計を決定するか、または
前記決定の2つ以上の組み合わせを行うように構成された、圧縮統合システム。
【請求項24】
請求項20に記載の圧縮統合システムであって、前記アナログ/デジタルコンバータが、前記複数の測定信号を、アナログ形式からデジタル形式へクロック信号に同期して変換するように構成される、圧縮統合システム。
【請求項25】
請求項20に記載の圧縮統合システムであって、
前記複数の測定信号を受信するために、前記アナログ/デジタルコンバータが、
第1のRF信号に関連付けられた第1のパラメータを表す第1の電気信号を受信し、
第2のRF信号に関連付けられた第2のパラメータを表す第2の電気信号を受信するように構成され、
前記複数の測定信号を変換するために、前記アナログ/デジタルコンバータが、
前記第1の電気信号をサンプリングして第1の複数のサンプルセットを出力し、
前記第2の電気信号をサンプリングして第2の複数のサンプルセットを出力するように構成され、
前記データを処理するために、前記データ圧縮ユニットが、
前記第1の複数のサンプルセットから第1の最大ピーク・トゥ・ピーク値を決定するか、または
前記第2の複数のサンプルセットから第2の最大ピーク・トゥ・ピーク値を決定するか、または
前記第1の複数のサンプルセットから統計周波数値を決定するか、または
前記第1の複数のサンプルセットおよび前記第2の複数のサンプルセットから統計位相値を決定するか、または
前記決定の2つ以上の組み合わせを行うように構成された、圧縮統合システム。
【請求項26】
請求項20に記載の圧縮統合システムであって、前記データ圧縮ユニットが、前記第1の最大ピーク・トゥ・ピーク値、前記第2の最大ピーク・トゥ・ピーク値、前記統計周波数値、および前記統計位相値を決定した後に、前記第1の複数のサンプルセットおよび前記第2の複数のサンプルセットのその後の使用を不可能にするように構成された、圧縮統合システム。
【請求項27】
請求項20に記載の圧縮統合システムであって、前記圧縮データが、前記第1の最大ピーク・トゥ・ピーク値、前記第2の最大ピーク・トゥ・ピーク値、前記統計周波数値、および前記統計位相値を含む、圧縮統合システム。
【請求項28】
請求項20に記載の圧縮統合システムであって、
前記第1のRF信号が、前記RFジェネレータからRFケーブルを介してインピーダンス整合回路に送信され、
前記第2のRF信号が、プラズマチャンバから前記インピーダンス整合回路を介して前記RFジェネレータに向かって反射される、圧縮統合システム。
【請求項29】
請求項20に記載の圧縮統合システムであって、
前記第1のRF信号が、前記RFジェネレータからRFケーブルを介してインピーダンス整合回路に送信され、
前記第2のRF信号が、前記インピーダンス整合回路からRF伝送線を介してプラズマチャンバに送信される、圧縮統合システム。
【請求項30】
請求項20に記載の圧縮統合システムであって、
前記サンプルデータを処理するために、前記データ圧縮ユニットが、前記第1の複数のサンプルセットのそれぞれについて、最大値と最小値を決定するように構成され、
前記第1の最大ピーク・トゥ・ピーク値が、前記第1の複数のサンプルセットから決定された前記最大値と前記最小値から決定され、
前記サンプルデータを処理するために、前記データ圧縮ユニットが、前記第2の複数のサンプルセットのそれぞれについて、最大値と最小値を決定するように構成され、
前記第2の最大ピーク・トゥ・ピーク値が、前記第2の複数のサンプルセットから決定された前記最大値と前記最小値から決定される、圧縮統合システム。
【請求項31】
請求項20に記載の圧縮統合システムであって、
前記サンプルデータを処理するために、前記データ圧縮ユニットが、
前記第1の複数のサンプルセットのそれぞれについて、最大値と最小値を決定し、
前記第1の複数のサンプルセットのそれぞれについて、前記最大値に関連付けられた時間および前記最小値に関連付けられた時間を決定するように構成され、
前記統計周波数値が、前記第1の複数のサンプルセットの前記最大値それぞれに関連付けられた各時間に基づき、かつ前記第1の複数のサンプルセットの前記最小値それぞれに関連付けられた各時間に基づいて決定される、圧縮統合システム。
【請求項32】
請求項20に記載の圧縮統合システムであって、
前記サンプルデータを処理するために、前記データ圧縮ユニットが、
前記第1の複数のサンプルセットのそれぞれについて、最大値および最小値を決定し、
前記第1の複数のサンプルセットのそれぞれについて、前記最大値に関連付けられた時間および前記最小値に関連付けられた時間を決定し、
前記第2の複数のサンプルセットのそれぞれについて、最大値および最小値を決定し、
前記第2の複数のサンプルセットのそれぞれについて、前記最大値に関連付けられた時間および前記最小値に関連付けられた時間を決定するように構成され、
前記統計位相値が、前記第1の複数のサンプルセットの前記最大値それぞれに関連付けられた各時間、前記第2の複数のサンプルセットの前記最大値それぞれに関連付けられた各時間、前記第1の複数のサンプルセットの前記最小値それぞれに関連付けられた各時間、および前記第2の複数のサンプルセットの前記最小値それぞれに関連付けられた各時間から決定される、圧縮統合システム。
【請求項33】
請求項20に記載の圧縮統合システムであって、
前記サンプルデータを処理するために、前記データ圧縮ユニットが、前記第1の複数のサンプルセットのそれぞれについて、正のゼロ交差に関連付けられた時間および負のゼロ交差に関連付けられた時間を決定するように構成され、
前記統計周波数値が、前記第1の複数のサンプルセットの前記正のゼロ交差それぞれに関連付けられた各時間に基づき、かつ前記第1の複数のサンプルセットの前記負のゼロ交差それぞれに関連付けられた各時間に基づいて決定される、圧縮統合システム。
【請求項34】
請求項20に記載の圧縮統合システムであって、
前記サンプルデータを処理するために、前記データ圧縮ユニットが、
前記第1の複数のサンプルセットのそれぞれについて、正のゼロ交差に関連付けられた時間および負のゼロ交差に関連付けられた時間を決定し、
前記第2の複数のサンプルセットのそれぞれについて、正のゼロ交差に関連付けられた時間および負のゼロ交差に関連付けられた時間を決定するように構成され、
前記統計位相値が、前記第1の複数のサンプルセットの前記正のゼロ交差それぞれに関連付けられた各時間、前記第2の複数のサンプルセットの前記正のゼロ交差それぞれに関連付けられた各時間、前記第1の複数のサンプルセットの前記負のゼロ交差それぞれに関連付けられた各時間、および前記第2の複数のサンプルセットの前記負のゼロ交差それぞれに関連付けられた各時間から決定される、圧縮統合システム。
【請求項35】
データ圧縮のためのシステムであって、
RF経路に結合され、前記RF経路に第1のRF信号を供給するように構成された無線周波数(RF)ジェネレータと、
前記RF経路に結合され、前記第1のRF信号と第2のRF信号を感知することによって複数の測定信号を出力するように構成されたたRFセンサと、
前記RFセンサに結合されたデータ統合システムであって、
前記複数の測定信号をアナログ形式からデジタル形式へ変換することによってサンプルデータとし、
前記サンプルデータを処理することによって圧縮データを出力し、
前記圧縮データを、前記システムを制御するためのコントローラに送信するように構成されたデータ統合システムと
を含む、システム。
【請求項36】
請求項35に記載のシステムであって、複数の測定信号を受信するために、前記データ統合システムが、
前記RF信号に関連付けられた第1のパラメータを表す第1の電気信号を受信し、
前記RF信号に関連付けられた第2のパラメータを表す第2の電気信号を受信するように構成され、
前記複数の測定信号を変換するために、前記データ統合システムが、
前記第1の電気信号をサンプリングして第1の複数のサンプルセットを出力し、
前記第2の電気信号をサンプリングして第2の複数のサンプルセットを出力するように構成され、
前記データを処理するために、前記データ統合システムが、
前記第1の複数のサンプルセットから第1の最大ピーク・トゥ・ピーク値を決定するか、または
第2の複数のサンプルセットから第2の最大ピーク・トゥ・ピーク値を決定するか、または
前記第1の複数のサンプルセットから統計周波数値を決定するか、または
前記第1の複数のサンプルセットおよび前記第2の複数のサンプルセットから統計位相値を決定するか、または
前記決定の2つ以上の組み合わせを行うように構成された、システム。
【請求項37】
請求項36に記載のシステムであって、
前記データ統合システムが、前記第1の最大ピーク・トゥ・ピーク値、前記第2の最大ピーク・トゥ・ピーク値、前記統計周波数値、および前記統計位相値を決定した後に、前記第1の複数のサンプルセットおよび前記第2の複数のサンプルセットのその後の使用を不可能にするように構成された、システム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示に記載された実施形態は、プラズマツールにおけるセンサデータ圧縮に関する。
【背景技術】
【0002】
ここで提供される背景の説明は、本開示の背景事情をおおまかに提示することを目的とする。現在記名されている発明者らの研究は、出願時に別の形で先行技術としての資格を有し得ない明細書の態様と同様に、この背景技術の欄に記載される範囲で、明示または暗示を問わず本開示に対する先行技術として認められない。
【0003】
プラズマツールでは、1つまたは複数の高周波(RF)ジェネレータがインピーダンス整合ネットワークに結合される。インピーダンス整合ネットワークはプラズマチャンバに結合される。RF信号はRFジェネレータからインピーダンス整合ネットワークに供給される。インピーダンス整合ネットワークは、RF信号を受信すると、プラズマチャンバにRF信号を出力する。また、複数のプロセスガスがプラズマチャンバ内のギャップに供給される。RF信号がインピーダンス整合ネットワークからプラズマチャンバに供給され、プロセスガスが供給されると、プラズマチャンバ内でウエハが処理される。
【0004】
ウエハの処理中には、大量のデータが収集される。
【0005】
本開示に記載された実施形態は、このような背景事情で生じる。
【発明の概要】
【0006】
本開示の実施形態により、プラズマツールにおけるセンサデータ圧縮が提供される。本実施形態は、例えば、コンピュータ可読媒体上のプロセス、装置、システム、ハードウェアの一部、または方法等の多数の手段で実施可能であることを理解されたい。様々な実施形態を以下で説明する。
【0007】
ある実施形態では、データを圧縮する方法について説明する。この方法は、プラズマツールの無線周波数(RF)伝送路に結合された1つまたは複数のセンサから複数の測定信号を受信することを含む。RFジェネレータの出力からプラズマチャンバの電極までがRF伝送路である。この方法は、複数の測定信号をアナログ形式からデジタル形式へ変換することでサンプルデータとし、そのデータを処理して当該データの量を削減することを含む。このデータの量は、ウエハ処理の最適化のための重要情報を維持したまま圧縮される。この方法は、前記圧縮データを、前記プラズマツールを制御するためのコントローラに送信することを含む。重要情報の例としては、後述するマスタ最大ピーク・トゥ・ピーク値、スレーブ最大ピーク・トゥ・ピーク値、マスタ平均周波数値、および平均位相値等が挙げられる。
【0008】
ある実施形態では、データを圧縮するための圧縮統合システムについて説明する。この圧縮統合システムは、プラズマツールのRF伝送路に結合された1つまたは複数のセンサから複数の測定信号を受信するアナログ/デジタルコンバータを含む。このアナログ/デジタルコンバータは、複数の測定信号をアナログ形式からデジタル形式へ変換してサンプルデータとする。この圧縮統合システムは、アナログ/デジタルコンバータに結合されたデータ圧縮ユニットを含む。このデータ圧縮ユニットは、データを処理してデータの量を削減する。データの量は圧縮されて、圧縮データが出力される。この圧縮統合システムは、データ圧縮ユニットに結合されたトランスミッタを含む。このトランスミッタは圧縮データを、プラズマツールを制御するためのコントローラに送信する。
【0009】
ある実施形態では、データを圧縮するためのシステムが説明される。このシステムは、RF経路に結合されるRFジェネレータを含む。RFジェネレータは、第1のRF信号をRF経路に供給する。このシステムは、RF経路に結合されたRFセンサを含む。このRFセンサは、第1のRF信号と第2のRF信号とを感知して複数の測定信号を出力する。このシステムは、RFセンサに結合されたデータ統合システムを含む。このデータ統合システムは、複数の測定信号を受信する。このデータ統合システムは、複数の測定信号をアナログ形式からデジタル形式へ変換してサンプルデータとし、このデータを処理して、同期しながらデータの量を削減する。例えば、データの量を圧縮して、圧縮データをクロック信号に同期して出力する。このデータ統合システムは、圧縮データを、システムを制御するためのコントローラに送信する。
【0010】
プラズマツールにおけるセンサデータ圧縮のための本明細書に記載されたシステムおよび方法のいくつかの利点は、プラズマツールを制御するために使用されるデータの量を削減することを含む。RFジェネレータは、多くの電圧サイクルを持つRF信号を供する。また、RF信号はRFジェネレータに向かって反射し、反射したRF信号は多くの電圧サイクルを持つ。供給され反射されたRF信号で表される大量のデータ量が測定される。大量のデータは、そのデータのうちのどの部分をプラズマツールの制御に用いるかを決定する際に手に負えない。本明細書に記載されたシステムおよび方法は、大量のデータを、手に負える量であって、かつ大量のデータを代表する量に削減するための制御された方法を提供する。一例として、圧縮されたデータの量は、マスタ最大ピーク・トゥ・ピーク値、スレーブ最大ピーク・トゥ・ピーク値、マスタ平均周波数値、および平均位相値を含み、圧縮された量のデータは、大量のデータから生成される。
【0011】
本明細書に記載されたプラズマツールにおけるセンサデータ圧縮のためのシステムおよび方法の他の利点は、センサデータの並列処理を含む。大量のデータを複数のレジスタに格納し、並列に処理することで、マスタ最大ピーク・トゥ・ピーク値とスレーブ最大ピーク・トゥ・ピーク値を算出する。この並列処理により、大量のデータを処理する速度が上昇する。
【0012】
プラズマツールにおけるセンサデータ圧縮のための本明細書に記載のシステムおよび方法のさらに別の利点として、大量のデータが、圧縮された量のデータを決定するために処理された後に、メモリデバイスに格納される必要がないことが挙げられる。これにより、データ保存の負担が軽減されるとともに、有効ビット数(デジタル測定ごとのENOB)を増やすことでデータの整合性が向上する。例えば、上述した重要情報を生成し、コントローラに提供して処理させる。
【0013】
他の態様は、添付の図面と併せてなされる以下の詳細な説明から明らかになるであろう。
【図面の簡単な説明】
【0014】
実施形態は、添付の図面と併せてなされる以下の説明を参照することによって理解される。
【0015】
図1A図1Aは、無線周波数(RF)センサから受信したデータを圧縮するためのデータ圧縮ユニット(DCU)を説明するための、システムの一実施形態の図である。
【0016】
図1B図1Bは、データ圧縮が、複数のRFセンサから受信したデータを圧縮するために使用されることを説明するための、システムの一実施形態の図である。
【0017】
図1C-1】図1C-1は、データ圧縮ユニットが、変圧器結合プラズマ(TCP)コイルに結合されているマッチに結合されたRFセンサから受信したデータを圧縮するために使用されることを説明するための、システムの一実施形態の図である。
【0018】
図1C-2】図1C-2は、マッチ内のRFセンサの使用を説明するための、システムの一実施形態の図である。
【0019】
図1D図1Dは、データ圧縮ユニットが、複数のTCPコイルに結合された異なるマッチに結合された複数のRFセンサから受信したデータを圧縮するために使用されることを説明するための、システムの一実施形態の図である。
【0020】
図1E-1】図1E-1は、データ圧縮ユニットが、マッチの出力に結合された複数のRFセンサから受信したデータを圧縮するために使用されることを説明するための、システムの一実施形態の図である。
【0021】
図1E-2】図1E-2は、プラズマチャンバ内のRFセンサの使用を説明するための、システムの一実施形態の図である。
【0022】
図1F図1Fは、アナログ/デジタルコンバータ(ADC)、DCU、およびデータトランスミッタがRFセンサ内に統合されていることを説明するための、RFセンサの一実施形態の図である。
【0023】
図1G図1Gは、圧縮データを分析コントローラに伝送する代わりに、データ統合システム(DIS)からプロセスコントローラに伝送して処理することを説明するための、システムの一実施形態の図である。
【0024】
図1H図1Hは、マッチレスプラズマソース(MPS)を有するRFセンサの使用を説明するための、符号171の実施形態の図である。
【0025】
図2図2は、DCUの一実施形態の図である。
【0026】
図3A図3Aは、マスタ最大(max)ピーク・トゥ・ピーク(PTP)値MMaxPTPを決定するためにマスタ最大ピーク・トゥ・ピーク決定器によって実行される方法の実施形態を説明するための図である。
【0027】
図3B図3Bは、スレーブ最大ピーク・トゥ・ピーク値SMaxPTPを決定するためにスレーブ最大PTP決定器によって実行される方法の一実施形態を説明するための図である。
【0028】
図3C図3Cは、マスタ平均周波数MAVFを決定するためにマスタ平均周波数決定器によって実行される方法の一実施形態を説明するための図である。
【0029】
図3D図3Dは、平均位相φを決定するために平均位相決定器によって実行される方法の一実施形態を説明するための図である。
【0030】
図3E図3Eは、すべてのADCチャネル間で同期されたマスタ平均周波数決定器の一実施形態の図である。
【0031】
図3F-1】図3F-1は、最大振幅と最小振幅を有するマスタサンプルデータグループと、それに対応するスレーブサンプルデータグループとを説明するためのグラフの一実施形態である。
【0032】
図3F-2】図3F-2は、スレーブサンプルデータグループとマスタサンプルデータグループとが対応しないことを説明するためのグラフの一実施形態である。
【0033】
図4A図4Aは、圧縮データに基づくRFジェネレータおよび/またはインピーダンス整合ネットワークの制御を説明するための、システムの一実施形態の図である。
【0034】
図4B図4Bは、圧縮データに基づく下部電極とTCPコイルとの間のギャップの制御を説明するための、システムの一実施形態の図である。
【0035】
図4C図4Cは、プラズマチャンバ内の圧力および/またはガス流の圧縮データに基づく制御を説明するための、システムの一実施形態の図である。
【0036】
図4D図4Dは、プラズマチャンバ内の温度の圧縮データに基づく制御を説明するための、システムの一実施形態の図である。
【0037】
図5図5は、マッチレスプラズマソースの詳細を説明するための、システムの一実施形態の図である。
【発明を実施するための形態】
【0038】
以下の実施形態では、プラズマツールにおけるセンサデータ圧縮のためのシステムおよび方法について説明する。本実施形態は、これらの具体的な詳細の一部またはすべてが欠けていても実施し得ることは明らかであろう。他の例では、本実施形態を不必要に不明瞭にしないように、周知のプロセス操作を詳細には説明していない。
【0039】
図1Aは、データ圧縮ユニット(DCU)132を説明するための、システム100の一実施形態の図である。システム100のようなプラズマシステムを、本明細書ではプラズマツールと称する場合がある。システム100は、高周波(RF)ジェネレータ(RFG)109、マッチ111、プラズマチャンバ113、RFセンサ106、圧縮統合システム(DIS)128、分析コントローラ114、およびプロセスコントローラ116を含む。プラズマチャンバ113は、変圧器結合プラズマ(TCP)コイルあるいは基板支持体の下部電極等の電極115を含む。基板支持体の例としては、チャックが挙げられる。DIS128は、アナログ/デジタルコンバータ(ADC)130と、DCU132と、データトランスミッタ(Xmit)134とを含む。分析コントローラ114は、プロセッサ101と、メモリデバイス103と、データトランシーバ(Xcvr)125とを含む。プロセスコントローラ116は、プロセッサ105と、メモリデバイス107と、データトランシーバ127とを含む。システム100は、RFケーブル124とRF伝送線126とをさらに含む。
【0040】
本明細書で使用されるRFジェネレータの例としては、100キロヘルツ(kHz)の動作周波数を有するRFジェネレータ、または400kHzの動作周波数を有するRFジェネレータ、または1~2メガヘルツ(MHz)の動作周波数を有するRFジェネレータ、または13.56MHzの動作周波数を有するRFジェネレータ、または27MHzの動作周波数を有するRFジェネレータ、または60MHzの動作周波数を有するRFジェネレータが挙げられる。
【0041】
本明細書で使用するマッチの例としては、インピーダンス整合ネットワークまたはインピーダンス整合回路が挙げられる。例えば、マッチは、互いに接続された1つまたは複数のコンデンサ、1つまたは複数のインダクタ、1つまたは複数の抵抗、またはそれらの組み合わせ等の電気回路部品のネットワークを含む。例示すると、マッチは、複数のシャントコンデンサ、複数のシリーズコンデンサ、およびインダクタを含む。別の例としては、マッチにおいて、電気部品のうち任意の2つが互いに直列または並列に接続される。
【0042】
本明細書で使用されるプラズマチャンバの例としては、容量結合型プラズマ(CCP)チャンバまたは誘導結合型プラズマ(ICP)チャンバが挙げられる。本明細書で使用される電極の例としては、チャックの下部電極、または上部電極、またはRFコイル、またはTCPコイルが挙げられる。
【0043】
また、本明細書で使用されるRFセンサの例としては、複素電圧・電流(VI)プローブ、または方向性結合器、または複素電流センサ、または複素電圧センサ、またはインピーダンスセンサが挙げられる。複素VIプローブは、電圧の大きさ、電流の大きさ、および電圧と電流の間の位相を含む複素電圧・電流を測定する。複素電流センサは、電流の大きさと電流の位相を含む複素電流を測定する。複素電圧センサは、電圧の大きさと電圧の位相を含む複素電圧を測定する。方向性結合器は、供給電力と反射電力を測定する電力センサの一例である。本明細書では、反射電力を逆電力、供給電力を順電力と称する場合がある。供給電力は、RFジェネレータ109で発電されマッチ111に供給されるRF信号118の電力である。反射電力は、プラズマチャンバ113から、RF伝送線126と、マッチ111と、RFケーブル124とを介してRFジェネレータ109に向かって反射されるRF信号120の電力である。電圧センサの例としては、位相マグが挙げられる。位相マグは、電圧の大きさとその電圧の位相を測定する。
【0044】
本明細書で使用されるRF伝送線の例としては、RFシリンダと、RFロッドをRFシリンダに結合する1つまたは複数のRFストラップが挙げられる。RFシリンダはRF伝送線の一部である。RFシリンダを有するRF伝送線は、RF伝送線が下部電極にマッチを結合する場合に使用される。この例では、RF伝送線のRFロッドが絶縁体材料で囲まれ、絶縁体材料の周囲がRF伝送線のRFシースで囲まれる。RF伝送線の他の例として、RFロッドやRFストラップがある。この例では、RF伝送線のRFロッドは絶縁体材料で囲まれ、絶縁体材料の周囲がRF伝送線のRFシースで囲まれる。RF伝送線には、RFシリンダは含まれない。RFシリンダ以外のRF伝送線は、マッチを上部電極や、TCPコイルや、またはRFコイルに結合する際に使用される。一部のRFストラップはRFロッドをマッチに結合させ、残りのRFストラップは、RFロッドをTCPコイルまたはRFコイルに結合した。RF伝送線のさらに別の例として、RFロッドとRFシースが挙げられる。この例では、RF伝送線のRFロッドは絶縁体材料で囲まれ、絶縁体材料の周囲がRFシースで囲まれる。
【0045】
DIS128の例としては、特定用途向け集積回路(ASIC)またはプログラム可能論理回路(PLD)があり、これはフィールド・プログラマブル・ゲート・アレイ(FPGA)とすることができる。例示すると、ADC130、DCU132、およびデータトランスミッタ134はそれぞれ、プログラム可能論理ブロックである。別の例としては、DCU132は複数の論理ゲートから作られ、これらはプログラム可能スイッチを介して相互接続される。さらに別の例としては、ADC130、DCU132、およびデータトランスミッタ134はそれぞれ、プロセッサまたはマイクロコントローラである。データトランスミッタ134の例としては、汎用非同期送受信機(UART)、パラレルデータトランスミッタ、イーサネット装置、およびユニバーサル・シリアル・バス(USB)通信装置が挙げられる。UARTは、データをシリアルに(例えば、1度に1ビットずつ)送信する。パラレルデータトランスミッタは、データをパラレルに(例えば、複数ビットを同時に)送信する。USB通信装置は、データにUSBプロトコルを適用した後に当該データを送信する。イーサネットデバイスは、データにイーサネットプロトコルを適用した後に当該データを送信する。イーサネットプロトコルは、データからデータパケットを生成するために適用される。
【0046】
