(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-10-04
(54)【発明の名称】磁場を用いるプラズマ放電の不均一性制御
(51)【国際特許分類】
H05H 1/46 20060101AFI20230927BHJP
H01L 21/3065 20060101ALI20230927BHJP
【FI】
H05H1/46 M
H05H1/46 A
H01L21/302 101B
H01L21/302 101C
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023516489
(86)(22)【出願日】2021-08-30
(85)【翻訳文提出日】2023-05-10
(86)【国際出願番号】 US2021048276
(87)【国際公開番号】W WO2022060562
(87)【国際公開日】2022-03-24
(32)【優先日】2020-09-18
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】592010081
【氏名又は名称】ラム リサーチ コーポレーション
【氏名又は名称原語表記】LAM RESEARCH CORPORATION
(74)【代理人】
【識別番号】110000028
【氏名又は名称】弁理士法人明成国際特許事務所
(72)【発明者】
【氏名】パナゴプーロス・テオドロス
(72)【発明者】
【氏名】マラクタノフ・アレクセイ・エム.
(72)【発明者】
【氏名】ジ・ビング
(72)【発明者】
【氏名】デ ラ レラ・アンソニー
(72)【発明者】
【氏名】ホランド・ジョン・ピー.
(72)【発明者】
【氏名】ペン・ドン ウー
【テーマコード(参考)】
2G084
5F004
【Fターム(参考)】
2G084AA02
2G084BB05
2G084BB14
2G084CC12
2G084CC33
2G084DD02
2G084DD15
2G084DD24
2G084DD37
2G084DD55
2G084FF21
2G084FF27
2G084FF29
2G084HH02
2G084HH12
2G084HH19
2G084HH34
2G084HH43
2G084HH45
5F004AA01
5F004BA04
5F004BA09
5F004BA20
5F004BB07
5F004BB13
5F004BB22
5F004BB23
5F004CA06
(57)【要約】
【解決手段】磁場を用いてプラズマ放電の均一性を制御するための方法、システム、装置、およびコンピュータプログラムが提示される。基板処理装置は、基板を処理するための処理ゾーンを含む真空チャンバを備える。装置はさらに、真空チャンバに伴う軸方向磁場を表す第1の信号と、径方向磁場を表す第2の信号とを検出するための磁場センサを備える。装置は、真空チャンバの処理ゾーンを通る軸方向の補助磁場および径方向の補助磁場を生成するために、少なくとも2つの磁場センサを備える。装置は、磁場センサおよび少なくとも2つの磁場源に結合された磁場制御装置を備える。磁場制御装置は、第1の信号および第2の信号に基づいて、軸方向の補助磁場および径方向の補助磁場のいずれかまたは両方の少なくとも1つの特性を調整する。
【選択図】
図1
【特許請求の範囲】
【請求項1】
基板処理装置であって、
プラズマを用いて基板を処理するための処理ゾーンを含む真空チャンバと、
前記真空チャンバに伴う軸方向磁場を表す第1の信号、および径方向磁場を表す第2の信号を検出するように構成された磁場センサであって、前記径方向磁場は前記基板に平行であり、前記軸方向磁場に直交する、磁場センサと、
前記真空チャンバの前記処理ゾーンを通る軸方向の補助磁場および径方向の補助磁場を生成するように構成された少なくとも2つの磁場源と、
前記磁場センサおよび前記少なくとも2つの磁場源に結合された磁場制御装置であって、前記第1の信号および前記第2の信号に基づいて、前記軸方向の補助磁場および前記径方向の補助磁場のいずれかまたは両方の少なくとも1つの特性を調整するように構成された磁場制御装置と、
を備える、基板処理装置。
【請求項2】
請求項1に記載の装置であって、
前記磁場センサは、前記真空チャンバの前記処理ゾーン内に設置されたウエハセンサである、装置。
【請求項3】
請求項2に記載の装置であって、
前記ウエハセンサは、前記処理ゾーン内の複数の位置で、前記軸方向磁場および前記径方向磁場の1つ以上のパラメータを測定するように構成された磁場センサのアレイを備え、
前記磁場制御装置は、前記測定された1つ以上のパラメータに基づいて、前記軸方向の補助磁場および前記径方向の補助磁場の前記少なくとも1つの特性を調整する、装置。
【請求項4】
請求項1に記載の装置であって、
前記磁場センサは、前記軸方向磁場を表す前記第1の信号の大きさ、および、前記径方向磁場を表す前記第2の信号の大きさを測定するように構成されている、装置。
【請求項5】
請求項4に記載の装置であって、
前記少なくとも1つの特性は、前記軸方向の補助磁場および前記径方向の補助磁場の大きさならびに方向のいずれかまたは両方を含む、装置。
【請求項6】
請求項5に記載の装置であって、
前記少なくとも2つの磁場源は、互いに平行な第1の磁場源および第2の磁場源を備え、
前記磁場制御装置は、前記第1の磁場源を通る電流および前記第2の磁場源を通る電流のいずれかまたは両方を調整して、前記軸方向の補助磁場および前記径方向の補助磁場の前記大きさならびに前記方向のいずれかまたは両方を調整するように構成されている、装置。