本明細書で使用されるデータトランシーバの例としては、UART、パラレルデータトランシーバ、イーサネットトランシーバ、およびUSB通信装置が挙げられる。UARTは、シリアル方式でデータを送信または受信する。パラレルデータトランシーバは、パラレル方式でデータを送信または受信する。USB通信装置は、データにUSBプロトコルを適用してデータパケットを生成した後にデータを送信したり、またはデータパケットを受信してデータパケットにUSBプロトコルを適用してデータパケットからデータを抽出したりする。イーサネットトランシーバは、データにイーサネットプロトコルを適用してデータパケットを生成した後にデータを送信し、受信したデータパケットにイーサネットプロトコルを適用してデータパケットからデータを抽出する。
【0047】
プロセッサの例としては、中央処理装置(CPU)、コントローラ、マイクロコントローラ、マイクロプロセッサ、ASIC、およびPLDが挙げられる。本明細書で使用するメモリデバイスの例としては、読み出し専用メモリ(ROM)およびランダム・アクセス・メモリ(RAM)が挙げられる。例示すると、本明細書で使用されるメモリデバイスは、フラッシュメモリまたは独立したディスクの冗長アレイである。
【0048】
RFジェネレータ109は、マッチ111の入力119にRFケーブル124を介して結合される出力117を有し、マッチ111の出力121は、電極115にRF伝送線126を介して結合される。RF伝送線126は、マッチ111の出力121を電極115の入力143に結合される。RF経路108は、RFケーブル124と、マッチ111と、RF伝送線126とを含む。RF経路108は、RFジェネレータ109の出力117から電極115の入力143まで延びる。
【0049】
RFセンサ106は、RF経路108上の任意のポイントで結合される。例えば、RFセンサ106は、RFジェネレータ109の出力117、またはマッチ111の入力119、またはRFケーブル124上のポイント123、またはマッチの出力121、またはRF伝送線126上のポイント、またはマッチ111の電気回路部品に結合される。例示すると、RFケーブル124は、方向性結合器の入力ポートから方向性結合器内のチャネルを経由して方向性結合器の出力ポートまで通る。別の例としては、RFケーブル124は、VIプローブの入力ポートからVIプローブ内のチャネルを経由してVIプローブの出力ポートまで通る。
【0050】
RFセンサ106は、ADC130に結合された2つの測定ポート129および131を有する。ADC130は、データトランスミッタ134に結合されたDCU132に結合される。データトランスミッタ134は、転送ケーブル129を介してデータトランシーバ125に結合される。本明細書で使用される転送ケーブルの例として、シリアル転送ケーブル、またはパラレル転送ケーブル、またはUSBケーブルが挙げられる。データトランシーバ125は、メモリデバイス103に結合されたプロセッサ101に結合される。データトランシーバ125は転送ケーブル131を介して、プロセッサ105に結合されたデータトランシーバ127に結合される。データトランシーバ125はまた、転送ケーブル133を介してRFジェネレータに結合される。プロセッサ105はメモリデバイス107に結合される。
【0051】
RFジェネレータ109は、RF信号118を生成し、このRF信号を出力117からRFケーブル124を介してマッチ111の入力119に供給する。マッチ111は、RF信号118を受信し、出力121に結合された負荷のインピーダンスと入力119に結合されたソースのインピーダンスとを整合させて、出力において修正RF信号122を出力する。負荷の例としては、RF伝送線126とプラズマチャンバ113が挙げられ、ソースの例としては、RFジェネレータ109とRFケーブル124が挙げられる。修正RF信号122が電極115に供給され、1つまたは複数のプロセスガスがプラズマチャンバ113に供給されると、プラズマチャンバ113内で基板を処理するために、プラズマチャンバ113内でプラズマが打たれるか、または維持される。1つまたは複数のプロセスガスの例としては、炭化水素ガス(例えば、CXY)、フッ化水素ガス(例えば、CXY)、酸素含有ガス(例えば、O2)、窒素含有ガス(例えば、N2、NH3)、および不活性ガス(例えば、He、Ar)が挙げられる。基板は、半導体ウエハまたは基板スタックとすることができる。
【0052】
RFセンサ106は、RF信号118および120を受信し、順方向の反射電力、またはインピーダンス、または電圧、または複素電圧・電流、または複素電流等の1つまたは複数のパラメータを測定し、測定信号102および別の測定信号104を出力する。複素数であるパラメータとして、大きさと位相が挙げられる。例えば、複素電圧は、電圧の大きさと電圧の位相を含み、複素電流は、電流の大きさと電流の位相を含む。別の例としては、複素電圧・電流として、電圧の大きさ、電流の大きさ、および複素電圧と複素電流との間の位相差が挙げられる。
【0053】
測定信号102はマスタ測定信号の一例であり、測定信号104はスレーブ測定信号の一例である。本明細書に記載の各測定信号は、電気信号である。RF信号118は、マスタRF信号の一例であり、RF信号120は、スレーブRF信号の一例である。測定信号102の一例は、RF信号118のRF電力を示すアナログ信号であり、測定信号104の一例は、RF信号120のRF電力を示すアナログ信号である。例示すると、測定信号102は供給電力を示し、測定信号104は反射電力を示す。測定信号102はRFセンサのポート129からADC130に送られ、測定信号104はRFセンサ106のポート131からADC130に送られる。
【0054】
ADC130は、測定信号102および104を受信し、測定信号102および104のそれぞれを、アナログ形式からデジタル形式に変換する。例えば、ADC130は、測定信号102から供給電力等のパラメータをサンプリングして、サンプルデータ110-1をDCU132へ出力し、測定信号104から反射電力等のパラメータをサンプリングして、サンプルデータ110-2をDCU132へ出力する。例示すると、ADC130は、5.5ナノ秒(ns)から6.8nsの範囲の速度でパラメータをサンプリングする。別の例としては、ADC130は、600ピコ秒(ps)から900psの範囲の速度でパラメータをサンプリングする。さらに例示すると、ADC130は、6.4ナノ秒(ns)の速度、または800ピコ秒(ps)の速度でパラメータをサンプリングする。サンプルデータ110-1またはサンプルデータ110-2の一例は、128サンプルである。例示すると、サンプルデータ110-1またはサンプルデータ110-2の各サンプルは、パラメータの測定値であり、2ビット、4ビット、または1バイト等のビット数で表現できる。サンプルデータ110-1およびサンプルデータ110-2のそれぞれの他の例は、128サンプル、または256サンプル、または512サンプル、または1024サンプル、または2048サンプル、またはさらに大きな数のサンプルである。別の例としては、ADC130は、以下でさらに説明するクロック信号に同期して、測定信号102および104からパラメータをサンプリングする。例示すると、クロック信号の同じクロックサイクルまたは同じ数の複数のクロックサイクルの間に、測定信号102および104からパラメータがサンプリングされる。さらに例示すると、パラメータは、クロック信号のクロックサイクル1~8、またはクロックサイクル1~N(ここでNは0より大きい整数である)の間に、測定信号102および104からサンプリングされる。
【0055】
DCU132は、サンプルデータ110-1および110-2を処理して圧縮データ135を出力し、この圧縮データ135をデータトランスミッタ134に提供する。本明細書では、圧縮データ135を縮小データと称する場合がある。圧縮データ135のサンプル数は、サンプルデータ110-1またはサンプルデータ110-2のサンプル数より実質的に少ない。例えば、圧縮データ135のサンプル数は、サンプルデータ110-1および110-2のサンプル数より64分の1少ない。例示すると、サンプルデータ110-1および110-2のサンプル数が256である場合、圧縮データ135のサンプル数は4である。
【0056】
データデータトランスミッタ125は、シリアル転送プロトコル、またはパラレル転送プロトコル、またはUSBプロトコル等の転送プロトコルを適用して、圧縮データ135を含むデータユニット112を出力し、このデータユニット112を、転送ケーブル129を介してデータトランスミッタ125に送信する。シリアル転送プロトコルは、圧縮データ135をシリアル方式で転送するために適用される。例えば、圧縮データ135の各バイトをバイトからビットに変換または分割し、このビットが一度に1つずつシリアルに転送される。パラレル転送プロトコルは、圧縮データ135をパラレル方式で転送するために適用される。例えば、圧縮データ135の各バイトをバイトからビットに変換または分割し、このビットが一度に複数ビット転送される。USBプロトコルは、圧縮データ135からデータパケットを生成し、このデータパケットを転送するために適用される。
【0057】
データトランシーバ125は、データユニット112を受信し、データユニット112に転送プロトコルを適用して、データユニット112から圧縮データ135を抽出する。例えば、圧縮データ135は、シリアル方式またはパラレル方式で受信したビットをバイトに変換することにより抽出される。別の例としては、データパケットは、圧縮データ135のバイトに変換される。データトランシーバ125は、圧縮データ135をメモリデバイス103に格納(例えば、書き込み)可能なプロセッサ101に、圧縮データ135を提供する。
【0058】
プロセッサ101は、メモリデバイス103から圧縮データ135を取得し、データトランシーバ135に圧縮データ135を送信する。例えば、プロセッサ105から、データトランシーバ127、転送ケーブル131、およびデータトランシーバ125を介して要求を受けると、プロセッサ101は、メモリデバイス103から圧縮データ135を読み出す。データトランシーバ135は、転送プロトコルを圧縮データ135に適用してデータユニット137を生成し、このデータユニット137を、転送ケーブル131を介してデータトランシーバ127へ送信する。データトランシーバ127は、転送プロトコルをデータユニット137に適用して、データユニット137から圧縮データ135を抽出し、圧縮データ135をプロセッサ105に提供する。プロセッサ105は、圧縮データ135をメモリデバイス107に格納する。
【0059】
一実施形態では、圧縮データ135を生成した後、DIS128がサンプルデータ110-1および110-2を保存する必要はない。例えば、DIS128は、サンプルデータ110-1および110-2を用いて圧縮データ135を生成した後、サンプルデータ110-1および110-2を格納するために用いられるリングバッファ等のバッファから、サンプルデータ110-1および110-2を削除する。他の例としては、測定信号102および104のそれぞれが、連続的にアナログ形式からデジタル形式に変換されてサンプルデータ110-1および110-2を出力し、サンプルデータ110-1および110-2は、連続的にDCU132によって処理されて圧縮データ135が生成される。
【0060】
一実施形態では、圧縮データ135を生成したサンプルデータ110-1およびサンプルデータ110-2は、圧縮データ135の生成後、メモリデバイスに格納されない。したがって、サンプルデータ110-1および110-2は、デシメーションされるか、または、その後の使用が不可能となる。例えば、DCU132は、圧縮データ135の生成後のサンプルデータ110-1および110-2を格納するためのバッファまたはメモリデバイスを含まない。他の例としては、サンプルデータ110-1および110-2を処理して圧縮データ135を生成した後、サンプルデータ110-1および110-2がメモリデバイス内に格納されない場合、サンプルデータ110-1および110-2はデシメーションされる。
【0061】
ある実施形態では、サンプルデータ110-1は、ADC130から1つのチャネルを介してDCU132に出力され、サンプルデータ110-2は、ADC130から別のチャネルを介してDCU132に出力される。チャネルの例としては、導体、ビア、メタルリンク、またはメタルパスが挙げられる。サンプルデータ110-1および110-2は、ADC130からDCU132に同期して出力される。例えば、サンプルデータ110-1および110-2は、後述するクロック信号に同期して、ADC130からDCU132に出力される。例示すると、サンプルデータ110-1および110-2は、クロック信号の同一クロックサイクルの間、またはクロック信号のN個のクロックサイクル等の所定のクロックサイクルの間に、ADC130からDCU132に出力される。
【0062】
一実施形態では、プロセスコントローラ116は、ワイドエリアネットワーク(WAN)またはローカルエリアネットワーク(LAN)またはそれらの組み合わせ等のコンピュータネットワークを介して分析コントローラ114に結合される。WANの例はインターネットであり、LANの例はイントラネットである。例えば、プロセスコントローラ116と分析コントローラ114との間の全ての通信は、分析コントローラ114のネットワーク通信デバイスとプロセスコントローラ116のネットワーク通信デバイスとを介して行われる。ネットワーク通信デバイスの例としては、ネットワークインターフェースカード(NIC)等のネットワークインターフェースコントローラが挙げられる。プロセッサ101は分析コントローラ114のネットワーク通信デバイスに結合され、プロセッサ105はプロセスコントローラ116のネットワーク通信デバイスに結合される。一例としては、本明細書に記載のネットワーク通信デバイス間のすべての通信は、インターネットプロトコル(IP)、またはIP上の伝送制御プロトコル(TCP)等の通信プロトコルを使用して行われる。
【0063】
ある実施形態では、本明細書に記載の各RFジェネレータ、およびDIS128は、複数のネットワーク通信デバイスおよびコンピュータネットワークを介して、分析コントローラ114のプロセッサ101に結合される。例えば、分析コントローラ114のネットワーク通信デバイスは、コンピュータネットワークを介して、本明細書に記載のRFジェネレータのネットワーク通信デバイスに結合される。分析コントローラ114のネットワーク通信デバイスもまた、コンピュータネットワークを介して、DIS128のネットワーク通信デバイスに結合される。分析コントローラ114のプロセッサ101は、分析コントローラ114のネットワーク通信デバイスに結合し、RFジェネレータ内の、デジタル信号プロセッサおよびメモリ装置等のコントローラは、RFジェネレータのネットワーク通信デバイスに結合される。デジタル信号プロセッサは、RFジェネレータのメモリデバイスに結合される。本明細書で使用されるように、各RFジェネレータは、RFジェネレータの電子発振器等のRF電源に結合されるコントローラを含む。RF電源は、RF信号を生成する。DIS128のDCU130は、DIS128のネットワーク通信デバイスに結合される。
【0064】
ある実施形態では、RFセンサ106は、RFジェネレータ109内に統合される。例えば、RFセンサ106は、RFジェネレータ109の構成要素である。別の例としては、RFセンサ106は、RFジェネレータ109のハウジングまたは筐体内に配置される。
【0065】
一実施形態では、RFセンサ106は、マッチ111内に統合される。例えば、RFセンサ106は、マッチ111の構成要素である。別の例としては、RFセンサ106は、マッチ111のハウジングまたは筐体内に配置される。
【0066】
ある実施形態では、移動平均フィルタ等の移動平均プロセッサが、ADC130とDCU132との間に結合される。移動平均プロセッサは、ADC130から出力されるサンプルデータから移動平均を算出する。サンプルデータは、測定信号118または120等の測定信号に基づいて、ADC130から出力される。例えば、移動平均プロセッサは、所定の時間ブロックから移動平均を算出する。移動平均プロセッサは、移動平均を算出して移動平均データを提供し、これをADC130でサンプリングして、サンプルデータ110-1または110-2等のサンプルデータを出力する。
【0067】
図1Bは、RFセンサ106の代わりに、複数のRFセンサ106Aおよび106Bを使用することを説明するための、システム139の実施形態の図である。システム139等のプラズマシステムを、本明細書ではプラズマツールと称する場合がある。システム139は、RFセンサ106の代わりにRFセンサ106Aおよび106Bを含むこと以外は、図1Aのシステム100と同じである。RFセンサ106Aおよび106Bの例は上述されている。RFセンサ106Aは、出力117と入力119の間のポイント123に結合されている。
【0068】
RFセンサ106Bは、RF伝送線126上のポイント141で結合されている。例えば、RF伝送線126のRFロッドは、RFセンサ106Bの入力ポートからRFセンサ106B内のチャネルを経由してRFセンサ106Bの出力ポートまで通る。ポイント141は、出力121と電極115との間に位置する。
【0069】
RFセンサ106Aは、ポイント123で複素電圧等のパラメータを測定し、測定信号102をADC130に出力する。さらに、RFセンサ106Bは、ポイント141で複素電圧等のパラメータを測定して、測定信号104をADC130に出力する。
【0070】
一実施形態では、RFセンサ106Bは、出力121またはRF伝送線126上の任意の他のポイントに結合される。例えば、RFセンサ106Bは、RF伝送線126のシリンダまたはRFストラップに結合される。
【0071】
ある実施形態では、RFセンサ106Aは、RFジェネレータ109内またはマッチ111内に統合される。例えば、RFセンサ106Aは、RFジェネレータ109またはマッチ111の構成要素である。別の例としては、RFセンサ106Aは、RFジェネレータ109のハウジングまたは筐体、あるいはマッチ111のハウジングまたは筐体内に配置される。
【0072】
一実施形態では、RFセンサ106Bは、マッチ111内に統合される。例えば、RFセンサ106Bは、マッチ111の構成要素である。別の例としては、RFセンサ106Bは、マッチ111のハウジングまたは筐体内に配置される。
【0073】
図1C-1は、ADC130に提供するための測定信号102A、102B、102C、および102Dの生成を説明するための、システム150の一実施形態の図である。測定信号102A~102Dのそれぞれは、マスタ測定信号の一例である。システム150等のプラズマシステムを、本明細書ではプラズマツールと称する場合がある。システム150は、RFジェネレータ109A、RFジェネレータ109B、RFジェネレータ109C、RFジェネレータ109D、RFセンサ106A、RFセンサ106B、RFセンサ106C、RFセンサ106D、マッチ111A、別のマッチ111B、DIS128、およびプラズマチャンバ152を含む。
【0074】
プラズマチャンバ152は、TCPコイル156と誘電体窓160とを有するTCPプラズマチャンバである。TCPコイル156は、誘電体窓160の上方に配置されている。プラズマチャンバ152はさらに、処理のために基板Sが載置される下部電極154を含む。
【0075】
RFジェネレータ109Aの出力117は、RFケーブル124Aを介してマッチ111Aの入力119Aに結合され、RFジェネレータ109Bの出力151は、別のRFケーブル124Bを介してマッチ111Aの別の入力119Bに結合される。マッチ111Aの出力121Aは、RF伝送線158を介して、TCPコイル156の入力159に結合される。RF伝送線158の一例は、周囲をRFシースで囲まれた絶縁体で囲まれたRFロッドである。
【0076】
同様に、RFジェネレータ109Cの出力153は、RFケーブル124Cを介してマッチ111Bの入力119Cに結合され、RFジェネレータ109Cの出力155は、別のRFケーブル124Dを介してマッチ111Bの別の入力119Dに結合される。マッチ111Bの出力121Bは、RF伝送線126を介して下部電極154の入力143に結合される。RFセンサ106A~106Dは、ADC130に結合される。
【0077】
RFセンサ106Aは、RFケーブル124A上のポイント123Aで結合される。例えば、RFケーブル124Aは、方向性結合器の入力ポートから方向性結合器内のチャネルを経由して方向性結合器の出力ポートまで通る。同様に、RFセンサ106BはRFケーブル124B上のポイント123Bで結合され、RFセンサ106CはRFケーブル124C上のポイント123Cで結合され、RFセンサ106DはRFケーブル124D上のポイント123Dで結合される。例えば、RFケーブル124Bは、RFセンサ106Bの入力ポートからRFセンサ106B内のチャネルを介してRFセンサ106Bの出力ポートまで通り、RFケーブル124Cは、RFセンサ106Cの入力ポートからRFセンサ106C内のチャネルを介してRFセンサ106Cの出力ポートまで通り、RFケーブル124DはRFセンサ106Dの入力ポートからRFセンサ106D内のチャネルを介してRFセンサ106Dの出力ポートまで通る。
【0078】
RF経路は、RFジェネレータ109A、RFケーブル124A、マッチ111A、およびRF伝送線158を含み、RFジェネレータ109Aの出力117からTCPコイル156の入力159まで延びる。別のRF経路は、RFジェネレータ109B、RFケーブル124B、マッチ111A、およびRF伝送線158を含み、RFジェネレータ109Bの出力151からTCPコイル156の入力159まで延びる。さらに別のRF経路は、RFジェネレータ109C、RFケーブル124C、マッチ111B、およびRF伝送線126を含み、RFジェネレータ109Cの出力153から下部電極154の入力143まで延びる。別のRF経路は、RFジェネレータ109D、RFケーブル124D、マッチ111B、およびRF伝送線126を含み、RFジェネレータ109Dの出力155から下部電極154の入力143まで延びる。
【0079】
RFジェネレータ109Aは、RF信号118Aを生成し、このRF信号118Aを、RFケーブル124Aを介してマッチ111Aの入力119Aへ供給する。さらに、RFジェネレータ109Bは、RF信号118Bを生成し、このRF信号118Bを、RFケーブル124Bを介してマッチ111Aの入力119Bに供給する。マッチ111Aは、RF信号118Aおよび118Bを受信し、出力121Aに結合された負荷のインピーダンスと入力119Aおよび119Bに結合されたソースのインピーダンスとを整合させて、出力121Aに修正RF信号122Aを提供する。入力119Aおよび119Bに結合されたソースの例として、RFケーブル124Aおよび124Bと、RFジェネレータ109Aおよび109Bが挙げられる。出力121Aに結合された負荷の例としては、RF伝送線158およびプラズマチャンバ152が挙げられる。修正RF信号122Bは、RF伝送線158を介してTCPコイル156に供給される。
【0080】
同様に、RFジェネレータ109Cは、RF信号118Cを生成し、このRF信号118Cを、RFケーブル124Cを介してマッチ111Bの入力119Cに供給する。また、RFジェネレータ109Dは、RF信号118Dを生成し、このRF信号118Dを、RFケーブル124Dを介してマッチ111Bの入力119Dに供給する。マッチ111Bは、RF信号118Cおよび118Dを受信し、出力121Bに結合された負荷のインピーダンスと入力119Cおよび119Dに結合されたソースのインピーダンスとを整合させて、出力121Bに修正RF信号122Bを提供する。入力119Cおよび119Dに結合されたソースの例としては、RFケーブル124Cおよび124Dと、RFジェネレータ109Cおよび109Dが挙げられる。出力121Bに結合された負荷の例として、RF伝送線126とプラズマチャンバ152が挙げられる。修正RF信号122Bは、RF伝送線126を介して下部電極154に供給される。
【0081】
修正されたRF信号122Aおよび122Bがプラズマチャンバ152に供給されると、1つまたは複数のプロセスガスに加えて、プラズマがプラズマチャンバ152内で生成または維持されて基板Sが処理される。さらに、修正RF信号122Aおよび122Bがプラズマチャンバ152に供給されると、RF信号120Aがプラズマチャンバ152からRF伝送線158およびマッチ111AおよびRFケーブル124Aを介してRFジェネレータ109aに向かって反射される。同様に、RF信号120Bは、プラズマチャンバ152からRF伝送線158およびマッチ111AおよびRFケーブル124Bを介してRFジェネレータ109Bに向かって反射され、RF信号120Cは、プラズマチャンバ152からRF伝送線126およびマッチ111BおよびRFケーブル124Cを介してRFジェネレータ109Cに向かって反射され、RF信号120Dは、プラズマチャンバ152からRF伝送線126およびマッチ111DおよびRFケーブル124Dを介してRFジェネレータ109Dに向かって反射される。各RF信号118A、118B、118C、および118Dは、マスタRF信号の一例であり、各RF信号120A~120Dは、スレーブRF信号の一例である。
【0082】
基板Sの処理中に、RFセンサ106A~106Dのそれぞれがパラメータを感知して複数の測定信号を出力する。例えば、RFセンサ106Aは、ポイント123Aでパラメータを感知して測定信号102Aを出力してこの測定信号102AをADC130に提供し、RFセンサ106Bは、ポイント123Bでパラメータを感知して測定信号102Bを出力してこの測定信号102BをADC130に提供する。例示すると、RFセンサ106AはRF信号118Aの供給電力を感知し、RFセンサ106BはRF信号118Bの供給電力を感知する。別の例示としては、RFセンサ106AはRF信号120Aの反射電力を感知し、RFセンサ106BはRF信号120Bの反射電力を感知する。さらに別の例示としては、RFセンサ106AはRF信号118Aの供給電力を感知し、RFセンサ106BはRF信号120Bの反射電力を感知する。別の例としては、RFセンサ106AはRF信号120Aの反射電力を感知し、RFセンサ106BはRF信号118Bの供給電力を感知する。
【0083】
同様に、RFセンサ106Cは、ポイント123Cでパラメータを感知して測定信号102Cを出力してこの測定信号102CをADC130に提供し、RFセンサ106Dは、ポイント123Dでパラメータを感知して測定信号102Dを出力してこの測定信号102DをADC130に提供する。例示すると、RFセンサ106CはRF信号118Cの供給電力を感知し、RFセンサ106DはRF信号118Dの供給電力を感知する。
【0084】
RFセンサ106A~106Dは、反射電力等のパラメータを測定することにより、測定信号102A~102Dに加えて、追加の測定信号104A、104B、104C、および104Dを生成する。例えば、RFセンサ106Aは、RF信号120Aの反射電力を感知して反射電力に基づく測定信号104Aを出力し、この測定信号104AをADC130に提供する。RFセンサ106Bは、RF信号120Bの反射電力を感知して反射電力に基づく測定信号104Bを出力し、この測定信号104BをADC130に提供する。別の例としては、RFセンサ106Cは、RF信号120Cの反射電力を感知して反射電力に基づく測定信号104Cを出力してこの測定信号104CをADC130に提供し、RFセンサ106Dは、RF信号120Dの反射電力を感知して反射電力に基づく測定信号104Dを出力してこの測定信号104DをADC130に提供する。測定信号104a~104dのそれぞれは、スレーブ測定信号の一例である。
【0085】
ADC130は、測定信号102A、104A、102B、および104Bのそれぞれを、アナログ形式からデジタル形式に変換して測定信号をサンプリングする。例えば、測定信号102Aをサンプリングしてサンプルデータ110A-1を出力し、測定信号104Aをサンプリングしてサンプルデータ110A-2を出力する。サンプルデータ110A-1または110A-2の一例は、128サンプル、または256サンプル、または512サンプルである。例示すると、サンプルデータ110A-1または110A-2の各サンプルは、パラメータの測定値であり、2ビット、または4ビット、または1バイト等のビット数で表すことができる。同様に、測定信号102Bをサンプリングしてサンプルデータ110B-1を出力し、測定信号104Bをサンプリングしてサンプルデータ110B-2を出力する。
【0086】
また、ADC130は、測定信号102C、104C、102D、および104Dのそれぞれを、アナログ形式からデジタル形式に変換して測定信号をサンプリングする。例えば、測定信号102Cをサンプリングしてサンプルデータ110C-1を出力し、測定信号104Cをサンプリングしてサンプルデータ110C-2を出力し、測定信号102Dをサンプリングしてサンプルデータ110D-1を出力し、測定信号104Dをサンプリングしてサンプルデータ110D-2を出力する。サンプルデータ110C-1または110C-2の一例は、128サンプル、または256サンプル、または512サンプルである。例示すると、サンプルデータ110C-1または110C-2の各サンプルは、パラメータの測定値であり、2ビット、または4ビット、または1バイト等のビット数で表すことができる。
【0087】
DCU132は、サンプルデータ110A-1および110A-2を処理して、その出力において圧縮データ135Aを提供し、サンプルデータ110B-1および110B-2を処理して、その出力において圧縮データ135Bを提供し、サンプルデータ110C-1および110C-2を処理して、その出力において圧縮データ135Cを提供し、サンプルデータ110D-1および110D-2を処理して、その出力において圧縮データ135Dを提供する。例えば、DCU132は、サンプルデータ110A-1および110A-2を256サンプルから4サンプルまたは8サンプルに圧縮するための処理を行い、サンプルデータ110B-1および110B-2を256サンプルから4サンプルまたは8サンプルに圧縮するための処理を行う。
【0088】
DCU132は、圧縮データ135A、135B、135C、および135Dをデータトランスミッタ134に送信する。データトランスミッタ134は、圧縮データ135A、135B、135C、および135Dをプロセッサ101(図1A)に送り、処理を行う。
【0089】
一実施形態では、2つまたは3つのTCPコイル等、複数のTCPコイルが誘電体窓160の上方に配置される。ある実施形態では、誘電体窓160の上方に配置されているTCPコイル156に加えて、1つまたは複数のTCPコイルがプラズマチャンバ152の側方に配置される。
【0090】
一実施形態では、RFセンサ106AまたはRFセンサ106Bが、RF伝送線158上のポイントで結合される。例えば、RF伝送線158のRFロッドは、RFセンサ106Bの入力ポートに結合され、入力ポートからRFセンサ106Bを経由して通され、RFセンサ106Bの出力ポートに結合される。RF伝送線158のRFロッドは、RFセンサ106Bの出力ポートからTCPコイル156に結合される。
【0091】
ある実施形態では、2つ以上のRFジェネレータが、マッチ111Bの代わりに使用されるマッチ(図示せず)に結合される。このマッチは、2つの入力119Cと119Dではなく、3つの入力を有する。例えば、3つのRFジェネレータが、3つの入力を有するマッチに結合される。この3つのRFジェネレータは、RFジェネレータ109Cおよび109Dと、第3のRFジェネレータとを含む。この3つの入力は、入力124Cおよび124Dと同様の2つの入力と、第3の入力とを含む。この実施形態では、RFセンサは、第3のRFジェネレータと、3つの入力を有するマッチとの間に結合されるRFケーブル上のポイントに結合される。RFケーブルは、第3のRFジェネレータとマッチの第3の入力に結合される。RFジェネレータ109Cおよび109Dは、マッチの2つの入力に結合される。
【0092】
一実施形態では、圧縮データ135Aを生成したサンプルデータ110A-1およびサンプルデータ110A-2は、圧縮データ135Aの生成後、メモリデバイスに格納されない。例えば、DCU132は、圧縮データ135Aの生成後のサンプルデータ110A-1および110A-2を格納するためのバッファまたはメモリデバイスを含まない。他の例としては、サンプルデータ110A-1および110A-2を処理して圧縮データ135Aを生成した後、サンプルデータ110A-1および110A-2がメモリデバイス内に格納されない場合、サンプルデータ110A-1および110A-2は圧縮される。
【0093】
ある実施形態では、圧縮データ135Bを生成したサンプルデータ110B-1およびサンプルデータ110B-2は、圧縮データ135Bの生成後、メモリデバイスに格納されない。例えば、DCU132は、圧縮データ135Bの生成後のサンプルデータ110B-1および110B-2を格納するためのバッファまたはメモリデバイスを含まない。他の例としては、サンプルデータ110B-1および110B-2を処理して圧縮データ135Bを生成した後、サンプルデータ110B-1および110B-2をメモリデバイス内に格納しない場合、サンプルデータ110B-1および110B-2は圧縮される。
【0094】
一実施形態では、圧縮データ135Cを生成したサンプルデータ110C-1およびサンプルデータ110C-2は、圧縮データ135Cの生成後、メモリデバイスに格納されない。例えば、DCU132は、圧縮データ135Cの生成後のサンプルデータ110C-1および110C-2を格納するためのバッファまたはメモリデバイスを含まない。他の例としては、サンプルデータ110C-1および110C-2を処理して圧縮データ135Cを生成した後、サンプルデータ110C-1および110C-2をメモリデバイス内に格納しない場合、サンプルデータ110C-1および110C-2は圧縮される。
【0095】
一実施形態では、圧縮データ135Dを生成したサンプルデータ110D-1およびサンプルデータ110D-2は、圧縮データ135Dの生成後、メモリデバイスに格納されない。例えば、DCU132は、圧縮データ135Dの生成後のサンプルデータ110D-1および110D-2を格納するためのバッファまたはメモリデバイスを含まない。他の例としては、サンプルデータ110D-1および110D-2を処理して圧縮データ135Dを生成した後、サンプルデータ110D-1および110D-2をメモリデバイス内に格納しない場合、サンプルデータ110D-1および110D-2は圧縮される。
【0096】
ある実施形態では、RFセンサ106Aは、RFジェネレータ109A内またはマッチ111A内に統合される。例えば、RFセンサ106Aは、RFジェネレータ109Aまたはマッチ111Aの構成要素である。別の例としては、RFセンサ106Aは、RFジェネレータ109Aのハウジングまたは筐体、あるいはマッチ111Aのハウジングまたは筐体内に配置される。
【0097】
一実施形態では、RFセンサ106Bは、RFジェネレータ109B内またはマッチ111B内に統合される。例えば、RFセンサ106Bは、RFジェネレータ109Bまたはマッチ111Bの構成要素である。別の例としては、RFセンサ106Bは、RFジェネレータ109Bのハウジングまたは筐体、またはマッチ111Bのハウジングまたは筐体内に配置される。
【0098】
ある実施形態では、RFセンサ106Cが、RFジェネレータ109C内またはマッチ111B内に統合される。例えば、RFセンサ106Cは、RFジェネレータ109Cまたはマッチ111Bの構成要素である。別の例としては、RFセンサ106Cは、RFジェネレータ109Cのハウジングまたは筐体、あるいはマッチ111Bのハウジングまたは筐体内に配置される。一実施形態では、RFセンサ106Dは、RFジェネレータ109D内またはマッチ111B内で統合される。例えば、RFセンサ106Dは、RFジェネレータ109Dまたはマッチ111Bの構成要素である。別の例としては、RFセンサ106Dは、RFジェネレータ109Dのハウジングまたは筐体、またはマッチ111Bのハウジングまたは筐体内に配置される。
【0099】
図1C-2は、マッチ111A内のRFセンサ147の使用を説明するための、システム145の一実施形態の図である。システム145は、RFセンサ147をさらに含むことを除いて、システム150(図1C-1)と同じ構成要素を有する。
【0100】
RFセンサ147は、マッチ111Aの筐体内に位置する。例えば、マッチ111Aは、入力119Aと出力121Aとの間に結合される第1の分岐回路と、入力119Bと出力121Aとの間に結合される第2の分岐回路とを含む。第1の分岐回路は、出力121Aと入力119Aおよび119Bとの接続ポイントで第2の分岐回路に結合される。RFセンサ147は、接続ポイント、出力121A、または接続ポイントと出力121Aとの間のポイントに結合される。
【0101】
RFセンサ147は、ADC130に結合される。基板Sの処理中に、RFセンサ147がパラメータを感知して測定信号102D-1および別の測定信号104D-1を生成する。ADC130は、測定信号102D-1および104D-1のそれぞれを、アナログ形式からデジタル形式に変換して測定信号をサンプリングする。例えば、測定信号102D-1をサンプリングしてサンプルデータ149Aを出力し、測定信号104D-1をサンプリングしてサンプルデータ149Bを出力する。
【0102】
DCU132は、サンプルデータ149Aおよび149Bを処理して、その出力に圧縮データ157を提供する。例えば、DCU132は、サンプルデータ149Aおよび149Bを、256サンプルから8サンプルまたは4サンプルに圧縮するための処理を行う。
【0103】
DCU132は、圧縮データ157をデータトランスミッタ134に送信する。データトランスミッタ134は、圧縮データ157をプロセッサ101(図1A)に送信し、処理を行う。
【0104】
一実施形態では、プロセッサ101は、圧縮データ157を処理する代わりに、圧縮データ157をプロセッサ105に送って処理させる。
【0105】
一実施形態では、RFセンサ147は、マッチ111A内に配置される代わりに、RF伝送線158上のポイントに結合される。例えば、RFセンサ147は、RF伝送線158のRFロッドに結合される。
【0106】
なお、本開示の一実施形態では、本明細書に記載のすべてのRFセンサが、順方向および逆方向、または順方向および反射方向の両方向でパラメータを感知する無指向性センサであることに留意されたい。例示すると、RFセンサ106Aは、順方向電力と反射電力の両方を送信する。順方向電力を感知して測定信号102Aを出力し、反射電力を感知して測定信号102Bを出力する。ある実施形態では、本明細書に記載の無指向性RFセンサのいずれかの代わりに、指向性RFセンサを使用できる。例としては、指向性RFセンサは、RF伝送線に結合されるか、マッチ内に配置される。例示すると、RFセンサ147の代わりに、単一方向のパラメータを感知する指向性RFセンサを使用する。さらに例示すると、指向性RFセンサは、順方向電力または反射電力のどちらかを感知するが、両方を感知して1つの測定信号を出力することはない。他の例としては、指向性センサは、パラメータの大きさとパラメータの位相を感知する。別の例としては、指向性センサは、ソースから生成されるRF信号の位相を測定する。この例では、RF信号はソースからプラズマチャンバ等の負荷に供給される。この例では、ソースはRFジェネレータである。さらに別の例として、指向性センサは、負荷から反射されるRF信号の位相を測定する。この例では、信号はプラズマチャンバ等の負荷から反射する。信号は、RFジェネレータ等のソースに向かって反射する。
【0107】
図1Dは、異なるマッチ111および164に結合されたRFセンサ106Aおよび106Bを有するDIS128の使用を説明するための、システム162の実施形態の図である。システム162等のプラズマシステムを、本明細書ではプラズマツールと称する場合がある。システム162は、RFジェネレータ109A~109D、RFセンサ106A~106D、マッチ111、マッチ164、マッチ111B、プラズマチャンバ168、およびDIS128を含む。システム162は、プラズマチャンバ168のTCPコイル156BにRF伝送線166を介して結合されるマッチ164を含むことを除いて、図1C-1のシステム150と同じである。
【0108】
プラズマチャンバ168は、TCPコイル156A、TCPコイル156B、および誘電体窓160を有する。TCPコイル156Bは外側コイルであり、TCPコイル156Aは内側TCPコイルである。TCPコイル156Bは、TCPコイル156Aよりも大径である。例えば、TCPコイル156Bの各ターンは、TCPコイル156Aの各ターンよりも大径である。TCPコイル156Aおよび156Bは、誘電体窓160の上方に配置される。
【0109】
RFジェネレータ109Aは、RFケーブル124Aを介してマッチ111の入力119に結合され、マッチ111の出力121は、RF伝送線158を介してTCPコイル156Aの入力159に結合される。また、RFジェネレータ109Bは、RFケーブル124Bを介してマッチ172の入力170に結合され、マッチ172の出力172は、RF伝送線166を介してTCPコイル156Bの入力161に結合される。RFセンサ106Aは、RFケーブル124A上のポイント123Aで結合され、RFセンサ106Bは、RFケーブル124B上のポイント123Bで結合される。
【0110】
RF経路は、RFジェネレータ109A、RFケーブル124A、マッチ111、およびRF伝送線158を含み、RFジェネレータ109Aの出力117からTCPコイル156Aの入力159まで延びる。別のRF経路は、RFジェネレータ109B、RFケーブル124B、マッチ164、およびRF伝送線166を含み、RFジェネレータ109Bの出力151からTCPコイル156Bの入力161まで延びる。さらに別のRF経路は、RFジェネレータ109C、RFケーブル124C、マッチ111B、およびRF伝送線126を含み、RFジェネレータ109Cの出力153から下部電極154の入力143まで延びる。別のRF経路は、RFジェネレータ109D、RFケーブル124D、マッチ111B、およびRF伝送線126を含み、RFジェネレータ109Dの出力155から下部電極154の入力143まで延びる。
【0111】
RFジェネレータ109Aは、RF信号118Aを生成し、このRF信号118Aを、RFケーブル124Aを介してマッチ111の入力119に供給する。マッチ111は、RF信号118Aを受信し、出力121に結合された負荷のインピーダンスと入力119に結合されたソースのインピーダンスとを整合させて、修正RF信号174を出力する。出力121に結合される負荷の例としては、RF伝送線158とプラズマチャンバ168が挙げられる。入力119に結合されたソースの例として、RFケーブル124AとRFジェネレータ109Aが挙げられる。RF信号118Aが供給されると、反射したRF信号120Aは、プラズマチャンバ168からRF伝送線158、マッチ111、RFケーブル124Aを介してRFジェネレータ109Aに向かって反射される。
【0112】
同様に、RFジェネレータ109Bは、RF信号118Bを生成し、RFケーブル124Bを介してマッチ164の入力170にRF信号118Bを供給する。マッチ164は、RF信号118Bを受信し、出力172に結合された負荷のインピーダンスと、入力170に結合されたソースのインピーダンスとを整合させて、修正RF信号176を出力する。出力172に結合される負荷の例としては、RF伝送線166とプラズマチャンバ168が挙げられる。入力170に結合されたソースの例としては、RFケーブル124BとRFジェネレータ109Bが挙げられる。RF信号118Bが供給されると、反射したRF信号120Bは、RFジェネレータ109Bに向かってプラズマチャンバ168からRF伝送線166、マッチ164、およびRFケーブル124Bを介して反射される。
【0113】
修正RF信号174、176、および122Bがプラズマチャンバ168に供給され、1つまたは複数のプロセスガスがプラズマチャンバ168に供給されると、プラズマがプラズマチャンバ168内に打たれるか、または維持されて、プラズマチャンバ168の下部電極154の上に載置された基板Sを処理する。さらに、修正RF信号174、176、および122Bがプラズマチャンバ168に供給されると、RF信号120Aがプラズマチャンバ168からRF伝送線158およびマッチ111を経由してRFジェネレータ109Aに反射される。また、修正RF信号174、176、および122Bがプラズマチャンバ168に供給されると、RF信号120Bがプラズマチャンバ168からRF伝送線166およびマッチ164を介してRFジェネレータ109Bへ反射される。各RF信号118A~118Dは、マスタRF信号の一例であり、各RF信号120A~120Dは、スレーブRF信号の一例である。
【0114】
RFセンサ106A~106Dのそれぞれは、パラメータを感知して複数の測定信号を出力する。例えば、RFセンサ106Aは、ポイント123Aでパラメータを感知して測定信号102Aを出力してこの測定信号102AをADC130に提供し、RFセンサ106Bは、ポイント123Bでパラメータを感知して測定信号102Bを出力してこの測定信号102BをADC130に提供する。例示すると、RFセンサ106AはRF信号118Aの供給電力を感知し、RFセンサ106BはRF信号118Bの供給電力を感知する。別の例としては、RFセンサ106AはRF信号118Aの供給電力を感知し、RFセンサ106BはRF信号120Bの反射電力を感知する。さらに別の例示としては、RFセンサ106AはRF信号120Aの反射電力を感知し、RFセンサ106BはRF信号118Bの供給電力を感知する。別の例示としては、RFセンサ106AはRF信号120Aの反射電力を感知し、RFセンサ106BはRF信号120Bの反射電力を感知する。
【0115】
RFセンサ106A~106Dは、測定信号102A~102Dに加えて、反射電力等のパラメータを測定することにより、測定信号104A、104B、104C、および104Dを生成する。例えば、RFセンサ106Aは、RF信号120Aの反射電力を感知して反射電力に基づく測定信号104Aを出力し、この測定信号104AをADC130に提供する。RFセンサ106Bは、RF信号120Bの反射電力を感知して反射電力に基づく測定信号104Bを出力し、この測定信号104BをADC130に提供する。
【0116】
一実施形態では、TCPコイル156Bは、誘電体窓160の上方ではなく、プラズマチャンバ168の側方に配置される。
【0117】
ある実施形態では、RFセンサ106Aは、RFケーブル124Aに結合されるのではなく、RF伝送線158上のポイントで結合される。
【0118】
一実施形態では、RFセンサ106Bは、RFケーブル124Bに結合されるのではなく、RF伝送線166上のポイントで結合される。
【0119】
一実施形態では、RFセンサ106Aは、RFジェネレータ109A内またはマッチ111内に統合される。例えば、RFセンサ106Aは、RFジェネレータ109Aまたはマッチ111の構成要素である。別の例としては、RFセンサ106Aは、RFジェネレータ109Aのハウジングまたは筐体、あるいはマッチ111のハウジングまたは筐体内に配置される。
【0120】
ある実施形態では、RFセンサ106Bは、RFジェネレータ109B内またはマッチ164内に統合される。例えば、RFセンサ106Bは、RFジェネレータ109Bまたはマッチ164の構成要素である。別の例としては、RFセンサ106Bは、RFジェネレータ109Bのハウジングまたは筐体、あるいはマッチ164のハウジングまたは筐体内に配置される。
【0121】
図1E-1は、RFセンサ106E、106F、および106Gの使用を説明するための、システム180の一実施形態の図である。システム180等のプラズマシステムを、本明細書ではプラズマツールと称する場合がある。システム180は、RFセンサ106A~106Dに加えて、RFセンサ106E、106F、および106Gを含むことを除いて、システム162(図1D)と同じである。RFセンサ106EはRF伝送線158上のポイント141Aで結合され、RFセンサ106FはRF伝送線166上のポイント141Bで結合され、RFセンサ106GはRF伝送線126上のポイント141Cで結合される。例えば、RF伝送線158のRFロッドは、RFセンサ106Eの入力ポートに結合され、入力ポートからRFセンサ106Eを経由してRFセンサ106Eの出力ポートまで通る。別の例としては、RF伝送線166のRFロッドは、RFセンサ106Fの入力ポートに結合され、入力ポートからRFセンサ106Fを経由してRFセンサ106Fの出力ポートまで通る。さらに別の例としては、RF伝送線126のRFロッドは、RFセンサ106Gの入力ポートに結合され、入力ポートからRFセンサ106Gを経由してRFセンサ106Gの出力ポートまで通る。
【0122】
修正RF信号174、176、および122Bがプラズマチャンバ168に供給されると、RF信号182、184、および186がプラズマチャンバ168から反射される。例えば、RF信号182は、プラズマチャンバ168からRF伝送線158を介してマッチ111に向かって反射される。別の例としては、RF信号184は、プラズマチャンバ168からRF伝送線166を介してマッチ164に向かって反射され、RF信号186は、プラズマチャンバ168からRF伝送線126を介してマッチ111Bに向かって反射される。各修正RF信号174、176、および122Bは、マスタRF信号の一例であり、各RF信号182、184、および186は、スレーブRF信号の一例である。
【0123】
基板Sの処理中に、各RFセンサ106E~106Gがパラメータを感知して複数の測定信号を出力する。例えば、RFセンサ106Eは、ポイント141Aでパラメータを感知して測定信号102Eを出力し、この測定信号102EをADC130に提供する。RFセンサ106Fは、ポイント141Bでパラメータを感知して測定信号102Fを出力し、この測定信号102FをADC130に提供する。RFセンサ106Gは、ポイント141Cでパラメータを感知して測定信号102Gを出力し、この測定信号102GをADC130に提供する。例示すると、RFセンサ106Eは修正RF信号174の供給電力を感知して測定信号102Eを出力し、RFセンサ106Fは修正RF信号176の供給電力を感知して測定信号102Fを出力し、RFセンサ106Gは修正RF信号122Bの供給電力を感知して測定信号102Gを出力する。
【0124】
RFセンサ106E~106Gは、反射電力等のパラメータを測定することにより、測定信号102E~102Gに加えて、追加の測定信号104E、104F、および104Gを生成する。例えば、RFセンサ106Eは、RF信号182の反射電力を感知して、反射電力に基づく測定信号104Eを出力し、この測定信号104EをADC130に提供する。RFセンサ106Fは、RF信号184の反射電力を感知して、反射電力に基づく測定信号104Fを出力し、この測定信号104FをADC130に提供する。別の例としては、RFセンサ106Gは、RF信号186の反射電力を感知して、反射電力に基づく測定信号104Gを出力し、この測定信号104GをADC130に供給する。
【0125】
ADC130は、測定信号102E、104E、102F、104F、102G、および104Gのそれぞれを、アナログ形式からデジタル形式に変換して測定信号をサンプリングする。測定信号102Eをサンプリングしてサンプルデータ110E-1を出力し、測定信号104Eをサンプリングしてサンプルデータ110E-2を出力する。サンプルデータ110E-1または110E-2の一例は、128サンプル、または256サンプル、または512サンプルである。例示すると、サンプルデータ110E-1または110E-2の各サンプルは、パラメータの測定値であり、2ビット、または4ビット、または1バイト等のビット数で表すことができる。同様に、測定信号102Fをサンプリングしてサンプルデータ110F-1を出力し、測定信号104Fをサンプリングしてサンプルデータ110F-2を出力し、測定信号102Gをサンプリングしてサンプルデータ110G-1を出力し、測定信号104Gをサンプリングしてサンプルデータ110G-2を出力する。別の例としては、ADC130は、クロック信号に同期して、測定信号102A、102B、102C、102D、102E、102F、102G、104A、104B、104C、104D、104E、104F、および104Gからパラメータをサンプリングする。例示すると、測定信号102A、102B、102C、102D、102E、102F、102G、104A、104B、104C、104D、104E、104F、および104Gから、クロック信号の同一クロックサイクルまたは同数の複数クロックサイクルでパラメータがサンプリングされる。さらに例示すると、クロック信号の1~8サイクル、または1~Nサイクルの間に、測定信号102A、102B、102C、102D、102E、102F、102G、104A、104B、104C、104D、104E、104F、および104Gからパラメータがサンプリングされる。
【0126】
DCU132は、サンプルデータ110E-1および110E-2を処理して、その出力において圧縮データ135Eを提供し、サンプルデータ110F-1および110F-2を処理して、その出力において圧縮データ135Fを提供し、サンプルデータ110G-1および110G-2を処理して、その出力において圧縮データ135Gを提供する。例えば、DCU132は、サンプルデータ110E-1および110E-2を256サンプルから4サンプルまたは8サンプルに圧縮するための処理を行い、サンプルデータ110F-1および110F-2を256サンプルから4サンプルまたは8サンプルに圧縮するための処理を行う。
【0127】
DCU132は、圧縮データ135A~135Gをデータトランスミッタ134に送信する。データトランスミッタ134は、圧縮データ135A~135Gをプロセッサ101(図1A)に送信し、処理させる。
【0128】
ある実施形態では、各サンプルデータ110A-1、110A-2、110B-1、110B-2、110C-1、110C-2、110D-1、110D-2、110E-1、110E-2、110F-1、110F-2、110G-1、および110G-2が、ADC130から、異なるチャネルを介してDCU132へ出力される。例えば、サンプルデータ110A-1は、ADC130から第1のチャネルを介してDCU132に出力され、サンプルデータ110A-2は、ADC130から第2のチャネルを介してDCU132に出力される。サンプルデータ110A-1、110A-2、110B-1、110B-2、110C-1、110C-2、110D-1、110D-2、110E-1、110E-2、110F-1、110F-2、110G-1、および110G-2は、ADC130からDCU132へ同期して出力される。例えば、サンプルデータ110A-1、110A-2、110B-1、110B-2、110C-1、110C-2、110D-1、110D-2、110E-1、110E-2、110F-1、110F-2、110G-1、および110G-2は、クロック信号に同期してADC130からDCU132へ出力される。例示すると、サンプルデータ110A-1、110A-2、110B-1、110B-2、110C-1、110C-2、110D-1、110D-2、110E-1、110E-2、110F-1、110F-2、110G-1、および110G-2は、クロック信号の同一クロックサイクルの間、または所定のクロックサイクルの間、またはクロック信号のN個のクロックサイクルの間にADC130からDCU132へ出力される。
【0129】
一実施形態では、RFセンサ106Eはマッチ111内に統合される。例えば、RFセンサ106Eは、マッチ111の構成要素である。別の例としては、RFセンサ106Eは、マッチ111のハウジングまたは筐体内に配置される。
【0130】
ある実施形態では、RFセンサ106Fは、マッチ164内に統合される。例えば、RFセンサ106Fは、マッチ164の構成要素である。別の例としては、RFセンサ106Fは、マッチ164のハウジングまたは筐体内に配置される。
【0131】
一実施形態では、RFセンサ106Gは、マッチ111B内に統合される。例えば、RFセンサ106Gは、マッチ111Bの構成要素である。別の例としては、RFセンサ106Gは、マッチ111Bのハウジングまたは筐体内に配置される。
【0132】
図1E-2は、プラズマチャンバ168内のRFセンサ106Gの使用を説明するための、システム163の一実施形態の図である。RFセンサ106Gは、プラズマチャンバ168のハウジングまたは筐体内に配置され、RF伝送線126に結合される。
【0133】
一実施形態では、RF伝送線126に結合される代わりに、RFセンサ106Gは、電極154が埋め込まれた基板支持体の底面に結合される。基板Sは、基板支持体169の上面に載置され、処理される。基板支持体169の上面は、基板支持体169と、RFコイル156Aおよび156B等の上部電極との間のギャップに面している。底面は上面とは逆の方向を向いている。
【0134】
一実施形態では、RFセンサ106Gは、下部電極154の出力121Bと入力143との間の任意のポイントで結合される。
【0135】
一実施形態では、プラズマチャンバ168内にRFセンサ106Gを設けることに加えて、追加のRFセンサがポイント141Cに結合される。追加のRFセンサは、ADC130に結合される。
【0136】
図1Fは、ADC130、DCU132、およびデータトランスミッタ134がRFセンサ190内に統合されていることを説明するための、RFセンサ190の一実施形態の図である。RFセンサ190の例としては、PLDまたはASICが挙げられる。RFセンサ190は、センシングユニット192と、ADC130と、DCU132と、データトランスミッタ134とを含む。例えば、センシングユニット192、ADC130、DCU132、およびデータトランスミッタ134のそれぞれは、FPGAの論理ブロックである。センシングユニット190の一例は、パラメータを測定して測定信号を生成する回路である。センシングユニット192は、DCU132に結合されたADC130に結合されている。DCU132は、データトランスミッタ134に結合されている。
【0137】
センシングユニット192は、パラメータを測定して複数の測定信号194、196を出力する。測定信号194および196の例としては、測定信号102と104(図1Aおよび図1B)、または測定信号102Aと104A(図1C-1)、または測定信号102Bと104B(図1C-1)、または測定信号102Cと104C(図1C-1)、または測定信号102D-1と104D-1(図1C-2)、または測定信号102Eと104E(図1E-1)、または測定信号102Fと104F(図1F)、または測定信号102Gと104G(図1G)である。
【0138】
なお、RFセンサ106とDIS128(図1A)の代わりに、RFセンサ190が使用されていることに留意すべきである。さらに、DIS128とRFセンサ106A106G、および147のいずれか(図1C-1、1C-2、および1E-1)の代わりに、RFセンサ190が使用される。
【0139】
図1Gは、圧縮データ135が分析コントローラ114(図1A)に送信される代わりに、DIS128からプロセスコントローラ116に送信されて処理されることを説明するための、システム198の一実施形態の図である。システム198は、DIS128とプロセスコントローラ116を含む。DIS128は、転送ケーブル191を介してデータトランシーバ127に結合される。
【0140】
圧縮データ135を有するデータユニット112は、データトランスミッタ134から転送ケーブル191を介してデータトランシーバ127に伝送される。データトランシーバ127は、転送プロトコルをデータユニット112に適用して圧縮データ135を抽出し、この圧縮データ135をプロセッサ105に送信する。プロセッサ105は、解析コントローラ114のプロセッサ101が圧縮データ135を処理するのと同じ方法で、圧縮データ135を処理する。例えば、プロセッサ105は、圧縮データ135を使用して、システム100、139、150、162、および180等のプラズマツールの1つまたは複数のコンポーネントを制御する。圧縮データ135は、プロセッサ105によってメモリデバイス107に格納される。
【0141】
ある実施形態では、本明細書に記載の各RFジェネレータ、およびDIS128は、複数のネットワーク通信デバイスおよびコンピュータネットワークを介して、プロセスコントローラ116のプロセッサ105に結合される。例えば、プロセスコントローラ116のネットワーク通信デバイスは、コンピュータネットワークを介して、本明細書に記載のRFジェネレータのネットワーク通信デバイスに結合される。プロセスコントローラ116のネットワーク通信デバイスはまた、コンピュータネットワークを介してDIS128のネットワーク通信デバイスに結合される。プロセスコントローラ116のプロセッサ105は、プロセスコントローラ116のネットワーク通信デバイスに結合され、RFジェネレータ内のデジタル信号プロセッサおよびメモリデバイス等のコントローラは、RFジェネレータのネットワーク通信デバイスに結合される。
【0142】
図1Hは、マッチレスプラズマソース(MPS)173を有するRFセンサ106の使用を説明するための、システム171の一実施形態の図である。本明細書では、MPS173を非50Ω源と称する場合がある。システム171ではMPS173が使用されることを除いて、システム171は図1Aのシステム100と同じである。MPS172とプラズマチャンバ113の間には、マッチが存在しない。例えば、MPS172とプラズマチャンバ113との間には、ネットワークの出力における負荷インピーダンスとネットワークの入力におけるソースインピーダンスとの間のバランスを提供するための、インダクタおよびコンデンサのネットワークが存在しない。
【0143】
MPS172は、接続部175を介して電極115に結合される。接続部175の例としては、RF伝送線等の導体が挙げられる。MPS172は、RF信号177を生成し、このRF信号177を、RF伝送線177を介して電極155に送信する。RFセンサ106は、RF信号177のパラメータを感知して、測定信号102および104を出力する。RF経路179は、RF伝送線175を含む。RF経路179は、MPS173の出力181から電極115の入力143まで延びる。
【0144】
一実施形態では、RFセンサ106は、RF経路179上の任意のポイントで結合される。例えば、RFセンサ106は、RF伝送線177のRFロッド上の任意のポイントでRF伝送線177に結合される。
【0145】
図2は、DCU132の一実施形態の図である。DCU132は、複数のレジスタ202A、202B、202C、202D、202E、202F、202G、および202Hを含む。DCU132は、さらに、マスタサンプルグループジェネレータ204とスレーブサンプルグループジェネレータ206を含む。DCU132は、マスタ最大(max)ピーク・トゥ・ピーク(PTP)決定器208と、スレーブ最大PTP決定器210とを含む。DCU132はまた、マスタ平均(Av.)周波数(Freq.)決定器212と、平均位相決定器216とを含む。
【0146】
各レジスタ202~202Hの例として、フリップフロップグループが挙げられる。各レジスタ202A~202Hの別の例としては、シフトレジスタが挙げられる。マスタサンプルグループジェネレータツール204、スレーブサンプルグループジェネレータ206、マスタ最大PTP決定器208、スレーブ最大PTP決定器210、および平均位相決定器216のそれぞれは、論理ゲートグループおよび論理ゲート間の相互接続を含む論理ブロックとすることができる。
【0147】
レジスタ202Aの出力は、レジスタ202Bの入力に結合される。同様に、レジスタ202Bの出力は、レジスタ202Cの入力に結合され、レジスタ202Cの出力は、202Dに対するレジスタの入力に結合される。また、レジスタ202Eの出力はレジスタ202Fの入力に結合され、レジスタ202Fの出力はレジスタ202Gの入力に結合され、レジスタ202Gの出力はレジスタ202Hの入力に結合される。
【0148】
各レジスタ202Aおよび202Eは、ADC130に結合される(図1A)。レジスタ202A~202Dは、N個(ここでNは0より大きい整数である)の接続部223を介してマスタ最大PTP決定器208に結合されたマスタサンプルグループジェネレータ204に結合される。一例として、接続部は、電気信号を転送する導線または導電性ビア等の導体である。マスタ最大PTP決定器208は、2N個の接続部224を介してマスタ平均周波数決定器212に結合される。マスタ最大PTP決定器208は、2N個の接続部226を介して平均位相決定器216に結合される。
【0149】
また、レジスタ202E~202Hは、N個の接続部228を介してスレーブ最大PTP決定器210に結合されたスレーブサンプルグループジェネレータ206に結合される。スレーブ最大PTP決定器210は、2N個の接続部230を介して平均位相決定器216に結合される。平均位相決定器216は、データトランスミッタ134(図1A)に結合される。また、マスタ最大PTP決定器208、スレーブ最大PTP決定器210、およびマスタ平均周波数決定器212のそれぞれは、データトランスミッタ134に結合される。
【0150】
マスタサンプルデータ218は、ADC130からレジスタ202Aに提供される。マスタサンプルデータ218の一例は、サンプルデータ110-1(図1A)である。マスタサンプルデータ218の他の例としては、サンプルデータ110A-1、またはサンプルデータ110B-1、またはサンプルデータ110C-1、またはサンプルデータ110D-1、またはサンプルデータ149A(図1C-1、1C-2、および1D)、またはサンプルデータ110E-1、またはサンプルデータ110F-1、またはサンプルデータ110G-1(図1E-1)が挙げられる。
【0151】
同様に、スレーブサンプルデータ220は、ADC130からレジスタ202Eに提供される。スレーブサンプルデータ220の一例は、サンプルデータ110-2(図1A)である。スレーブサンプルデータ220の他の例としては、サンプルデータ110A-2、またはサンプルデータ110B-2、またはサンプルデータ110C-2、またはサンプルデータ110D-2、またはサンプルデータ149B(図1C-1、1C-2、および1D)、またはサンプルデータ110E-2、またはサンプルデータ110F-2、またはサンプルデータ110G-2(図1E-1)が挙げられる。
【0152】
さらに、DCU132は、分析コントローラ114(図1A)のプロセッサ101から、トランジスタ-トランジスタ論理(TTL)信号222等のクロック信号を受信する。プロセッサ101は、高い論理レベル(例えば1)と低い論理レベル(例えば0)との間を周期的に遷移するクロック信号を生成するクロックソースまたはクロックジェネレータを含む。TTL信号222はまた、プロセッサ101からRFジェネレータ109(図1A)、RFジェネレータ109A、RFジェネレータ109B、RFジェネレータ109C、およびRFジェネレータ109D(図1C-1、1D、および1E-1)に供給される。DCU132、およびRFジェネレータ109および109A~109Dは、TTL信号222に同期して動作する。
【0153】
TTL信号222をRFジェネレータ109と109A~109DおよびDCU132に供給することにより、ADC130から出力されるマスタサンプルデータ218とスレーブサンプルデータ220はTTL信号222に同期する。例えば、マスタサンプルデータ218およびスレーブサンプルデータ220は、本明細書に記載の複数の測定信号に基づいてADC130によって生成され、測定信号は、TTL信号222の同じクロックサイクル、または同じ数のクロックサイクル、またはN個のクロックサイクルの間に、複数のRF信号を感知することによって生成される。
【0154】
TTL信号222は、DIS128の各構成要素に供給され、DIS128の構成要素は、TTL信号122に同期して動作する。例えば、TTL信号は、プロセッサ101から、ADC130、レジスタ202A~202D、マスタサンプルグループジェネレータ204、スレーブサンプルグループジェネレータ206、マスタ最大PTP決定器208、スレーブ最大PTP決定器210、マスタ平均周波数決定器212、および平均位相決定器216に供給される。
【0155】
マスタサンプルデータ218は、レジスタ202Aの出力からレジスタ202Bの入力へシフトし、さらにレジスタ202Bの出力からレジスタ202Cの入力へシフトし、さらにレジスタ202Cの出力からレジスタ202Dの入力へシフトする。同様に、スレーブサンプルデータ220は、レジスタ202Eの出力からレジスタ202Fの入力へシフトし、さらにレジスタ202Fの出力からレジスタ202Gの入力へシフトし、さらにレジスタ202Gの出力からレジスタ202Hの入力へシフトする。
【0156】
レジスタ202Aからレジスタ202Bおよび202Cを経由してレジスタ202Dにシフトした後のマスタサンプルデータ218は、レジスタ202A~202Dからマスタサンプルグループジェネレータ204に提供される。例えば、レジスタ202Aに格納されたマスタサンプルデータ218の第1の部分は、レジスタ202Aの出力からマスタサンプルグループジェネレータ204に送信され、レジスタ202Bに格納されたマスタサンプルデータ218の第2の部分は、レジスタ202Bの出力からマスタサンプルグループジェネレータ204に送信され、レジスタ202Cに格納されたマスタサンプルデータ218の第3の部分は、レジスタ202Cの出力からマスタサンプルグループジェネレータ204に送信され、レジスタ202Dに格納されたマスタサンプルデータ218の第4の部分は、レジスタ202Dの出力からマスタサンプルグループジェネレータ204に送信される。さらに、第1~第4の部分がマスタサンプルグループジェネレータ204に転送された後、同様にして、マスタサンプルデータ218の第5、第6、第7、および第8の部分がレジスタ202A~202Dに格納され、レジスタ202A~202Dからマスタサンプルグループジェネレータ204に転送される。
【0157】
一例として、マスタサンプルデータ218の各部分は、供給RF信号または電圧信号等の、本明細書に記載のマスタRF信号のサイクルを表す。例示すると、マスタサンプルデータ218の第1の部分はRF信号118の第1のサイクルを表し(図1A)、マスタサンプルデータ218の第2の部分はRF信号118の第2のサイクルを表す、というようにして、マスタサンプルデータ218の第8の部分がRF信号118の第8のサイクルを表すまで続く。RF信号118の第2のサイクルは、RF信号118の第1のサイクルに連続する、というようにして、RF信号118の第8のサイクルがRF信号118の第7のサイクルに連続するまで続く。
【0158】
マスタサンプルデータ218が表すパラメータを有する供給RF信号等のRF信号の各動作サイクルは、正のゼロ交差や負のゼロ交差等のゼロ交差で始まり、連続した正のゼロ交差または連続した負のゼロ交差等、同じ種類のゼロ交差で終了する。例えば、RF信号118の第1のサイクルが第1の正のゼロ交差で始まる場合、第1のサイクルは第2の正のゼロ交差で終了する。第2の正のゼロ交差は、第1の正のゼロ交差に連続している。例えば、RF信号118の第1および第2の正のゼロ交差の間には、正のゼロ交差は存在しない。
【0159】
同様に、レジスタ202Eからレジスタ202Fおよび202Gを経由してレジスタ202Hにシフトした後のスレーブサンプルデータ220は、レジスタ202E~202Hからスレーブサンプルグループジェネレータ206に提供される。例えば、レジスタ202Eに格納されたスレーブサンプルデータ220の第1の部分は、レジスタ202Eの出力からスレーブサンプルグループジェネレータ204に送信され、レジスタ202Fに格納されたスレーブサンプルデータ220の第2の部分は、レジスタ202Fの出力からスレーブサンプルグループジェネレータ206に送信され、レジスタ202Gに格納されたスレーブサンプルデータ220の第3の部分は、レジスタ202Gの出力からスレーブサンプルグループジェネレータ206に送信され、レジスタ202Hに格納されたスレーブサンプルデータ220の第4の部分は、レジスタ202Hの出力からスレーブサンプルグループジェネレータ206に送信される。さらに、第1~第4の部分がスレーブサンプルグループジェネレータ206に転送された後、同様にして、第5、第6、第7、および第8の部分のスレーブサンプルデータ220がレジスタ202E~202Hに格納され、レジスタ202E~202Hからスレーブサンプルグループジェネレータ206に転送される。
【0160】
一例として、スレーブサンプルデータ220の各部分は、反射RF信号または電圧信号等、本明細書に記載のスレーブRF信号の1サイクルを表す。例示すると、スレーブサンプルデータ220の第1部分はRF信号120の第1のサイクルを表し(図1A)、スレーブサンプルデータ220の第2部分はRF信号120の第2のサイクルを表す、というようにして、スレーブサンプルデータ220の第8部分がRF信号120の第8サイクルを表すまで続く。RF信号120の第2のサイクルは、RF信号120の第1のサイクルに連続する、というようにして、RF信号120の第8サイクルがRF信号120の第7サイクルに連続するまで続く。
【0161】
スレーブサンプルデータ220が表すパラメータを有する反射RF信号等のスレーブRF信号の各動作サイクルは、正のゼロ交差や負のゼロ交差等のゼロ交差で始まり、連続した正のゼロ交差や連続した負のゼロ交差等、同じ種類の連続するゼロ交差で終了する。例えば、RF信号120の第1のサイクルが第1の正のゼロ交差で始まる場合、第1のサイクルは第2の正のゼロ交差で終了する。第2の正のゼロ交差は、第1の正のゼロ交差に連続している。例えば、RF信号120の第1および第2の正のゼロ交差の間には、正のゼロ交差は存在しない。
【0162】
マスタサンプルグループジェネレータ204は、マスタサンプルデータ218をN個(ここでNは0より大きい整数である)のグループ(本明細書ではセットと称する場合もある)にグループ化する。例えば、マスタサンプルグループジェネレータ204は、マスタサンプルデータ218から所定の数、例えばN個(8グループまたは16グループ等)のグループを生成すると決定し、マスタサンプルデータ218を所定の数のグループに分割する。例示すると、マスタサンプルグループジェネレータ204は、所定の数のバッファを含み、所定の数のグループのそれぞれを、所定の数のバッファのうちの対応する1つに格納した。さらに例示すると、マスタサンプルデータ218の第1グループは、マスタサンプルグループジェネレータ204の第1バッファに格納され、マスタサンプルデータ218の第2グループは、マスタサンプルグループジェネレータ204の第2バッファに格納される。一例として、マスタサンプルデータ218のN個のグループの各々は、マスタRF信号の1サイクルに対応する。例示すると、マスタサンプルデータ218の第1のグループは、マスタRF信号の第1のサイクルのパラメータの測定値をサンプリングすることによって生成され、マスタサンプルデータ218の第2のグループは、マスタRF信号の第2のサイクルのパラメータの測定値をサンプリングすることによって生成される。
【0163】
マスタサンプルグループジェネレータ204は、N個の接続部223を介してN個のグループをマスタ最大PTP決定器208に送信する。マスタ最大PTP決定器208は、マスタサンプルグループジェネレータ204から受信したN個のグループから、後述の方法でマスタ最大PTP値(MMaxPTP)を決定または算出する。さらに、マスタ最大PTP決定器208は、マスタサンプルデータ218のN個のグループそれぞれについて、最大値および最小値をサンプリングする時間を決定または算出する。マスタ最大PTP決定器208は、マスタサンプルデータ218のN個のグループそれぞれについて、最大値と最小値をサンプリングした時間を、接続部224を介してマスタ平均周波数決定器212に送信する。マスタ平均周波数決定器212は、マスタサンプルデータ218のN個のグループのそれぞれについて、最大値と最小値をサンプリングした時間から、後述の方法でマスタ平均周波数MAVFを決定または算出する。マスタ平均周波数MAVFは、統計的な周波数値の一例である。さらに、マスタサンプルグループジェネレータ204は、マスタサンプルデータ218のN個のグループのそれぞれについて、最大値と最小値をサンプリングした時間を平均位相決定器216に送信する。
【0164】
同様に、スレーブサンプルグループジェネレータ206は、スレーブサンプルデータ220をN個のグループにグループ化する。例えば、スレーブサンプルグループジェネレータ206は、スレーブサンプルデータ220から所定の数、例えばN個(8グループまたは16グループ等)のグループを生成すると決定し、スレーブサンプルデータ220を所定の数のグループに分割する。例示すると、スレーブサンプルグループジェネレータ206は、所定の数のバッファを含み、所定の数のグループのそれぞれを、所定の数のバッファのうちの対応する1つに格納する。さらに例示すると、スレーブサンプルデータ220の第1のグループは、スレーブサンプルグループジェネレータ206の第1バッファに格納され、スレーブサンプルデータ220の第2のグループは、スレーブサンプルグループジェネレータ206の第2バッファに格納される。一例として、スレーブサンプルデータ220のN個のグループのそれぞれは、スレーブRF信号の1サイクルに対応する。例示すると、スレーブサンプルデータ220の第1のグループは、スレーブRF信号の第1のサイクルのパラメータの測定値をサンプリングすることによって生成され、スレーブサンプルデータ220の第2のグループは、スレーブRF信号の第2のサイクルのパラメータの測定値をサンプリングすることによって生成される。
【0165】
スレーブサンプルグループジェネレータ206は、N個のスレーブサンプルデータ220のグループをN個の接続部228を介してスレーブ最大PTP決定器210に送信する。スレーブ最大PTP決定器210は、スレーブサンプルグループジェネレータ206から受信したN個のグループから、後述の方法で、スレーブ最大PTP(SMaxPTP)を決定または算出する。例えば、マスタサンプルデータ218とスレーブサンプルデータ220の並列処理がある。例示すると、スレーブ最大PTP決定器210は、マスタ最大PTP決定器208によるマスタ最大PTP値MMaxPTPの決定と同時に、スレーブ最大PTP値SMaxPTPを決定する。別の例としては、スレーブ最大PTP決定器210は、マスタ最大PTP決定器208によるマスタ最大PTP値MMaxPTPの決定時から予め設定された時間内にスレーブ最大PTP値SmaxPTPを決定する。別の例としては、スレーブサンプルデータ220のN個のグループは、マスタサンプルデータ218のN個のグループがマスタ最大PTP決定器208によって処理される時間内に、スレーブ最大PTP決定器210によって処理される。
【0166】
さらに、スレーブ最大PTP決定器210は、スレーブサンプルデータ220のN個のグループのそれぞれについて、最大値および最小値をサンプリングする時間を決定または算出する。スレーブ最大PTP決定器210は、スレーブサンプルデータ220のN個のグループのそれぞれについて、最大値と最小値をサンプリングした時間を、接続部230を介して平均位相決定器216に送信する。平均位相決定器216は、マスタサンプルデータ218のN個のグループのそれぞれについて最大値と最小値をサンプリングした時間と、スレーブサンプルデータ220のN個のグループのそれぞれについて最大値と最小値をサンプリングした時間から、平均位相φを決定または算出する。平均位相φは後述する方法で算出され、統計的な位相値の一例である。値MMaxPTP、SMaxPTP、MAVF、およびφは、圧縮データ135の例である(図1A)。同様に、値MMaxPTP、SMaxPTP、MAVF、およびφは、圧縮データ135A~135Gのいずれかの例である。
【0167】
TTL信号222を使用して、マスタ最大PTP決定器208、スレーブ最大PTP決定器210、マスタ平均周波数決定器212、および平均位相決定器216の動作を、本明細書に記載の複数のRFセンサから受信した測定信号をサンプリングするADC130の動作と同期させることにより、任意の圧縮データ135A~135GがすべてのRFセンサと同期されて、圧縮データの時間整合をADC130の精度で維持する。
【0168】
平均位相φは、値MMaxPTP、SMaxPTP、およびMAVFの出力に対して同期して生成される。例えば、TTL信号222に同期して、平均位相φ、値MMaxPTP、SMaxPTP、およびMAVFが出力される。例示すると、平均位相φ、値MMaxPTP、SMaxPTP、MAVFが同一クロックサイクルで出力される。別の例としては、平均位相φ、値MMaxPTP、SMaxPTP、およびMAVFは、TTL信号222の複数の連続するクロックサイクルの間に出力され、連続するクロックサイクルの数は所定の範囲内である。さらに別の例としては、N個のクロックサイクルの間に、平均位相φ、値MMaxPTP、SMaxPTP、およびMAVFが出力される。
【0169】
一実施形態では、DCU132は、任意の他の数のレジスタを含む。例えばDCU132は、4つのレジスタ202A~202Dの代わりに第1の8つのレジスタのセットを含み、4つのレジスタ202E~202Hの代わりに第2の8つのレジスタのセットを含む。この実施形態では、マスタサンプルグループジェネレータ204とスレーブサンプルグループジェネレータ206は不要である。8つのレジスタの第1のセットは、マスタ最大PTP決定器208に結合され、状態レジスタの第2のセットは、スレーブ最大PTP決定器210に結合される。他の例としては、4つのレジスタ202A~202Dの代わりに、1つのレジスタを使用し、4つのレジスタ202E~202Fの代わりに、1つのレジスタを使用する。
【0170】
ある実施形態では、プロセッサ101がTTL信号222を供給する代わりに、プロセスコントローラ116(図1A)のプロセッサ105がTTL信号222を供給する。
【0171】
一実施形態では、DCU132は、RFジェネレータ109、またはRFジェネレータ109A、またはRFジェネレータ109B、またはRFジェネレータ109C、またはRFジェネレータ109D等のRFジェネレータの固定動作範囲に特有のものである。例えば、固定動作範囲が変更された場合、DCU132の代わりに別のDCUが使用される。同様に、DCU132は、ADU130の固定サンプリング速度と、RFセンサ(RFセンサ106、またはRFセンサ106A、またはRFセンサ106B、またはRFセンサ106C、またはRFセンサ106D、またはRFセンサ106E、またはRFセンサ106F、またはRFセンサ106G等)の周波数応答に特有のものである。同様に、DCU132は、第1のフィルタと第2のフィルタとを含む複数のフィルタの固定係数に特有のものである。第1のフィルタは、ADC130とレジスタ202Aとの間に接続され、第2のフィルタは、ADC130とレジスタ202Eとの間に接続される。第1のフィルタは、マスタサンプルデータ218を有する第1のデジタル信号からのノイズをフィルタリングするように結合され、第2のフィルタは、スレーブサンプルデータ220を有する第2のデジタル信号からのノイズをフィルタリングするように結合される。
【0172】
図3Aは、マスタマックスPTP決定器208(図2)によって実行される方法の実施形態を説明するための図である。マスタ最大PTP決定器208は、マスタサンプルグループジェネレータ204(図2)からマスタサンプルデータ218のN個のグループを受信し、N個のグループのそれぞれの最大値(例えば最大の大きさ)および最小値(例えば最小の大きさ)を特定する。最大値は、マスタサンプルデータ218のグループの全ての値の最大値であり、最小値は、マスタサンプルデータ218のグループの全ての値の最小値である。例えば、マスタ最大PTP決定器208は、マスタサンプルデータ218のグループ1から、最大値Mmx1および最小値Mmn1を特定する。別の例としては、マスタ最大PTP決定器208は、マスタサンプルデータ218のグループ2から、最大値Mmx2および最小値Mmn2を特定し、マスタ最大PTP決定器208は、マスタサンプルデータ218のグループ3から、最大値Mmx3および最小値Mmn3を特定し、マスタ最大PTP決定器208は、マスタサンプルデータ218のグループ(N-2)から、最大値Mmx(N-2)および最小値Mmn(N-2)を特定し、マスタ最大PTP決定器208は、マスタサンプルデータ218のグループ(N-1)から、最大値Mmx(N-1)および最小値Mmn(N-1)を特定し、マスタ最大PTP決定器208はマスタサンプルデータ218のグループNから、最大値MmxNおよび最小値MmnNを特定する。
【0173】
マスタ最大PTP決定器208は、マスタサンプルデータ218のN個のグループのそれぞれの最大値と最小値との差を決定する。例えば、マスタ最大PTP決定器208は、値Mmx1とMmn1との間の第1の差、値Mmx2とMmn2との間の第2の差、値Mmx3とMmn3との間の第3の差を算出する、というようにして、値Mmx(N-2)と値Mmn(N-2)との間の第(N-2)の差、値Mmx(N-1)と値Mmn(N-1)との間の第(N-1)の差、値MmxNと値MmnNとの間の第Nの差を算出するまで続く。マスタ最大PTP決定器208は、マスタサンプルデータ218から算出された第1~第Nの差のうち、最大の大きさ等のマスタ最大ピーク・トゥ・ピーク値MMaxPTPを決定する。例えば、マスタ最大ピーク・トゥ・ピーク値MMaxPTPは、マスタサンプルデータ218のN個のグループから決定された第1~第Nの差のうちの最大値として決定される。最大値MMaxPTPは、マスタ最大PTPである。
【0174】
マスタ最大PTP決定器208は、最大値MMaxPTPをデータトランスミッタ134に送信する(図2)。データトランスミッタ134は、最大値MMaxPTPを、分析コントローラ114のプロセッサ101またはプロセスコントローラ116のプロセッサ105等のプロセッサに送信する(図2)。
【0175】
さらに、マスタ最大PTP決定器208は、マスタサンプルデータ218のN個のグループのそれぞれについて、最大値および最小値がサンプリングまたは達成される時間を特定する。例えば、マスタ最大PTP決定器208は、最大値MMx1がADC130によってサンプリングされる時間tMmx1と、最小値Mmn1がADC130によってサンプリングされる時間tMmn1とを決定する。時間tMmx1およびtMmn1は、マスタマックスPTP決定器208によってTTL信号222に基づいて算出される。例えば、時間tMmx1は、マスタマックスPTP決定器208によって最大値Mmx1が決定される時間である。他の例としては、マスタ最大PTP決定器208は、マスタ最大PTP決定器208によって最大値Mmx1が決定される時間と、マスタサンプルデータ218をADC130からレジスタ202A~202Dおよびマスタサンプルグループジェネレータ204を介して受信するのにかかる時間との差を求め、その差を、最大値Mmx1が決定される時間から差し引いて、ADC130によって最大値Mmx1がサンプリングされる時間を決定する。さらに別の例としては、マスタマックスPTP決定器208は、マスタマックスPTP決定器208とADC130との間の接続部を介して、ADC130に最大値Mmx1のサンプリングする時間を要求する。ADC130は、最大値Mmx1をサンプリングしながら、最大値Mmx1のサンプリング時間を計測し、マスタマックスPTP決定器208とADC130との接続部を介して、その時間をマスタマックスPTP決定器208に提供する。この時間は、ADC130のタイマーにより、ADC130が受信するTTL信号222に基づいて計測される。このタイマーは、ADC130のサンプリング部に結合され、サンプリング部は、ADC130によって受信される、本明細書に記載のマスタ測定からのデータをサンプリングする。
【0176】
同様に、マスタマックスPTP決定器208は、最大値MMx2がADC130によってサンプリングされる時間tMmx2と、最小値Mmn2がADC130によってサンプリングされる時間tMmn2とを決定し、最大値MMx3がADC130によってサンプリングされる時間tMmx3と、最小値Mmn3がADC130によってサンプリングされる時間tMmn3とを決定する。マスタマックスPTP決定器208は、最大値MMx(N-2)がADC130によってサンプリングされる時間tMmx(N-2)と、最小値Mmn(N-2)がADC130によりサンプリングされる時間tMmn(N-2)とを決定し、最大値MMx(N-1)がADC130によってサンプリングされる時間tMmx(N-1)と、最小値Mmn(N-1)がADC130によってサンプリングされる時間tMmn(N-1)を決定し、最大値MMxNがADC130によってサンプリングされる時間tMxNと最小値MmnNがADC130によってサンプリングされる時間tMmnNを決定する。
【0177】
一実施形態では、時間tMmn1~tMmnNが、ADC130によってサンプリングされるパラメータを有するRF信号118(図1A)のような、本明細書に記載のマスタRF信号の最小値に関連づけられるのではなく、時間tMmn1~tMmnNがマスタRF信号のサイクルの正のゼロ交差の時間である。例えば、時間tMmn1は、マスタRF信号の第1のサイクルの間に、マスタRF信号が負の値から正の値に遷移する時間であり、時間tMmn2は、マスタRF信号の第2のサイクルの間に、マスタRF信号が負の値から正の値に遷移する時間である。マスタRF信号の第2のサイクルは、マスタRF信号の第1のサイクルに連続する。マスタRF信号の各サイクルには、正のゼロ交差と負のゼロ交差が1回ずつある。別の例としては、直流(DC)オフセットがマスタRF信号に適用される場合、時間tMmn1は、マスタRF信号の第1のサイクルの間にマスタRF信号が第1の値から第2の値に遷移する時間であり、時間tMmn2は、マスタRF信号の第2のサイクルの間にマスタRF信号が第3の値から第4の値に遷移する時間である。第2の値は第1の値より大きく、第4の値は第3の値より大きい。
【0178】
同様に、この実施形態では、時間tMmx1~tMmxNがマスタRF信号の最大値と関連付けられるのではなく、時間tMmx1~tMmxNがマスタRF信号の各サイクルの負のゼロ交差の時間である。例えば、時間tMmx1は、マスタRF信号の第1のサイクルの間にマスタRF信号が正の値から負の値に遷移する時間であり、時間tMmx2は、マスタRF信号の第2のサイクルの間にマスタRF信号が正の値から負の値に遷移する時間である。なお、マスタRF信号の、あるサイクルの負のゼロ交差は、このサイクルの正のゼロ交差に連続する。例えば、マスタRF信号のサイクルの負のゼロ交差と正のゼロ交差の間には、他のゼロ交差が存在しない。別の例としては、DCオフセットがマスタRF信号に適用される場合、時間tMmx1は、マスタRF信号の第1のサイクルの間にマスタRF信号が第1の値から第2の値に遷移する時間であり、時間tMmx2は、マスタRF信号の第2のサイクルの間にマスタRF信号が第3の値から第4の値に遷移する時間である。第2の値は第1の値より小さく、第4の値は第3の値より小さい。
【0179】
一実施形態では、時間tMmn1~tMmnNがマスタRF信号の最小値に関連付けられるのではなく、時間tMmn1~tMmnNがマスタRF信号の各サイクルの負のゼロ交差の時間である。例えば、時間tMmn1は、マスタRF信号の第1のサイクルの間にマスタRF信号が正の値から負の値に遷移する時間であり、時間tMmn2は、マスタRF信号の第2のサイクルの間にマスタRF信号が正の値から負の値に遷移する時間である。別の例としては、DCオフセットがマスタRF信号に適用される場合、時間tMmx1は、マスタRF信号の第1のサイクルの間にマスタRF信号が第1の値から第2の値に遷移する時間であり、時間tMmx2は、マスタRF信号の第2のサイクルの間にマスタRF信号が第3の値から第4の値に遷移する時間である。第2の値は第1の値より低く、第4の値は第3の値より低い。
【0180】
同様に、この実施形態では、時間tMmx1~tMmxNがマスタRF信号の最大値と関連付けられるのではなく、時間tMmx1~tMmxNがマスタRF信号の各サイクルの正のゼロ交差の時間である。例えば、時間tMmx1は、マスタRF信号の第1のサイクルの間にマスタRF信号が負の値から正の値に遷移する時間であり、時間tMmx2は、マスタRF信号の第2のサイクルにおいてマスタRF信号が負の値から正の値に遷移する時間である。別の例としては、DCオフセットがマスタRF信号に適用される場合、時間tMmx1は、マスタRF信号の第1のサイクルの間にマスタRF信号が第1の値から第2の値に遷移する時間であり、時間tMmx2は、マスタRF信号の第2のサイクルの間にマスタRF信号が第3の値から第4の値に遷移する時間である。第2の値は第1の値より大きく、第4の値は第3の値より大きい。なお、マスタRF信号のサイクルの正のゼロ交差は、このサイクルの負のゼロ交差に連続することに留意されたい。例えば、マスタRF信号のサイクルの正のゼロ交差と負のゼロ交差との間には、他のゼロ交差が存在しない。
【0181】
図3Bは、スレーブ最大PTP決定器210(図2)が実行する方法の一実施形態を説明するための図である。スレーブ最大PTP決定器210は、スレーブサンプルグループジェネレータ206からスレーブサンプルデータ220(図2)のN個のグループのデータを受信し、N個のグループのそれぞれの最大値(例えば最大の大きさ)および最小値(例えば最小の大きさ)を特定する。最大値は、スレーブサンプルデータ220のグループの全ての値の最大値であり、最小値は、スレーブサンプルデータ220のグループの全ての値の最小値である。例えば、スレーブ最大PTP決定器210は、スレーブサンプルデータ220のグループ1から、最大値Smx1および最小値Smn1を特定する。別の例としては、スレーブ最大PTP決定器208は、スレーブサンプルデータ220のグループ2から、最大値Smx2および最小値Smn2を特定する。スレーブ最大PTP決定器208は、スレーブサンプルデータ220のグループ3から、最大値Smx3および最小値Smn3を特定する。スレーブ最大PTP決定器208は、スレーブサンプルデータ220のグループ(N-2)から、最大値Smx(N-2)および最小値Smn(N-2)を特定する。スレーブ最大PTP決定器210は、スレーブサンプルデータ220のグループ(N-1)から、最大値Smx(N-1)および最小値Smn(N-1)を特定する。スレーブ最大PTP決定器210は、スレーブサンプルデータ220のグループNから、最大値SmxNおよび最小値SmnNを特定する。
【0182】
なお、スレーブサンプルデータ220のグループ1は、マスタサンプルデータ218(図2)のグループ1がADC130(図1A)から出力されるのと同じ期間に対応することに留意されたい。例えば、スレーブサンプルデータ220のグループ1は、スレーブ測定信号の一部がサンプリングされるのと同じ期間にマスタ測定信号の一部をサンプリングすることによって出力される。スレーブ測定信号は、スレーブサンプルデータを出力するためにサンプリングされる。同様に、スレーブサンプルデータ220の残りのグループ2~Nのそれぞれは、マスタサンプルデータ218のグループ2~Nのうちの対応する1つと関連付けられている。
【0183】
スレーブ最大PTP決定器210は、スレーブサンプルデータ220の各グループの最大値と最小値との間の差を決定する。例えば、スレーブ最大PTP決定器210は、値Smx1とSmn1との間の第1の差、値Smx2とSmn2との間の第2の差、値Smx3とSmn3との間の第3の差、というようにして、値Smx(N-2)とSmn(N-2)との間の第(N-2)の差、値Smx(N-1)とSmn(N-1)との間の第(N-1)の差、および値SmxNとSmnNとの間の第Nの差までを計算する。スレーブ最大PTP決定器210は、スレーブサンプルデータ220から算出された第1~第Nの差のうち、最大値SMaxPTP(例えば、最大の大きさ)を決定する。最大値SMaxPTPはスレーブ最大PTPである。例えば、最大値SMaxPTPは、スレーブサンプルデータ220の各グループの第1~第Nの全ての差の最大値である。
【0184】
スレーブ最大PTP決定器210は、最大値SMaxPTPをデータトランスミッタ134に送信する(図2)。データトランスミッタ134は、最大値SMaxPTPを、分析コントローラ114のプロセッサ101またはプロセスコントローラ116のプロセッサ105等のプロセッサに送信する(図2)。
【0185】
さらに、スレーブ最大PTP決定器210は、スレーブサンプルデータ220のN個のグループのそれぞれについて、最大値および最小値がサンプリングまたは達成される時間を特定する。例えば、スレーブ最大PTP決定器210は、最大値SMx1がADC130によってサンプリングされる時間tSmx1と、最小値Smn1がADC130によってサンプリングされる時間tSmn1とを決定する。時間tSmx1およびtSmn1は、スレーブマックスPTP決定器210によって、TTL信号222に基づいて算出される。例えば、時間tSmx1は、スレーブ最大PTP決定器210によって最大値Smx1が決定される時間である。他の例としては、スレーブ最大PTP決定器210は、スレーブ最大PTP決定器210によって最大値Smx1が決定された時間と、スレーブサンプルデータ220をADC130からレジスタ202E~202Hおよびスレーブサンプルグループジェネレータ206を介して受信するのにかかった時間との差を判定し、この差を、最大値Smx1が決定された時間から差し引いて、ADC130によって最大値Smx1がサンプリングされる時間を決定する。さらに別の例として、スレーブ最大PTP決定器210は、スレーブ最大PTP決定器210とADC130との間の接続部を介して、最大値Smx1をサンプリングする時間をADC130に要求する。ADC130は、最大値Smx1をサンプリングしながら、最大値Smx1をサンプリングする時間を計測し、その時間を、スレーブ最大PTP決定器210とADC130との間の接続部を介してスレーブ最大PTP決定器210に提供する。この時間は、ADC130のタイマーによって、ADC130が受信するTTL信号222に基づいて計測される。このタイマーは、ADC130のサンプラに結合され、サンプラは、ADC130によって受信されるスレーブ測定信号からデータをサンプリングする。
【0186】
同様に、スレーブ最大PTP決定器210は、最大値SMx2がADC130によりサンプリングされる時間tSmx2と、最小値Smn2がADC130によりサンプリングされる時間tSmn2とを決定し、最大値SMx3がADC130によりサンプリングされる時間tSmx3と、最小値Smn3がADC130によりサンプリングされる時間tSmn3とを決定する。マスタ最大PTP決定器208は、最大値Mmx(N-2)がADC130によってサンプリングされる時間tSmx(N-2)と、最小値Smn(N-2)がADC130によってサンプリングされる時間tMmn(N-2)とを決定し、最大値SMx(N-1)がADC130によってサンプリングされる時間tSmx(N-1)と最小値Smn(N-1)がADC130によってサンプリングされる時間tSmn(N-1)を決定し、最大値SMxNがADC130によってサンプリングされる時間tSmxNと最小値SmnNがADC130によってサンプルされる時間tSmnNとを決定する。
【0187】
一実施形態では、時間tSmn1~tSmnNが、ADC130によってサンプリングされるパラメータを有するRF信号120(図1A)等の、本明細書に記載のスレーブRF信号の最小値に関連付けられるのではなく、時間tSmn1~tSmnNがスレーブRF信号の各サイクルの正のゼロ交差それぞれの時間である。例えば、時間tSmn1は、スレーブRF信号の第1のサイクルの間にスレーブRF信号が負の値から正の値に遷移する時間であり、時間tSmn2は、スレーブRF信号の第2のサイクルの間にスレーブRF信号が負の値から正の値に遷移する時間である。別の例としては、スレーブRF信号にDCオフセットが適用される場合、時間tSmx1は、スレーブRF信号の第1のサイクルの間にスレーブRF信号が第1の値から第2の値に遷移する時間であり、時間tSmx2は、スレーブRF信号の第2のサイクルの間にスレーブRF信号が第3の値から第4の値に遷移する時間である。第2の値は第1の値より大きく、第4の値は第3の値より大きい。スレーブRF信号の第2のサイクルは、スレーブRF信号の第1のサイクルに連続している。スレーブRF信号の各サイクルには、正のゼロ交差と負のゼロ交差が1回ずつある。
【0188】
同様に、この実施形態では、時間tSmx1~tSmxNがスレーブRF信号の最大値と関連付けられるのではなく、時間tSmx1~tSmxNがスレーブRF信号の各サイクルの負のゼロ交差それぞれの時間である。例えば、時間tSmx1は、スレーブRF信号の第1のサイクルの間にスレーブRF信号が正の値から負の値に遷移する時間であり、時間tSmx2は、スレーブRF信号の第2のサイクルの間にスレーブRF信号が正の値から負の値に遷移する時間である。別の例としては、DCオフセットがスレーブRF信号に適用される場合、時間tSmx1は、スレーブRF信号の第1のサイクルの間にスレーブRF信号が第1の値から第2の値に遷移する時間であり、時間tSmx2は、スレーブRF信号の第2のサイクルの間にスレーブRF信号が第3の値から第4の値に遷移する時間である。第2の値は第1の値より低く、第4の値は第3の値より低い。なお、スレーブRF信号のあるサイクルの負のゼロ交差は、そのサイクルの正のゼロ交差に連続する。例えば、スレーブRF信号のサイクルの負のゼロ交差と正のゼロ交差との間には、他のゼロ交差が存在しない。
【0189】
ある実施形態では、時間tSmn1~tSmnNがスレーブRF信号の最小値に関連付けられるのではなく、時間tSmn1~tSmnNがスレーブRF信号の各サイクルの負のゼロ交差それぞれの時間である。例えば、時間tSmn1は、スレーブRF信号の第1のサイクルの間にスレーブRF信号が正の値から負の値に遷移する時間であり、時間tSmn2は、スレーブRF信号の第2のサイクルの間にスレーブRF信号が正の値から負の値に遷移する時間である。別の例としては、DCオフセットがスレーブRF信号に適用される場合、時間tSmn1は、スレーブRF信号の第1のサイクルの間にスレーブRF信号が第1の値から第2の値に遷移する時間であり、時間tSmn2は、スレーブRF信号の第2のサイクルの間にスレーブRF信号が第3の値から第4の値に遷移する時間である。第2の値は第1の値より小さく、第4の値は第3の値より小さい。
【0190】
同様に、この実施形態では、時間tSmx1~tSmxNがスレーブRF信号の最大値と関連付けられるのではなく、時間tSmx1~tSmxNがスレーブRF信号の各サイクルの正のゼロ交差それぞれの時間である。例えば、時間tSmx1は、スレーブRF信号の第1のサイクルの間にスレーブRF信号が負の値から正の値に遷移する時間であり、時間tSmx2は、スレーブRF信号の第2のサイクルの間にスレーブRF信号が負の値から正の値に遷移する時間である。なお、スレーブRF信号の、あるサイクルの正のゼロ交差は、そのサイクルの負のゼロ交差に連続する。例えば、スレーブRF信号のサイクルの正のゼロ交差から負のゼロ交差との間には、他のゼロ交差が存在しない。別の例としては、DCオフセットがスレーブRF信号に適用される場合、時間tSmx1は、スレーブRF信号の第1のサイクルの間にスレーブRF信号が第1の値から第2の値に遷移する時間であり、時間tSmx2は、スレーブRF信号の第2のサイクルの間にスレーブRF信号が第3の値から第4の値に遷移する時間である。第2の値は第1の値より大きく、第4の値は第3の値より大きい。
【0191】
図3Cは、マスタ平均周波数決定器212(図2)がマスタ平均周波数MAVFを決定するために実行する方法の一実施形態を説明するための図である。マスタ平均周波数決定器212は、マスタサンプルデータ218(図2)に関連付けられた時間をマスタ最大PTP決定器208(図2)から受信する。例えば、マスタ平均周波数決定器212は、マスタ最大PTP決定器208から接続部224(図2)を介して時間tMmx1~tMmxNと時間tMmn1~tMmnNを受信する。
【0192】
マスタ平均周波数決定器212は、時間tMmx1~tMmxNと時間tMmn1~tMmnNからマスタ平均周波数MAVFを、例えば計算または演算する等して決定する。例えば、マスタ平均周波数決定器212は、時間tMmx1とtMmn1との差の絶対値を算出し、その差に2を掛けて、マスタサンプルデータ218(図2)の第1のグループに関連付けられた期間PM1を決定する。一例として、期間PM1は、RF信号118(図1A)等の本明細書に記載の、値Mmx1およびMmn1が算出されるマスタRF信号の第1のサイクルの発生時間である。同様に、マスタ平均周波数決定器212は、時間tMmx2とtMmn2との差の絶対値を算出し、その差に2を掛けて期間PM2を決定し、時間tMmx3とtMmn3との差の絶対値を算出し、その差に2を掛けて期間PM3を決定する。例えば、期間PM2は、Mmx2およびMmn2が算出されるマスタRF信号の第2のサイクルの発生時間である。また、マスタ平均周波数決定器212は、時間tMmx(N-2)とtMmn(N-2)との差の絶対値を算出し、その差に2を掛けて期間PM(N-2)を決定し、時間tMmx(N-1)とtMmn(N-1)との差の絶対値を算出し、その差に2を掛けて期間PM(N-1)ろ決定し、時間tMmxNとtMmnNとの差の絶対値を算出し、その差に2を掛けて期間PMNを決定する。例えば、期間PMNはマスタRF信号のN番目のサイクルの発生時間であり、これに対して、値MmxNおよびMmnNが算出される。
【0193】
マスタ平均周波数決定器212は、期間PM1~PMNの平均を算出し、マスタ平均期間MAVPを決定する。例えば、マスタ平均周波数決定器212は、期間PM1~PMNを合計し、その合計を期間の数N(Nはマスタサンプルデータ118のグループの数)で割ることにより、期間の平均を決定する。期間PM1~PMNの平均がマスタ平均期間MAVPである。マスタ平均周波数決定器212は、マスタ平均期間MAVPを反転してマスタ平均周波数MAVFを生成する。例えば、周波数決定器212は、マスタ平均周波数MAVFを、1とマスタ平均期間MAVPとの比として算出する。
【0194】
マスタ平均周波数決定器212は、マスタ平均周波数MAVFをデータトランスミッタ134(図2)に送信する。データトランスミッタ134は、マスタ平均周波数MAVFを、分析コントローラ114のプロセッサ101またはプロセスコントローラ116のプロセッサ105等のプロセッサに送信する(図2)。
【0195】
図3Dは、平均位相決定器216(図2)が平均位相φを決定するために実行する方法の一実施形態を説明するための図である。平均位相決定器216は、マスタ最大PTP決定器208(図2)から、マスタサンプルデータ218(図2)に関連付けられた各時間を受信する。例えば、平均位相決定器216は、接続部226(図2)を介して、マスタ最大PTP決定器208から時間tMmx1~tMmxNと時間tMmn1~tMmnNを受信する。さらに、平均位相決定器216は、スレーブ最大PTP決定器210(図2)から、スレーブサンプルデータ220(図2)に関連付けられた各時間を受信する。例えば、平均位相決定器216は、接続部230(図2)を介して、スレーブ最大PTP決定器210から時間tSmx1~tSmxNと時間tSmn1~tSmnNを受信する。
【0196】
平均位相決定器216は、時間tMmx1~tMmxN、時間tMmn1~tMmnN、時間tSmx1~tSmxN、および時間tSmn1~tSmnNから平均位相φを、例えば計算または演算する等して決定する。例えば、平均位相決定器216は、時間tMmx1とtSmx1との差の絶対値を算出して値Mxav1を決定し、時間tMmn1とtSmn1との差の絶対値を算出して値Mnav1を決定し、値Mxav1とMnav1との平均値を算出して平均位相Av1を決定する。一例として、平均位相Av1は、RF信号118および120(図1A)等、値Mmx1、Mmn1、Smx1、およびSmn1が算出される本明細書に記載のマスタおよびスレーブRF信号の第1のサイクルそれぞれの間の平均位相である。
【0197】
同様に、別の例としては、平均位相決定器216は、時間tMmx2とtSmx2との差の絶対値を算出して値Mxav2を決定し、時間tMmn2とtSmn2との差の絶対値を算出して値Mnav2を決定し、値Mxav2とMnav2との平均値を算出して平均位相Av2を決定する。一例として、平均位相Av2は、RF信号118および120(図1A)等、値Mmx2、Mmn2、Smx2、およびSmn2が算出される本明細書に記載のマスタおよびスレーブRF信号の第2のサイクルそれぞれの間の平均位相である。
【0198】
さらに別の例として、平均位相決定器216は、時間tMmx3とtSmx3との差の絶対値を算出して値Mxav3を決定し、時間tMmn3とtSmn3との差の絶対値を算出して値Mnav3を決定し、値Mxav3とMnav3との平均値を算出して平均位相Av3を決定する。
【0199】
さらに別の例として、平均位相決定器216は、時間tMmx(N-2)とtSmx(N-2)との差の絶対値を算出して値Mxav(N-2)を決定し、時間tMmn(N-2)とtSmn(N-2)との差の絶対値を算出して値Mnav(N-2)を決定し、値Mxav(N-2)とMnav(N-2)との平均値を算出して平均位相Av(N-2)を決定する。
【0200】
他の例として、平均位相決定器216は、時間tMmx(N-1)とtSmx(N-1)の差の絶対値を算出して値Mxav(N-1)を決定し、時間tMmn(N-1)とtSmn(N-1)の差の絶対値を算出して値Mnav(N-1)を決定し、値Mxav(N-1)とMnav(N-1)との平均を算出して平均位相Av(N-1)を決定する。
【0201】
さらに別の例として、平均位相決定器216は、時間tMmxNとtSmxNとの差の絶対値を算出して値MxavNを決定し、時間tMmnNとtSmnNとの差の絶対値を算出して値MnavNを決定し、値MxavNとMnavNの平均値を算出して平均位相AvNを決定する。
【0202】
平均位相決定器216は、マスタサンプルデータ118とスレーブサンプルデータ120のN個のグループ全てについて、平均位相Av1~Avnの平均値を決定して平均位相φを決定する。例えば、平均位相決定器216は、平均位相Av1~Avnを合計して合計値を決定し、合計値をNで割って平均位相φを決定する。
【0203】
平均位相決定器216は、平均位相φをデータトランスミッタ134(図2)に送信する。データトランスミッタ134は、平均位相φを、分析コントローラ114のプロセッサ101またはプロセスコントローラ116のプロセッサ105等のプロセッサに送信する(図2)。
【0204】
図3Eは、マスタ平均周波数決定器350の一実施形態を示す図である。マスタ平均周波数決定器350は、マスタ平均周波数決定器212(図2)の一例である。マスタ平均周波数決定器350は、サンプルカウンタ(SC)を、SC1、SC2、SC3などからSC(N-2)、SC(N-1)、SCN(ここでNは整数である)まで含む。例えば、各サンプルカウンタSC1~SCNは、フリップフロップをカスケード接続したデジタルカウンタである。
【0205】
マスタ平均周波数決定器350は、時間カウンタ(TC)TC1、時間カウンタTC2、時間カウンタTC3などから時間カウンタTC(N-2)、TC(N-1)およびTCN(ここでNは整数である)まで含む。例としては、各時間カウンタTC1~TCNは、フリップフロップをカスケード接続したデジタルカウンタである。
【0206】
マスタ平均周波数決定器350は、時間乗算器(TM)を、TM1、TM2、TM3などから、時間乗算器TM(N-2)、TM(N-1)、およびTMN(ここでNは整数である)まで含む。また、マスタ平均周波数決定器350は、周波数決定器を、F1、F2、F3などから、F(N-2)、F(N-1)、およびFN(ここでNは整数である)まで含む。各周波数決定器F1~FNは、反転値を算出するインバータである。マスタ平均周波数決定器350は、平均周波数算出器AVFCに結合される。平均周波数算出器AVFCは、データトランスミッタ134に結合される(図2)。
【0207】
各サンプルカウンタは、マスタ最大PTP決定器208(図2)および、対応する時間カウンタに結合される。例えば、サンプルカウンタSC1が時間カウンタTC1に結合され、サンプルカウンタTC2が時間カウンタSC2に結合される、などというようにして、サンプルカウンタSCNが時間カウンタTCNに結合されるまで続く。
【0208】
また、各時間カウンタは、対応する時間乗算器に結合される。例えば、時間カウンタTC1は時間乗算器TM1に結合され、時間カウンタTC2は時間乗算器TM2に結合される、などというようにして、時間カウンタTCNが時間乗算器TMNに結合されるまで続く。
【0209】
各時間乗算器は、対応する周波数決定器に結合される。例えば、時間乗算器TM1は周波数決定器F1に結合され、時間乗算器TM2は周波数決定器F2に結合される、などというようにして、時間乗算器TMNが周波数決定器FNに結合されるまで続く。周波数決定器F1~FNは、平均周波数算出器AVFCに結合される。
【0210】
サンプルカウンタSC1は、マスタサンプルデータ218(図2)の第1のグループを受信し、第1のグループ内の最大値Mmx1と最小値Mmn1との間の第1グループ内の第1の数のサンプルをカウントする。サンプルカウンタSC1は、第1の数のサンプルを時間カウンタTC1に提供する。同様に、サンプルカウンタSC2は、マスタサンプルデータ218(図2)の第2のグループを受信し、第2のグループ内の最大値Mmx2と最小値Mmn2との間の、第2のグループ内の第2の数のサンプルをカウントする。また、サンプルカウンタSCNは、マスタサンプルデータ218(図2)のN番目のグループを受信し、N番目のグループ内の最大値MmxNと最小値MmnNとの間の、N番目のグループ内のN番目の数のサンプルをカウントする。
【0211】
時間カウンタTC1は、サンプルカウンタSC1から第1の数のサンプルのカウントを受信し、ADC130によって第1の数のサンプルを得るのに要した第1の時間量を測定する。例えば、時間カウンタTC1は、時間カウンタTC1とADC130との間の接続部を介してADC130(図1A)に要求を送り、連続する2つのサンプルを得るのに要した時間を第1の数のサンプルから決定する。時間を受信すると、時間カウンタTC1は、その時間に第1の数のサンプルを乗算し、ADC130によって第1の数のサンプルを得るのに要した第1の時間量を決定する。
【0212】
同様に、時間カウンタTC2は、サンプルカウンタSC2から第2の数のサンプルのカウントを受信し、ADC130によって第2の数のサンプルを得るのに要した第2の時間量を測定する。例えば、時間カウンタTC2は、時間カウンタTC2とADC130との間の接続部を介してADC130に要求を送り、連続する2つのサンプルを得るのに要した時間を第2数のサンプルから決定する。時間を受信すると、時間カウンタTC2は、その時間に第2の数のサンプルを乗算して第2の時間量を決定する。
【0213】
また、時間カウンタTCNは、サンプルカウンタSCNからN番目の数のサンプルのカウントを受信し、ADC130によってN番目数のサンプルを得るのに要したN番目の時間量を測定する。例えば、時間カウンタTCNは、時間カウンタTCNとADC130との間の接続部を介してADC130に要求を送り、連続する2つのサンプルを得るのに要した時間をN番目数のサンプルから決定する。時間を受信すると、時間カウンタTCNは、その時間にN番目の数のサンプルを乗算することで、N番目の時間量を決定する。
【0214】
時間乗算器TM1は、時間カウンタTC1から第1の時間量を受信し、第1の時間量に2を掛けて、第1の数のサンプルに関連付けられた第1の時間値を算出する。同様に、時間乗算器TM2は、時間カウンタTC2から第2の時間量を受信し、第2の時間量に2を掛けて第2の時間値を算出し、時間乗算器TMNは、時間カウンタTCNからN番目の時間量を受信し、第2の時間量に2を掛けてN番目の時間値を算出する。
【0215】
周波数決定器F1は、時間乗算器TM1から第1の時間値を受信し、第1の時間値を反転して、第1の数のサンプルに関連付けられた第1の周波数値を算出する。同様に、周波数決定器F2は、時間乗算器TM2から第2の時間値を受信し、第2の時間値を反転させて第2の数のサンプルに関連付けられた第2の周波数値を算出し、周波数決定器FNは、時間乗算器TMNからN番目の時間値を受信し、N番目の時間値を反転させてN番目の数のサンプルに関連付けられたN番目の周波数値を算出する。
【0216】
平均周波数算出器AVFCは、周波数決定器F1~FNから第1~第Nの周波数値を受信し、N個の周波数値の平均値を算出する。例えば、平均周波数算出器AVFCは、第1~第Nの周波数値の合計を演算し、その合計をNで割ってマスタ平均周波数MAVFを決定する。平均周波数算出器AVFCは、マスタ平均周波数MAVFをデータトランスミッタ134に提供する。
【0217】
図3F-1は、グループ304A、304B、304C、および304Dの全てのうち最も大きい振れ幅を有するグループ304Dと、対応するグループ318D(図3F-2)を説明するためのグラフ302の一実施形態である。グラフ302は、電力対時間tのプロット304を含む。グループ304A~304Dは、マスタサンプルデータ218(図2)のグループ1~Nのうち連続する4つのうちのいずれかの例である。プロセッサ101または105は、グループ304Dが最大の大きさ306Aおよび最小の大きさ306Bを有すると決定する。最大の大きさ306Aは、グループ304Dの全ての値のうちの最大値であり、最小の大きさ306Bは、グループ304Dの全ての値のうちの最小値である。
【0218】
プロセッサ101または105(図1A)は、グループ304Dが最も大きい振れ幅を有すると決定する。例えば、プロセッサ101または105は、グループ304A~304Dのそれぞれについて、最大と最小の大きさの間の差を算出する。プロセッサ101または105は、さらに、最大の大きさ306Aと最小の大きさ306Bの間の差が、全ての差の中で最大であると決定して、グループ304Dが最も大きい振れ幅を有すると決定する。グループ304A~304Dの全てのうち最も大きい振れ幅を有するグループ304Dを、本明細書では優勢マスタグループと称する場合がある。優勢マスタグループ内の最大の大きさ306Aを、本明細書では優勢マスタ最大値と称する。また、優勢マスタグループ内の最小の大きさ306Bを、本明細書では優勢マスタ最小値と称する。
【0219】
また、プロセッサ101または105は、グループ304Cの最大の大きさが最も高いと決定する。例えば、プロセッサ101または105は、グループ304Cの最大の大きさ310Aが、グループ304A~304Dの最大の大きさの中で最も大きいと決定する。グループ304C内の最大の大きさ310Aを、本明細書ではグローバルマスタ最大値と称する。
【0220】
さらに、プロセッサ101または105は、グループ304Bの最小の大きさが最も小さいと決定する。例えば、プロセッサ101または105は、グループ304Bの最小の大きさ312Bが、グループ304A~304Dの最小の大きさの中で最も小さいと判断する。グループ304B内の最小の大きさ312Bを、本明細書ではグローバルマスタ最小値と称する。
【0221】
プロセッサ101または105は、優勢マスタグループであるグループ304Dにおいて、第1の正の交差が発生する時間308Aを決定する。プロセッサ101または105は、あるグループに対する正の交差を、そのグループ内の負の値からグループ内の正の値への変化が起きる時間であると決定する。また、プロセッサ101または105は、グループ304Dにおいて第1の負の交差が発生する時間308Bを決定する。プロセッサ101または105は、あるグループに対する負の交差を、そのグループ内の正の値からグループ内の負の値への変化が起きる時間であると決定する。各時間308Aおよび308Bは、その時間がプロットされるX軸上の位置である。本明細書では、時間308Aをマスタ正エッジと呼び、時間308Bをマスタ負エッジと称する。
【0222】
なお、プロセッサ101または105は、各グループ304A~304Dの残りの正と負の交差を識別できるが、無視することに留意されたい。例えば、プロセッサ101は、第2の正の交差314Aおよび第2の負の交差314Bを識別するが、交差314Aおよび314Bを無視する。
【0223】
プロセッサ101または105は、さらに、グループ304A~304Dについての全ての幅の合計を決定する。例えば、グループ304Dの幅は、プロセッサ101によって、時間308Bと308Aの間の時間差として算出される。プロセッサ101は、グループ304D内の残りの正と負の交差それぞれの間の各時間差を無視する。同様に、グループ304A~304Cの幅も算出される。プロセッサ101は、グループ304A~304Dの全ての幅の合計を算出する。なお、グループ304A~304Dの全ての幅の合計を、本明細書では合計マスタ幅と称する。
【0224】
プロセッサ101または105は、合計マスタ幅に基づいて平均マスタ幅を算出する。プロセッサ101または105は、グループ304A~304Dの全ての幅の平均を算出して平均マスタ幅を算出する。例えば、プロセッサ101は、グループ304A~304Dに基づいて算出された合計マスタ幅を分割し、合計マスタ幅を4で割って、平均マスタ幅を決定する。
【0225】
なお、優勢マスタ最大値、グローバルマスタ最大値、優勢マスタ最小値、グローバルマスタ最小値、マスタ正エッジ、マスタ負エッジ、合計マスタ幅、および平均マスタ幅のうちの1つまたは複数が、圧縮データ135(図1A)等の、本明細書に記載の圧縮データの例である。
【0226】
一実施形態では、グループ304A~304Dのそれぞれの最大の大きさ、グループ304A~304Dのそれぞれの最小の大きさ、グループ304A~304Dのそれぞれの第1の正の交差が発生する時間、グループ304A~304Dのそれぞれの第1の負の交差が発生する時間、のうちの1つまたは複数が、圧縮データ135(図1A)等の、本明細書に記載の圧縮データの例である。
【0227】
ある実施形態では、プロセッサ101または105は、最大および最小の大きさ306Aおよび306Bに基づいて、差異優勢マスタ振幅(DDMA)を決定する。例えば、プロセッサ101は、最大の大きさ306Aと最小の大きさ306Bの差を算出し、その差を2で割ってDDMAを決定する。さらに、この実施形態では、プロセッサ101または105は、振幅310Aおよび312Bに基づいて、差異グローバルマスタ振幅(DGMA)を決定する。例えば、プロセッサ101は、最大振幅310Aと最小振幅312Bの差を算出し、その差を2で割ってDGMAを決定する。また、この実施形態では、プロセッサ101または105は、時間308Aと308Bまたは時間308Bと308Aとの絶対差を決定し、その絶対差に2を掛けて優勢マスタ位相を算出する。
【0228】
さらに、この実施形態では、プロセッサ101または105は、平均マスタ幅に基づいて平均マスタ期間を決定する。プロセッサ101または105は、合計マスタ幅と、グループ304A~304D内の幅の数とに基づいて、平均マスタ幅を算出する。例えば、プロセッサ101は、平均マスタ幅を、合計マスタ幅と、グループ304A~304D内の幅の数の合計との比率として算出する。さらに例示すると、プロセッサ101は、平均マスタ幅を、合計マスタ幅と4との比率として算出する。この例示では、平均マスタ幅を算出するために、プロセッサ101は、各グループ304A~304D内の第1の正の交差以外の正の交差を無視し、第1の負の交差以外の負の交差を無視する。この例示では、プロセッサ101は、平均マスタ期間を、2と平均マスタ幅の積として算出する。
【0229】
また、この実施形態では、プロセッサ101または105が、マスタサンプルグループジェネレータ204によってグループ304Dが生成される間のTTL信号222(図2)のクロックサイクルの合計数をカウントする。プロセッサ101または105は、さらに、TTL信号222の各クロックサイクル内の状態を識別して、合計優勢マスタデジタル値を生成する。例えば、プロセッサ101または105は、グループ304Dが生成される期間に論理レベル1が達成される回数をカウントし、その期間に論理レベル0が達成される回数をカウントする。例示すると、プロセッサ101または105は、TTL信号222の論理レベルが予め設定された閾値よりも大きいと決定して、論理レベルが1であると決定する。この例示では、プロセッサ101または105は、TTL信号222の論理レベルが予め設定された閾値より小さいと決定して、論理レベルがゼロであると決定する。この例示では、プロセッサ101または105は、論理レベルが1である回数または論理レベルが0である回数をカウントして、合計優勢マスタデジタル値を決定する。
【0230】
この実施形態では、差異優勢マスタ振幅、差異グローバルマスタ振幅、優勢マスタ位相、平均マスタ期間、および合計優勢マスタデジタル値のうちの1つまたは複数が、圧縮データ135等の本明細書に記載の圧縮データの例である。
【0231】
一実施形態では、プロセッサ101または105は、残りの各グループ304A~304Cがマスタサンプルグループジェネレータ204によって生成される間のTTL信号222(図2)のクロックサイクルの合計数をカウントする。プロセッサ101または105は、さらに、TTL信号222の各クロックサイクル内の状態を識別して、グループ304A~304Cのそれぞれについて合計マスタデジタル値を生成する。例えば、グループ304Dを参照して上述したのと同様の方法で、プロセッサ101または105は、各グループ304A~304Cが生成される期間に論理レベル1が達成される回数をカウントし、その期間に論理レベル0が達成される回数をカウントする。合計マスタのデジタル値は、本明細書に記載の圧縮データの一例である。
【0232】
一実施形態では、グループ304Bの代わりに、グループ304Dがグローバルマスタ最小値を有する。
【0233】
ある実施形態では、グループ304Cの代わりに、グループ304Dがグローバルマスタ最大値を有する。
【0234】
図3F-2は、グループ318Bが、大きさ306Aおよび306Bを有するグループ304D(図3F-1)に対応しないことを説明するためのグラフ316の一実施形態である。グラフ316は、電力対時間tのプロット318を含む。プロット318は、グループ318A、318B、318C、および318Dを含むが、これらはスレーブサンプルデータ220(図2)のグループ1~Nのうち、連続するいずれか4つの例である。プロセッサ101または105は、グループ318Bが最大の大きさ320Aおよび最小の大きさ320Bを有すると決定する。最大値320Aは、グループ318Bの全ての値の最大値であり、最小値320Bは、グループ318Bの全ての値の最小値である。
【0235】
なお、最大および最小の大きさ320Aおよび320Bを有するグループ318Bは、グループ304Dに対応しない。例えば、グループ318Bは、ADC130によってグループ318A~318Dのうち2番目にサンプリングされてスレーブサンプルデータ220が生成され、グループ304Dは、グループ304A~304Dのうち4番目にサンプリングされてマスタサンプルデータ218が生成される。例示すると、グループ318Bは、グループ304Dがサンプリングされる期間と比較して、TTL信号222の異なる期間にサンプリングされる。この例示では、グループ318Bはグループ304Dと比較して2クロックサイクル早くサンプリングされ、これらのクロックサイクルはTTL信号222のものである。むしろ、グループ318Dはグループ304Dに対応する。例えば、グループ318Dは、ADC130によってグループ318A~318Dのうち4番目にサンプリングされてスレーブサンプルデータ220を生成し、グループ304Dもグループ304A~304Dのうち4番目にサンプリングされてマスタサンプルデータ218を生成する。例示すると、グループ318Dは、グループ304Dがサンプリングされる期間と比較して、TTL信号222の同じ期間にサンプリングされる。この例示では、グループ318Dは、グループ304Dがサンプリングされるのと同じ、TTL信号222の1つまたは複数のクロックサイクルの間にサンプリングされる。別の例示としては、グループ318Dが生成されるスレーブ測定信号の一部は、RFセンサによってマスタ測定信号の一部が出力されるのと同じ期間に、RFセンサによって出力される。この例示では、グループ304Dは、マスタ測定信号の一部から生成されている。そのため、優勢グループ304Dに対応するグループ318Dの最大の大きさ322Aと最小の大きさ322Bが、分析コントローラ101またはプロセスコントローラ105によって分析される。最大の大きさ322Aは、グループ318Dの全ての大きさの中で最も高い大きさであり、最小の大きさ322Bは、グループ318Dの全ての大きさの中で最も低い大きさである。
【0236】
プロセッサ101または105は、さらに、グループ318Bが最大の振れ幅を有すると決定する。例えば、プロセッサ101または105は、グループ318A~318Dのそれぞれについて、最大と最小の大きさの間の差を算出する。プロセッサ101または105は、さらに、最大の大きさ320Aと最小の大きさ320Bの間の差が全ての差の中で最も大きいと決定して、グループ318Bが最大の振れ幅を有すると決定する。全てのグループ318A~318Dの中で最も大きな振れ幅を有するグループ318Bを、本明細書では優勢スレーブグループと称する場合がある。優勢スレーブグループ内の最大の大きさ320Aを、本明細書では優勢スレーブ最大値と称する。また、優勢スレーブグループ内の最小の大きさ320Bを、本明細書では優勢スレーブ最小値と称する。
【0237】
また、プロセッサ101または105は、グループ318A~318Dの中で、グループ318Cの最大の大きさがもっとも高いと決定する。例えば、プロセッサ101または105は、グループ318Cの最大の大きさ324Aが、グループ318A~318Dの最大の大きさの中で最も大きいと決定する。グループ318C内の最大の大きさ324Aを、本明細書ではグローバルスレーブ最大値と称する。
【0238】
また、プロセッサ101または105は、グループ318A~318Dの中で、グループ318Aの最小の大きさが最も低いと決定する。例えば、プロセッサ101または105は、グループ318Aの最小の大きさ326Bが、グループ318A~318Dの最小の大きさの中で最も小さいと判断する。グループ318A内の最小の大きさ326Bを、本明細書ではグローバルスレーブ最小値と称する。
【0239】
プロセッサ101または105は、優勢スレーブグループ318Bにおいて第1の正の交差が発生する時間328Aを決定する。また、プロセッサ101または105は、グループ318Bにおいて第1の負の交差が発生する時間328Bを決定する。各時間328Aおよび328Bは、その時間がプロットされるX軸上の位置である。本明細書では、時間308Aをスレーブ正エッジと呼び、時間328Bをスレーブ負エッジと称する。なお、プロセッサ101または105は、各グループ304A~304Dにおける残りの正および負の交差を識別できるが無視するのと同じように、各グループ318A~318Dにおける残りの正と負の交差を識別できるが無視することに留意されたい。
【0240】
プロセッサ101または105は、さらに、グループ318A~318Dについて、全ての幅の合計を決定する。例えば、グループ318Bの幅は、プロセッサ101によって、時間328Bと328Aの間の時間差として算出される。プロセッサ101は、グループ318B内の残りの正と負の交差の間の時間差を無視する。同様して、残りのグループ318A、318C、および318Dの幅が算出される。プロセッサ101は、グループ318A~318Dの全ての幅の合計を算出する。グループ318A~318Dの全ての幅の合計を、本明細書では合計スレーブ幅と称する。
【0241】
プロセッサ101または105は、合計スレーブ幅に基づいて、平均スレーブ幅を算出する。プロセッサ101または105は、グループ318A~318Bの全ての幅の平均を算出することによって、平均スレーブ幅を算出する。例えば、プロセッサ101は、グループ318A~318Dに基づいて算出された合計スレーブ幅を分割し、合計マスタ幅を4で割って、平均スレーブ幅を決定する。
【0242】
なお、優勢スレーブ最大値、グローバルスレーブ最大値、優勢スレーブ最小値、グローバルスレーブ最小値、スレーブ正エッジ、スレーブ負エッジ、合計スレーブ幅、および平均スレーブ幅のうちの1つまたは複数が、圧縮データ135等の本明細書に記載の圧縮データの例である。
【0243】
一実施形態では、プロセッサ101または105は、グループ318A~318Dのうちの1つについて、対応する最大の大きさ、対応する最小の大きさ、対応する正のエッジ交差の発生時間、および対応する負のエッジ交差の発生時間を算出する。グループ318A~318Dのうちの1つは、優勢マスタグループのものと同じ数に対応する。例えば、プロセッサ101は、最大の大きさ322A、最小の大きさ322B、グループ318D内で最初の正の交差が発生する時間330A、およびグループ318D内で最初の負の交差が発生する時間330Bを決定する。グループ318Dは、グループ304Dに対応する。なお、対応する最大の大きさ、対応する最小の大きさ、対応する正のエッジ交差の発生時間、および対応する負のエッジ交差の発生時間のうちの1つまたは複数が、圧縮データ135等の本明細書に記載の圧縮データの例である。
【0244】
なお、各グラフ302および316には、正の交差または負の交差においてゼロの電力値が図示されているが、ある実施形態では、ゼロの電力値の代わりにDCオフセットが使用される。DCオフセットは負の値または正の値である。
【0245】
ある実施形態では、プロセッサ101または105は、最大および最小の大きさ320Aおよび320Bに基づいて、差異優勢スレーブ振幅(DDSA)を決定する。例えば、プロセッサ101は、最大の大きさ320Aと最小の大きさ320Bの間の差を算出し、その差を2で割って、差異優勢スレーブ振幅を決定する。さらに、この実施形態では、プロセッサ101または105は、振幅324Aおよび326Bに基づいて、差異グローバルスレーブ振幅(DGSA)を決定する。例えば、プロセッサ101は、最大振幅324Aと最小振幅326Bの間の差を算出し、その差を2で割って差異グローバルスレーブ振幅を決定する。また、この実施形態では、プロセッサ101または105は、時間328Aと時間328B、または時間328Bと時間328Aの間の絶対差を決定し、その絶対差に2を掛けて、優勢スレーブ位相を算出する。
【0246】
さらに、この実施形態では、プロセッサ101または105は、平均スレーブ幅に基づいて平均スレーブサイクルを決定する。プロセッサ101または105は、合計スレーブ幅と、グループ318A~318D内の幅の数とに基づいて、平均スレーブ幅を算出する。例えば、プロセッサ101は、平均スレーブ幅を、合計スレーブ幅と、グループ318A~318D内の幅の数の合計との比として算出する。さらに例示すると、プロセッサ101は、平均スレーブ幅を、合計スレーブ幅と4との比率として算出する。この例示では、平均スレーブ幅を算出するために、プロセッサ101は、各グループ318A~318D内の第1の正の交差以外の正の交差および第1の負の交差以外の負の交差を無視する。この例示では、プロセッサ101は、平均スレーブ期間を、2と平均スレーブ幅の積として算出する。
【0247】
また、この実施形態では、プロセッサ101または105は、スレーブサンプルグループジェネレータ206によって優勢スレーブグループ318Bが生成される間のTTL信号222(図2)のクロックサイクルの合計数をカウントする。プロセッサ101または105は、さらに、TTL信号222の各クロックサイクル内の状態を識別して、合計優勢スレーブデジタル値を生成する。例えば、プロセッサ101または105は、グループ318Bが生成される期間に、TTL信号222の論理レベル1が達成される回数をカウントする。この例では、プロセッサ101または105は、この期間の間にTTL信号222の論理レベル0が達成された回数をカウントする。例示すると、プロセッサ101または105は、TTL信号222の論理レベルが予め設定された閾値よりも大きいと決定して、論理レベルが1であることを決定する。この例示では、プロセッサ101または105は、TTL信号222の論理レベルが予め設定された閾値より小さいと決定して、論理レベルがゼロであると決定する。この例示では、プロセッサ101または105は、論理レベルが1である回数または論理レベルが0である回数をカウントして、合計優勢スレーブデジタル値を決定する。
【0248】
この実施形態では、差異優勢スレーブ振幅、差異グローバルスレーブ振幅、優勢スレーブ位相、平均スレーブ期間、および合計優勢スレーブデジタル値のうちの1つまたは複数が、圧縮データ135等の本明細書に記載の圧縮データの例である。
【0249】
一実施形態では、プロセッサ101または105は、残りの各グループ318A、318C、および318Dがスレーブサンプルグループジェネレータ206によって生成される間のTTL信号222(図2)のクロックサイクルの合計数をカウントする。プロセッサ101または105は、さらに、TTL信号222の各クロックサイクル内の状態を識別して、グループ318A、318C、および318Dのそれぞれについて、合計スレーブデジタル値を生成する。例えば、グループ318Bを参照して上述したのと同様の方法で、プロセッサ101または105は、各グループ318A、318C、および318Dが生成される期間の間に論理レベル1が達成される回数をカウントし、この期間に論理レベル0が達成される回数をカウントする。この例では、回数は合計スレーブデジタル値と等しい。合計スレーブデジタル値は、圧縮データ135等の本明細書に記載の圧縮データの一例である。
【0250】
一実施形態では、以下のうちの1つまたは複数が、本明細書に記載の合計スレーブデジタル値の例である:MMaxPTP、SMaxPTP、MAVF、φ、優勢マスタ最大値、グローバルマスタ最大値、優勢マスタ最小値、グローバルマスタ最小値、マスタ正エッジ、マスタ負エッジ、合計マスタ幅、平均マスタ幅、各グループ304A~304Cの最大の大きさ、各グループ304A~304Cの最小の大きさ、各グループ304A~304Cにおいて第1の正の交差が生じる時間、各グループ304A~304Cにおいて第1の負の交差が生じる時間、差異優勢マスタ振幅、差異グローバルマスタ振幅、優勢マスタ位相、平均マスタ期間、合計優勢マスタデジタル値、合計マスタデジタル値、優勢スレーブ最大値、グローバルスレーブ最大値、優勢スレーブ最小値、グローバルスレーブ最小値、スレーブ正エッジ、スレーブ負エッジ、合計スレーブ幅、平均スレーブ幅、グループ318A~318D内の対応する最大の大きさ、グループ318A~318D内の対応する最小の大きさ、グループ318A~318D内の対応する正エッジ交差の発生時間、グループ318A~318D内の対応する負エッジ交差の発生時間、差異優勢スレーブ振幅、差異グローバルスレーブ振幅、優勢スレーブ位相、平均スレーブ期間、合計優勢スレーブデジタル値、および合計スレーブデジタル値。本明細書に記載の圧縮データの例としては、圧縮データ135、135A、135B、135C、135D、135E、135F、135G、および157(図1C-1、1C-2、1E-1、および1E-2)が挙げられる。
【0251】
一実施形態では、グループ318Aの代わりに、グループ318Bがグローバルスレーブ最小値を有する。
【0252】
ある実施形態では、グループ318Cの代わりに、グループ318Bがグローバルスレーブ最大値を有する。
【0253】
図4Aは、本明細書に記載の、圧縮データに基づくRFジェネレータ402の制御を説明するためのシステム400の一実施形態の図である。システム400は、RFジェネレータ402、マッチ404、モータシステム406、ドライバシステム408、分析コントローラ114、およびプロセスコントローラ116を含む。
【0254】
RFジェネレータ402の例としては、RFジェネレータ109(図1Aおよび図1B)、またはRFジェネレータ109A(図1C-1)、またはRFジェネレータ109B、(図1C-1)、またはRFジェネレータ109C(図1D)、またはRFジェネレータ109D(図1D)等が挙げられる。マッチ404の例としては、マッチ111(図1A)、またはマッチ111A(図1C-1)、またはマッチ111B(図1C-1)、またはマッチ164(図1D)等が挙げられる。例示すると、RFジェネレータ402がRFジェネレータ109の場合、マッチ404はRFジェネレータ109に結合されているマッチ111であり、RFジェネレータ402がRFジェネレータ109Bの場合、マッチ404はRFジェネレータ109Bに結合されているマッチ111AまたはRFジェネレータ109Bに結合されているマッチ164である。
【0255】
モータシステム406の例として、直流(DC)モータや交流(AC)モータ等の1つまたは複数の電気モータが挙げられる。各電気モータは、固定子と回転子を含む。ドライバシステム408の例として、1つまたは複数のトランジスタ等の1つまたは複数のドライバが挙げられる。例えば、ドライバの1つまたは複数のトランジスタが互いに結合される。
【0256】
分析コントローラ114のプロセッサ101は、ドライバシステム408に結合され、ドライバシステム408は、モータシステム406に結合される。また、プロセッサ101は、RFジェネレータ402に結合される。例えば、プロセッサ101は、転送ケーブルを介してRFジェネレータのデジタル信号プロセッサに結合される。
【0257】
モータシステム406は、1つまたは複数のロッド、または2つ以上のロッドと1つまたは複数のギアの組み合わせ等、1つまたは複数の機械的接続部を介してマッチ404に結合される。例えば、モータシステム406のモータは、2本のロッドと2本のロッドの間のギアを介して、マッチ404のコンデンサのプレートに結合される。この2本のロッドはギアを介して互いに結合している。別の例としては、モータシステム406のモータは、マッチ404のインダクタのコイルに囲まれたコアに結合される。モータはコアに連結され、コアの位置を変更する。コアとコイルはインダクタの部品である。
【0258】
データトランシーバ125(図1A)を介してデータトランスミッタ134(図1A)から本明細書に記載の圧縮データを受信すると、プロセッサ101は、RFジェネレータ402の動作の1つまたは複数の変数を変更することを決定する。RFジェネレータ402の変数の例として、電力または周波数が挙げられる。例えば、スレーブ最大ピーク・トゥ・ピーク値SMaxPTPが所定の閾値よりも大きく、マスタ最大ピーク・トゥ・ピーク値MMaxPTPが所定の限界値よりも低いと決定すると、プロセッサ101は、RFジェネレータ402によって発電され供給される電力の量を増加させることを決定する。別の例としては、マスタ平均周波数値MAVFが所定の範囲内にないと判定すると、プロセッサ101はRFジェネレータ402を制御して、マスタ平均周波数値MAVFが所定の範囲内になるまでRFジェネレータ402の動作の周波数を増加または減少させる。さらに別の例として、平均位相値φが所定の範囲内にないと判定すると、プロセッサ101はRFジェネレータ402を制御して、平均位相値φが所定の範囲内になるまでRFジェネレータ402の動作の周波数を増加または減少させる。このようにして、マスタ最大ピーク・トゥ・ピーク値MMaxPTPが所定の範囲内にあるか、スレーブ最大ピーク・トゥ・ピーク値SMaxPTPが所定の範囲内にあるか、マスタ平均周波数値MAVFが所定の範囲内にあるか、平均位相値φが所定の範囲内にあるか、またはそれらの2つ以上の組み合わせになるまで、プロセッサ101によってRFジェネレータ402の変数が制御される。
【0259】
別の例としては、プロセッサ101は、本明細書に記載の圧縮データが、プラズマインピーダンス等の第1のプラズマ制御状態に対応すると判定し、RFジェネレータ402の1つまたは複数の変数を修正することを決定する。例示すると、本明細書に記載の圧縮データと第1のプラズマ制御状態との間に1対1の関係またはリンクが存在する場合に、対応関係が存在する。プロセッサ101が、本明細書に記載の圧縮データが第2のプラズマ制御状態に対応すると判定するまで、1つまたは複数の変数が修正される。プラズマインピーダンス状態の一例は、プラズマチャンバ152内のプラズマのインピーダンスのレベルである。インピーダンスのレベルは、互いから所定の範囲内にあるインピーダンス値を含む。また、あるインピーダンスレベルの大きさは、他のインピーダンスレベルの大きさを除いたものである。
【0260】
さらに別の例としては、プロセッサ101は、本明細書に記載の圧縮データが、RFジェネレータ402の変数の1つの、状態またはレベルのシーケンス等の、第1のRF遷移シーケンスに対応すると判定し、RFジェネレータ402の変数の1つまたは複数を修正することを決定する。例示すると、本明細書に記載の圧縮データと第1のRF遷移シーケンスとの間に1対1の関係またはリンクが存在する場合に、対応関係が存在する。プロセッサ101が、本明細書に記載の圧縮データが第2のRF遷移シーケンスに対応すると判定するまで、1つまたは複数の変数が修正される。RF遷移シーケンスの一例は、RFジェネレータ402がプロセッサ101から受信するクロック信号の1クロックサイクルの間にRFジェネレータ402が生成するRF信号が、ある電力レベルから別の電力レベルへ変化することである。RF遷移シーケンスは、クロックサイクル中の任意の数の電力レベルの変化を含む。RF信号の電力レベルは、RF信号のピーク・トゥ・ピークまたはゼロ・トゥ・ピーク電力の大きさを含み、その大きさは互いから所定の範囲内である。また、ある電力レベルの大きさは、他のパワーレベルの大きさを除いたものである。
【0261】
さらに別の例としては、プロセッサ101は、マスタ最大ピーク・トゥ・ピーク値MMaxPTPが、第1の所定のマスタ最大ピーク・トゥ・ピーク値より大きいか小さいか、またはスレーブ最大ピーク・トゥ・ピーク値SMaxPTPが第1の所定のスレーブ最大ピーク・トゥ・ピーク値より大きいか小さいか、またはマスタ平均周波数値MAVFが第1の所定のマスタ平均周波数値より大きいか小さいか、または平均位相値φが第1の所定の平均位相値より大きいか小さいか、またはそれらの組み合わせを判定することにより、RFトリガーイベントが発生したと決定する。RFトリガーイベントが発生したと決定すると、プロセッサ101は、RFトリガーイベントが発生しなくなるまで、RFジェネレータ402の1つまたは複数の変数を制御する。
【0262】
さらに別の例としては、プロセッサ101は、マスタ最大ピーク・トゥ・ピーク値MMaxPTPが第2の所定のマスタ最大ピーク・トゥ・ピーク値より大きいか小さいか、またはスレーブ最大ピーク・トゥ・ピーク値SMaxPTPが第2の所定のスレーブ最大ピーク・トゥ・ピーク値より大きいか小さいか、またはマスタ平均周波数値MAVFが第2の所定のマスタ平均周波数値より大きいか小さいか、または平均位相値φが第2の所定の平均位相値より大きいか小さいか、またはそれらの組み合わせを決定することにより、RFプリカーサーイベントが発生したと決定する。RFプリカーサーイベントは、RFトリガーイベントの前に発生するイベントである。例示すると、RFプリカーサーイベントは、RFトリガーイベントが発生することの警告である。RFプリカーサーイベントが発生したと判定すると、プロセッサ101は、RFプリカーサーイベントが発生しなくなるまでRFジェネレータ402の変数の1つまたは複数を制御する。
【0263】
別の例としては、プロセッサ101は、マスタ最大ピーク・トゥ・ピーク値MMaxPTPが第3の所定のマスタ最大ピーク・トゥ・ピーク値より大きいか小さいか、またはスレーブ最大ピーク・トゥ・ピーク値SMaxPTPが第3の所定のスレーブ最大ピーク・トゥ・ピーク値より大きいか小さいか、またはマスタ平均周波数値MAVFが第3の所定のマスタ平均周波数値より大きいか小さいか、または平均位相値φが第3の所定の平均位相値より大きいか小さいか、またはこれらの組み合わせを決定することにより、RF障害イベントが発生したと決定する。RFトリガー障害が発生したと決定すると、プロセッサ101は、RF障害イベントが発生しなくなるまで、RFジェネレータ402の1つまたは複数の変数を制御する。RF障害イベントの例示として、本明細書に記載のプラズマシステムまたはプラズマツールの構成要素の誤動作、および本明細書に記載のプラズマチャンバ内のプラズマのアーク放電を含む。プラズマツールの構成要素の例としては、RFジェネレータ、RFケーブル、マッチ、RF伝送線、およびプラズマチャンバが挙げられる。
【0264】
同様に、本明細書に記載の圧縮データを受信すると、プロセッサ101は、マッチ404のキャパシタンスまたはインダクタンス等の変数を変更することを決定する。例えば、プロセッサ101は、ドライバシステム408に制御信号を送信し、マッチ404の変数を変更する。制御信号を受信すると、ドライバシステム408は1つまたは複数の電流信号を生成し、この1つまたは複数の電流信号をモータシステム406に提供する。1つまたは複数の電流信号を受信すると、モータシステム406の1つまたは複数のモータは、1つまたは複数のコンデンサの1つまたは複数のプレートを動かすか、またはマッチ404の1つまたは複数のインダクタの1つまたは複数のコアの位置を変化させるように動作する。マッチ404の1つまたは複数のコンデンサは、マッチ404のキャパシタンスを変化させるように制御され、マッチ404の1つまたは複数のインダクタは、マッチ404のインダクタンスを変化させるように制御される。このようにして、本明細書に記載の圧縮データが所定の範囲内になるまで、プロセッサ101によってマッチ404のキャパシタンスおよび/またはインダクタンスが制御される。
【0265】
一実施形態では、分析コントローラ114がRFジェネレータ402および/またはマッチ404を制御する代わりに、プロセスコントローラ116がRFジェネレータおよび/またはマッチ404を制御する。例えば、プロセッサ105は、RFジェネレータ402のデジタル信号プロセッサに結合され、プロセッサ101の代わりにドライバシステム408に結合される。プロセッサ105は、RFジェネレータ402およびドライバシステム408に制御信号を提供し、本明細書に記載の圧縮データが所定の範囲内になるまで、RFジェネレータ402およびドライバシステム408を上述した方法で制御する。
【0266】
図4Bは、下部電極154とTCPコイル156との間のギャップ412の制御を説明するためのシステム410の一実施形態の図である。システム410は、プロセスコントローラ116、分析コントローラ114、ドライバシステム408、モータシステム406、およびプラズマチャンバ152を含む。
【0267】
プロセッサ101はドライバシステム408に結合され、モータシステム406は下部電極154に結合される。例えば、モータシステム406は、上記で例示した1つまたは複数の機械的接続部を介して下部電極154に結合される。
【0268】
プロセッサ101は、ドライバシステム408に制御信号を送信する。制御信号を受信すると、ドライバシステム408は、1つまたは複数の電流信号を生成する。1つまたは複数の電流信号がモータシステム406によって受信され、モータシステム406が上述の方法で動作して、下部電極を垂直方向に上方または下方に移動させて、下部電極154とTCPコイル156との間のギャップ412を変化させる。このようにして、本明細書に記載の圧縮データが所定の範囲内になるまで、プロセッサ101によってギャップ412が制御される。例えば、マスタ最大ピーク・トゥ・ピーク値MMaxPTPが所定の範囲内にあるか、スレーブ最大ピーク・トゥ・ピーク値SMaxPTPが所定の範囲内にあるか、マスタ平均周波数値MAVFが所定の範囲内にあるか、または平均位相値φが所定の範囲内にあるか、またはその2つ以上の組み合わせになるまで、ギャップ412が制御される。
【0269】
一実施形態では、プラズマチャンバ152の代わりに、プラズマチャンバ113(図1A)またはプラズマチャンバ168(図1D)が使用される。例えば、プラズマチャンバ113の上部電極と下部電極、あるいは下部電極154とプラズマチャンバ168のTCPコイル156A等、2つの電極間のギャップが制御される。
【0270】
ある実施形態では、分析コントローラ114がギャップ412を制御する代わりに、プロセスコントローラ116がギャップ412を制御する。例えば、プロセッサ105は、プロセッサ101の代わりにドライバシステム408に結合される。プロセッサ105は、上述した方法でギャップ412を制御するための制御信号をドライバシステム408に提供する。
【0271】
図4Cは、プラズマチャンバ152内の圧力の制御およびガス流の制御を説明するためのシステム420の一実施形態の図である。システム420は、プロセスコントローラ116、分析コントローラ114、ガスサプライ422、バルブドライバ424、ガスシステムコントローラ425、バルブ426、圧力システムコントローラ427、プラズマチャンバ152、別のバルブドライバ428、圧力センサ429、バルブドライバ430、バルブ432、バルブ434、真空ポンプ436、および別の真空ポンプ438を含む。
【0272】
本明細書で使用されるガスサプライの例として、1つまたは複数のガス容器または1つまたは複数のガス源、あるいは1つまたは複数のプロセスガスを貯蔵するための1つまたは複数のガスストレージが挙げられる。本明細書で使用されるバルブドライバの例として、互いに結合された1つまたは複数のトランジスタが挙げられる。本明細書で使用されるバルブの例として、ピストンバルブおよびダイヤフラムバルブが挙げられる。
【0273】
真空ポンプ436および438は、プラズマチャンバ152の下方に配置される。例えば、真空ポンプ436および438は、プラズマチャンバ152の底壁に隣接している。バルブ432は、真空ポンプ436とプラズマチャンバ152のハウジングの内部容積部分との間に配置される。さらに、バルブ434は、真空ポンプ438とプラズマチャンバ152の内部容積部分との間に配置される。例えば、バルブ432および434は、プラズマチャンバ152の底壁内で一体化される。
【0274】
プロセッサ101は、ガスシステムコントローラ425および圧力システムコントローラ427に結合される。ガスシステムコントローラ425は、バルブ426に結合されたバルブドライバ424に結合される。ガスサプライ422は、ガス管またはガスパイプ等のガスチャネルを介して、プラズマチャンバ152のハウジングの内部容積部分に結合される。バルブ426は、ガスチャネル内に嵌合される。
【0275】
プロセッサ101は、バルブ432に結合されたバルブドライバ428、に結合された圧力システムコントローラ427に結合される。また、圧力システムコントローラ427は、バルブ434に結合されたバルブドライバ430に結合される。圧力センサ429は、プラズマチャンバ152の壁470に結合されるとともに、圧力システムコントローラ427にも結合される。
【0276】
プロセッサ101は、ガスシステムコントローラ425に命令を送信する。この命令に応えて、ガスシステムコントローラ425は制御信号を生成してバルブドライバ424に送信する。制御信号を受信すると、バルブドライバ424はバルブ426に電流信号を送信する。電流信号の受信に応じて、バルブ426が開閉して、ガスサプライ422に貯蔵されている1つまたは複数のプロセスガスの、プラズマチャンバ152の内部容積部分へのガスチャネルを介した供給を増やすか、または減らす等して制御し、基板Sを処理する。
【0277】
同様に、プロセッサ101は、圧力システムコントローラ427に命令を送信する。圧力の値に加えて指示を受信すると、圧力システムコントローラ427は制御信号を生成してバルブドライバ428に送信する。圧力システムコントローラ427は、圧力センサ429から、プラズマチャンバ152内の圧力の値を受信する。制御信号を受信すると、バルブドライバ428はバルブ432に電流信号を送信する。電流信号の受信に応じて、バルブ432が開閉して、基板Sの処理の残余物の、プラズマチャンバ152の内部容積部分からプラズマチャンバ152の外部への、真空ポンプ436内またはそれに取り付けられた容器内への出力を増やすか、または減らす等して制御する。基板Sの処理の残余物の例としては、基板Sを処理した後にプラズマチャンバ152内に残るプロセスガスや、プラズマチャンバ152内で発生する残余プラズマが挙げられる。同様に、プロセッサ101は、バルブドライバ430を介してバルブ434を制御し、基板Sの処理の残余物の、プラズマチャンバ152の内部容積部分からプラズマチャンバ152の外部への、真空ポンプ438内またはそれに取り付けられた容器内への出力を増やすまたは減らす等して制御する。
【0278】
バルブ426がプロセッサ101によって上述の方法で制御されて、プラズマチャンバ152の内部容積部分内の圧力の量を制御し、かつ/またはプラズマチャンバ152の内部容積部分への1つまたは複数のプロセスガスのガス流の量を制御する。圧力の量および/またはガスの流量の量は、本明細書に記載の圧縮データが所定の範囲内になるまで、バルブ426を制御することによって制御される。例えば、マスタ最大ピーク・トゥ・ピーク値MMaxPTPが所定の範囲内、またはスレーブ最大ピーク・トゥ・ピーク値SMaxPTPが所定の範囲内、またはマスタ平均周波数値MAVFが所定の範囲内、または平均位相値φが所定の範囲内、またはそれらの2つ以上の組み合わせになるまで、圧力の量および/またはガス流の量が制御される。
【0279】
同様に、バルブ426の制御の代わりに、または制御に加えて、バルブ432および434のうちの1つまたは複数が上述の方法でプロセッサ101によって制御されて、圧縮データが所定の範囲内になるまでプラズマチャンバ152の内部容積部分内の圧力の量を制御する。例えば、バルブ426を制御する代わりに、または制御に加えて、バルブ432および434のうちの1つまたは複数が上述の方法でプロセッサ101によって制御されて、マスタ最大ピーク・トゥ・ピーク値MMaxPTPが所定の範囲内になるまで、またはスレーブ最大ピーク・トゥ・ピーク値SMaxPTPが所定の範囲内になるまで、またはマスタ平均周波数値MAVFが所定の範囲内になるまで、または平均位相値φが所定の範囲内になるまで、またはそれらの2つ以上の組合せになるまで、プラズマチャンバ152の内部容積の圧力の量を制御する。
【0280】
ある実施形態では、分析コントローラ114がバルブ426、432、および434のうちの1つまたは複数を制御する代わりに、プロセスコントローラ116がバルブ426、432、および434のうちの1つまたは複数を制御する。例えば、プロセッサ105は、プロセッサ101の代わりに、バルブドライバ424、428、および430に結合される。プロセッサ105は、バルブドライバ424に制御信号を提供して、プラズマチャンバ152の内部容積部分内のガス流および/または圧力を制御する。また、プロセッサ105は、バルブドライバ428および430に制御信号を提供して、プラズマチャンバ152の内部容積部分内の圧力を制御する。
【0281】
一実施形態では、プラズマチャンバ152の代わりに、プラズマチャンバ113(図1A)またはプラズマチャンバ168(図1D)が使用される。例えば、プラズマチャンバ113の内部容積部分内、またはプラズマチャンバ168の内部容積部分内の圧力が制御される。他の例としては、プラズマチャンバ113の内部容積部分、またはプラズマチャンバ168の内部容積部分へのガス流の量が制御される。
【0282】
ある実施形態では、本明細書に記載された圧縮データがRFの迅速な制御同期を促進させることで、整合を改善し、または迅速な遷移操作を介してスループットと、ラン・トゥ・ランまたはチャンバ・トゥ・チャンバの再現性を改善し、またはアナログドメインを介してRF整合システム(>5パーツ)の同期を達成し、またはガス流のチューニングを達成する。ガス流と圧力はプラズマインピーダンスを変化させ、ガス流と圧力の変化は、本明細書に記載の複数の測定信号を通じて検出可能である。
【0283】
図4Dは、プラズマチャンバ152内の温度の制御を説明するための、システム450の一実施形態の図である。システム450は、分析コントローラ114、プロセスコントローラ116、直流(DC)電源452、スイッチシステム454、スイッチシステム458、チャンバヒータシステム460、スイッチシステム462、窓ヒータシステム464、DC電源466、DC電源468、およびプラズマチャンバ152を含む。プロセッサ101は、スイッチシステム454、458、および462に結合される。このスイッチシステム454は、プラズマチャンバ152の下部電極154内のヒータシステム456に結合される。スイッチシステム458はチャンバヒータシステム460に結合され、スイッチシステム462は窓ヒータシステム464に結合される。
【0284】
チャンバヒータシステム460は、プラズマチャンバ152の壁470に結合される。また、窓ヒータシステム464は、誘電体窓160に結合される。
【0285】
本明細書で使用するヒータシステムの例としては、1つまたは複数の抵抗器等の1つまたは複数のヒータ素子が挙げられる。本明細書で使用するヒータシステムの別の例としては、抵抗器のマトリックスを含むヒータアレイが挙げられる。本明細書に記載のスイッチシステムの例としては、1つまたは複数のトランジスタ等の1つまたは複数のスイッチが挙げられる。
【0286】
DC電源452は、スイッチシステム454を介してヒータシステム456に結合される。同様に、DC電源466はスイッチシステム458を介してチャンバヒータシステム460に結合され、DC電源468はスイッチシステム462を介して窓ヒータシステム464に結合される。本明細書で使用されるDC電源の例として、DC電圧源が挙げられる。
【0287】
プロセッサ101は、スイッチシステム454、458、および462のうちの1つまたは複数にオン制御信号を送り、プラズマチャンバ152内の温度を上昇させる。オン制御信号を受信すると、スイッチシステム454は、DC電源452をヒータシステム456の1つまたは複数のヒータ素子に接続し、プラズマチャンバ152内の温度を上昇させる。同様に、オン制御信号の受信に応じて、スイッチシステム458は、DC電源466をチャンバヒータシステム460の1つまたは複数のヒータ素子に接続して、壁470を加熱する。壁470が加熱されることによりプラズマチャンバ152内の温度を上昇させる。また、オン制御信号を受信すると、スイッチシステム462は、DC電源468を窓ヒータシステム464の1つまたは複数のヒータ素子に接続して誘電体窓160を加熱する。誘電体窓160が加熱されることによりプラズマチャンバ152内の温度を上昇させる。
【0288】
一方、プロセッサ101は、スイッチシステム454、458、および462のうちの1つまたは複数にオフ制御信号を送り、プラズマチャンバ152内の温度を低下させる。オフ制御信号を受信すると、スイッチシステム454は、DC電源452をヒータシステム456の1つまたは複数のヒータ素子から接続解除して、下部電極154を冷却する。下部電極154が冷却されることによりプラズマチャンバ152内の温度を低下させる。同様に、オフ制御信号を受信すると、スイッチシステム458は、DC電源466をチャンバヒータシステム460の1つまたは複数のヒータ素子から接続解除して壁470を冷却する。壁470が冷却されることによりプラズマチャンバ152内の温度を低下させる。また、オフ制御信号の受信に応じて、スイッチシステム462は、DC電源468を窓ヒータシステム464の1つまたは複数のヒータ素子から接続解除して、誘電体窓160を冷却する。誘電体窓160が冷却されることによりプラズマチャンバ152内の温度を低下させる。プラズマチャンバ152内の温度は、本明細書に記載の圧縮データが所定の範囲内にあるとプロセッサ101または105が判定するまで、上昇または低下させられる等して制御される。
【0289】
一実施形態では、本明細書に記載の圧縮データは、長いRFオン時間、または高RF電力の検出、または極高温の検出、または高圧の検出、または低流量のガス流の検出、または熱暴走の検出、または低温能力の検出、またはそれらの組み合わせによって、過熱故障検出を促進する。
【0290】
一実施形態では、本明細書に記載の圧縮データは、局所加熱モデルを生成するために使用される。そして局所加熱モデルは、プラズマチャンバ152内の温度を、温度センサを用いることなく算出するために使用できる。また、プラズマチャンバ152内の温度を制御してプラズマチャンバ152内の内部容積部分を冷却し、高電力に対するエッチング劣化と再現性の低下を防止する。
【0291】
なお、RFジェネレータ402、またはマッチ404、またはギャップ412、またはプラズマチャンバ152内の圧力、またはプラズマチャンバ152へのガス流の量、またはプラズマチャンバ152内の温度、またはそれらの組み合わせは、ウエハ処理の利点を実現するように制御される。ウエハ処理の利点の実現例としては、基板Sを処理する処理速度の上昇、または基板Sを処理する際の均一性の実現、またはそれらの組み合わせが挙げられる。基板Sの処理の例としては、基板Sへの材料の堆積、または基板S内へのフィーチャのエッチング、または基板Sのスパッタリング、または基板Sの洗浄、またはそれらの組合せが挙げられる。
【0292】
一実施形態では、プロセッサ101は、マルチプレクサを介してスイッチシステム454に結合される。
【0293】
ある実施形態では、分析コントローラ114がヒータシステム456を制御する代わりに、プロセスコントローラ116がヒータシステム456を制御する。例えば、プロセッサ105は、プロセッサ101の代わりに、スイッチシステム454に結合される。プロセッサ105は、スイッチシステム454にオン制御信号とオフ制御信号を提供して、プラズマチャンバ152の内部容積部分内の温度を上昇または低下させる等して制御する。
【0294】
一実施形態では、プラズマチャンバ152の代わりに、プラズマチャンバ113(図1A)またはプラズマチャンバ168(図1D)が使用される。例えば、プラズマチャンバ113の内部容積部分内の温度、またはプラズマチャンバ168の内部容積部分内の温度が制御される。
【0295】
図5は、プラズマソース173の詳細を説明するための、システム500の一実施形態の図である。システム500は、マッチレスプラズマソース173と、接続部175と、プラズマチャンバ113とを含む。MPS173は、入力部502と、出力部504と、リアクタンス回路506とを含む。入力部502の例として、信号ジェネレータとゲートドライバの一部が挙げられる。信号ジェネレータの例としては、デジタル波形やパルス列等の矩形波信号を生成する矩形波オシレータが挙げられる。矩形波は、高レベルまたは1等の第1の論理レベルと、低レベルまたはゼロ等の第2の論理レベルの間でパルス出力する。出力部504の例としては、ゲートドライバの残りの部分とハーフブリッジトランジスタ回路が挙げられる。さらに、リアクタンス回路206の例としては、可変コンデンサが挙げられる。リアクタンス回路206の他の例としては、固定コンデンサが挙げられる。
【0296】
入力部502は出力部504に結合され、出力部はさらにリアクタンス回路506に結合される。リアクタンス回路506は、接続部175を介して、電極115に結合される。
【0297】
入力部202は、複数の矩形波信号を生成し、この矩形波信号を出力部204に提供する。出力部204は、入力部202から受信した複数の矩形波信号から、増幅された矩形波形を生成する。さらに、出力部204は、増幅された矩形波形のピーク・トゥ・ピークの大きさ等の包絡線を整形する。例えば、入力部502から出力部504に整形制御信号508を提供し、包絡線を生成する。整形制御信号508は、増幅された矩形波形を整形するための複数の電圧値を有する。
【0298】
整形された増幅矩形波形は、出力部504からリアクタンス回路506に送られる。リアクタンス回路506は、増幅された矩形波形の高次高調波をフィルタリング等で除去し、基本周波数を有する整形された正弦波形であるRF信号177を生成する。整形された正弦波形は、整形された包絡線を有する。
【0299】
整形された正弦波形は、リアクタンス回路506から接続部175を介して電極115に基板Sの処理のために送られる。例えば、フッ素含有ガス、酸素含有ガス、窒素含有ガス、金属および誘電体の堆積用の液体等の、1つまたは複数のプロセス材料がプラズマチャンバ115に供給される。整形された正弦波形と1つまたは複数のプロセス材料を受け取ると、プラズマチャンバ113内でプラズマが点灯して基板Sを処理する。MPS173の例は、米国特許第10,264,663号に示されており、その全体が参照により本明細書に組み込まれる。
【0300】
いくつかの実施形態では、入力部502は、信号ジェネレータを有するコントローラボードを含み、さらにゲートドライバを含み、出力部は、ハーフブリッジトランジスタ回路を含む。コントローラボードは、信号ジェネレータに結合されて所定の周波数で方形波信号を発生させるように信号ジェネレータを制御するコントローラを含む。
【0301】
本明細書に記載された各実施形態は、ハンドヘルドのハードウェアユニット、マイクロプロセッサシステム、マイクロプロセッサベースの、またはプログラム可能な家電、ミニコンピュータ、メインフレームコンピュータ等の様々なコンピュータシステム構成において実施され得る。各実施形態はまた、ネットワークを介してリンクされたリモート処理ハードウェアユニットによってタスクが実行される分散コンピューティング環境においても実施できる。
【0302】
いくつかの実装形態では、コントローラは、上述の例の一部であってもよいシステムの一部である。このようなシステムは、1つまたは複数の処理ツール、1つまたは複数のチャンバ、1つまたは複数の処理用プラットフォーム、および/または特定の処理部品(ウエハ台座、ガスフローシステム等)などの半導体処理装置を含み得る。これらのシステムは、半導体ウエハまたは基板の処理前、処理中、および処理後の操作を制御するための電子機器と一体化されている。この電子機器を、1つまたは複数のシステムの各種部品や副部品を制御し得る「コントローラ」と称する。コントローラは、処理要件および/またはシステムの種類に応じて、本明細書に開示された、プロセスガスの供給、温度設定(例えば、加熱および/または冷却)、圧力設定、真空設定、電力設定、RFジェネレータの設定、RF整合回路の設定、周波数設定、流量設定、流体供給設定、位置および操作設定、ツールへのウエハの搬入出、ならびに、システムに接続または連動する他の搬送ツールおよび/またはロードロックへのウエハの搬入出等のいずれかの処理を制御するようにプログラムされる。
【0303】
大まかに言えば、様々な実施形態において、コントローラは、例えば、命令を受信し、命令を出し、操作を制御し、清掃操作を可能とし、エンドポイント計測を可能とする各種集積回路、ロジック、メモリ、および/またはソフトウェアを有する電子機器と定義される。集積回路は、プログラム命令を格納したファームウェア形式のチップや、デジタル信号プロセッサ(DSPs)や、特定用途向け集積回路(ASICs)として定義されたチップ、および/または、プログラム命令を実行する1つまたは複数のマイクロプロセッサまたはマイクロコントローラ(例えばソフトウェア)を含む。プログラム命令は、様々な個別設定(またはプログラムファイル)の形でコントローラに伝達される命令であって、半導体ウエハ上や半導体ウエハ用に、またはシステムに対して特定の処理を実行するための操作パラメータを定めるものである。操作パラメータは、いくつかの実施形態において、1つまたは複数の層、材料、金属、酸化物、ケイ素、二酸化ケイ素、面、回路、および/またはウエハ型の製造の際の1つまたは複数の処理ステップを達成するためにプロセスエンジニアによって定められるレシピの一部である。
【0304】
コントローラは、いくつかの実施形態において、システムに統合されているか、結合されているか、そうでなければシステムにネットワーク接続されているか、またはそれらの組み合わせであるコンピュータの一部であるか、そのコンピュータに結合されている。例えば、コントローラは、「クラウド」上にあるか、または、ウエハ処理のリモートアクセスを可能とする製造工場のホストコンピュータシステムのすべてまたは一部である。このコンピュータは、システムへのリモートアクセスを可能とすることで、製造操作の現在の進行を監視し、過去の製造操作の履歴を検証し、複数の製造操作から傾向または性能基準を検証することで、現在の処理のパラメータを変更し、現在の処理に続く処理ステップを設定し、または新しい処理を開始する。
【0305】
いくつかの実施形態では、リモートコンピュータ(例えばサーバー)が、ローカルネットワークやインターネットを含むネットワークを通じてシステムに処理レシピを提供する。リモートコンピュータは、パラメータおよび/または設定の入力またはプログラミングを可能とするユーザーインターフェースを含み、パラメータおよび/または設定は次にリモートコンピュータからシステムに伝達される。いくつかの例では、コントローラは、1つまたは複数の操作中に行われる各処理ステップのパラメータを定めたデータ形式で指示を受信する。なお、このパラメータは行われる処理の種類や、コントローラがインターフェース接続または制御するように構成されているツールの種類に特有のものであってよいことを理解されたい。従って、上述の通り、コントローラは、互いにネットワーク接続されて、本明細書に記載の処理や制御等の共通の目的に向かって働く1つまたは複数の個別のコントローラを含めること等により、分配される。そのような目的のために分配されたコントローラの例としては、チャンバ上の処理を制御するために組み合わされて、リモート配置(例えばプラットフォームレベルで、またはリモートコンピュータの一部として)された1つまたは複数の集積回路と通信する、チャンバ上の1つまたは複数の集積回路が挙げられる。
【0306】
限定されないが、様々な実施形態において、例示的なシステムは、プラズマエッチングチャンバまたはモジュール、堆積チャンバまたはモジュール、スピンリンスチャンバまたはモジュール、金属めっきチャンバまたはモジュール、クリーンチャンバまたはモジュール、ベベルエッジエッチングチャンバまたはモジュール、物理気相堆積(PVD)チャンバまたはモジュール、化学気相堆積(CVD)チャンバまたはモジュール、原子層堆積(ALD)チャンバまたはモジュール、原子層エッチング(ALE)チャンバまたはモジュール、イオン注入チャンバまたはモジュール、トラックチャンバまたはモジュール、および半導体ウエハの組立および/または製造に関連するか、あるいは使用される他の任意の半導体処理システムを含む。
【0307】
なお、いくつかの実施形態において、上述の操作は、いくつかのタイプのプラズマチャンバ、例えば、誘導結合プラズマ(ICP)リアクタを含むプラズマチャンバ、容量結合プラズマチャンバ、トランス結合プラズマチャンバ、容量結合プラズマリアクタ、導体ツール、誘電体ツール、電子サイクロトロン共鳴(ECR)リアクタを含むプラズマチャンバ等に適用されることにさらに留意されたい。
【0308】
上述のように、ツールによって実行される1つまたは複数の処理ステップに応じて、コントローラは、他のツール回路またはモジュール、他のツール部品、クラスタツール、他のツールインターフェース、隣接ツール、近隣ツール、工場全体に配置されたツール、メインコンピュータ、他のコントローラ、またはウエハのコンテナをツール位置および/または半導体製造工場内のロードポート内外に搬送する材料移送に使用されるツール、のうちの1つまたは複数と通信してもよい。
【0309】
上記の実施形態を念頭に置いて、実施形態のいくつかは、コンピュータシステムに格納されたデータを含む、コンピュータに実施される様々な操作を採用すると理解されるべきである。これらの操作は、物理量を物理的に操作する。本明細書に記載の、実施形態の一部を形成する操作のいずれもが、有用な機械操作である。
【0310】
実施形態のいくつかはまた、これらの操作を実施するためのハードウェアユニットまたは装置に関する。この装置は、特別な目的のコンピュータのために特別に構成される。特別目的コンピュータとして定義される場合、コンピュータは、特別な目的のために動作可能でありながら、特別な目的の一部ではない他の処理、プログラム実行、またはルーチンを行う。
【0311】
いくつかの実施形態では、これらの操作は、コンピュータメモリやキャッシュに格納されるか、またはコンピュータネットワークを介して取得された1つまたは複数のコンピュータプログラムによって選択的に起動または構成されたコンピュータによって処理されてもよい。データがコンピュータネットワークを介して取得される場合、このデータは、コンピュータネットワーク上の他のコンピュータ、例えば、コンピューティングリソースのクラウドによって処理されてもよい。
【0312】
1つまたは複数の実施形態は、非一次的なコンピュータ可読媒体上のコンピュータ可読コードとして作製することも可能である。非一次的なコンピュータ可読媒体は、例えばメモリデバイス等の、任意のデータ格納ハードウェアユニットであり、これは後にコンピュータシステムによって読み取られる。非一時的コンピュータ可読媒体の例としては、ハードドライブ、ネットワーク接続ストレージ(NAS)、ROM、RAM、コンパクトディスク-ROM(CD-ROM)、書き込み可能CD(CD-R)、書き換え可能CD(CD-RW)、磁気テープ、および他の光学および非光学データ格納ハードウェアユニットが挙げられる。いくつかの実施形態では、非一時的コンピュータ可読媒体は、コンピュータ可読コードが分散方式で格納および実行されるように、ネットワークに結合されたコンピュータシステム上に分散されたコンピュータ可読の有形媒体を含む。
【0313】
なお、上記の方法操作は特定の順序で説明されたが、様々な実施形態において、操作の間に他のハウスキーピング操作が行われるか、方法操作がわずかに異なる時間に発生するように調整されるか、方法操作が様々な間隔で発生することを可能にするシステム内に分散されるか、または上記とは異なる順序で実行されると理解されるべきである。
【0314】
なおまた、ある実施形態では、上述の任意の実施形態からの1つまたは複数の特徴が、本開示に記載の様々な実施形態に記載の範囲から逸脱することなく、任意の他の実施形態の1つまたは複数の特徴と組み合わせられることに留意されたい。
【0315】
前述の実施形態は、理解を明瞭にする目的である程度詳細に説明されたが、添付の特許請求の範囲内で特定の変更および修正を実施できることは明らかであろう。従って、本実施形態は例示的であって制限的なものではないと考えられ、本実施形態は本明細書に示された詳細に限定されず、添付の特許請求の範囲およびその均等物の範囲内で変更され得る。
図1A
図1B
図1C-1】
図1C-2】
図1D
図1E-1】
図1E-2】
図1F
図1G
図1H
図2
図3A
図3B
図3C
図3D
図3E
図3F-1】
図3F-2】
図4A
図4B
図4C
図4D
図5
【国際調査報告】