【請求項7】
請求項6に記載の装置であって、
前記磁場制御装置は、前記第2の磁場源を流れる前記電流から独立して前記第1の磁場源を流れる前記電流を調整するように構成されている、装置。
【請求項8】
請求項6に記載の装置であって、
前記磁場制御装置は、前記軸方向磁場を表す前記第1の信号の前記大きさと、前記径方向磁場を表す前記第2の信号の前記大きさとの比が比率閾値に達するまで、前記第1の磁場源を流れる前記電流および前記第2の磁場源を流れる前記電流を調整するように構成されている、装置。
【請求項9】
請求項6に記載の装置であって、
前記磁場制御装置は、前記軸方向磁場を表す前記第1の信号の前記大きさが第1の閾値に達し、前記径方向磁場を表す前記第2の信号の大きさが第2の閾値に達するまで、前記第1の磁場源を通る前記電流および前記第2の磁場源を通る前記電流を調整するように構成されている、装置。
【請求項10】
請求項1に記載の装置であって、
前記軸方向の補助磁場および前記径方向の補助磁場のいずれかまたは両方の前記少なくとも1つの特性は、
前記少なくとも2つの磁場源の各々における巻数、
前記少なくとも2つの磁場源の第1の磁場源から前記基板までの距離、
前記少なくとも2つの磁場源の第2の磁場源から前記基板までの距離、および
前記少なくとも2つの磁場源間の距離
のうちの1つ以上を含む、装置。
【請求項11】
請求項1に記載の装置であって、
前記少なくとも2つの磁場源は複数のコイルを含み、各コイルは複数の巻線を含む、装置。
【請求項12】
請求項11に記載の装置であって、
前記複数のコイルは、前記真空チャンバの外側に取り付けられる、装置。
【請求項13】
請求項11に記載の装置であって、
前記複数のコイルの少なくとも1つは、前記真空チャンバの内側に取り付けられる、装置。
【請求項14】
請求項11に記載の装置であって、
前記複数のコイルは、互いにおよび前記基板に平行な少なくとも4つのコイルを備え、
前記磁場制御装置は、前記磁場センサによって測定された前記軸方向の補助磁場および前記径方向の補助磁場のいずれかまたは両方の大きさに基づいて、前記少なくとも4つのコイルの各々を通る電流を独立して調整するように構成されている、装置。
【請求項15】
請求項1に記載の装置であって、
前記基板処理装置は、さらに、前記磁場制御装置に結合され、前記真空チャンバ内の前記プラズマの密度を測定するように構成されたプラズマ密度センサを備え、
前記磁場制御装置は、前記プラズマの前記測定された密度に基づいて、前記少なくとも2つの磁場源の各々を通る電流を独立して調整するように構成されている、装置。
【請求項16】
真空チャンバを用いて基板を処理するための方法であって、
プラズマを用いて基板を処理するための前記真空チャンバの処理ゾーン内で軸方向磁場を表す第1の信号を検出する工程と、
前記処理ゾーン内で径方向磁場を表す第2の信号を検出する工程であって、前記径方向磁場は前記基板に平行であり、前記軸方向磁場に直交する、工程と、
前記処理ゾーン内の複数の位置において、前記軸方向磁場を表す前記第1の信号の大きさおよび前記径方向磁場を表す前記第2の信号の大きさを決定する工程と、
前記第1の信号および前記第2の信号の前記決定された大きさに基づいて、前記真空チャンバの前記処理ゾーンを通る軸方向の補助磁場および径方向の補助磁場を、少なくとも2つの磁場源を用いて生成する工程と、
を含む、方法。
【請求項17】
請求項16に記載の方法であって、さらに、
少なくとも2つの磁場源の少なくとも1つを通る電流を調整して、前記軸方向の補助磁場および前記径方向の補助磁場の大きさおよび方向のいずれかまたは両方を調整する工程を含む、方法。
【請求項18】
請求項17に記載の方法であって、さらに、
前記軸方向磁場を表す前記第1の信号の前記大きさと、前記径方向磁場を表す前記第2の信号の前記大きさとの比が比率閾値に達するまで、前記少なくとも2つの磁場源の前記少なくとも1つを通る前記電流を独立して調整する工程を含む、方法。
【請求項19】
請求項17に記載の方法であって、さらに、
前記軸方向磁場を表す前記第1の信号の前記大きさが第1の閾値に達し、前記径方向磁場を表す前記第2の信号の大きさが第2の閾値に達するまで、前記少なくとも2つの磁場源の前記少なくとも1つを通る前記電流を独立して調整する工程を含む、方法。
【請求項20】
命令を含む機械可読記憶媒体であって、
前記命令は、機械によって実行されるときに、
プラズマを用いて基板を処理するための真空チャンバの処理ゾーン内で軸方向磁場を表す第1の信号を検出する動作と、
前記処理ゾーン内で径方向磁場を表す第2の信号を検出する動作であって、前記径方向磁場は前記基板に平行であり、前記軸方向磁場に直交する、動作と、
前記処理ゾーン内の複数の位置において、前記軸方向磁場を表す前記第1の信号の大きさおよび前記径方向磁場を表す前記第2の信号の大きさを決定する動作と、
前記第1の信号および前記第2の信号の前記決定された大きさに基づいて、前記真空チャンバの前記処理ゾーンを通る軸方向の補助磁場および径方向の補助磁場を、少なくとも2つの磁場源を用いて生成する動作と
を前記機械に実行させる、機械可読記憶媒体。
【請求項21】
請求項20に記載の機械可読記憶媒体であって、
前記動作は、さらに、前記少なくとも2つの磁場源の第1の磁場源を通る電流、および前記少なくとも2つの磁場源の第2の磁場源を通る電流のいずれかまたは両方を調整して、前記軸方向の補助磁場および前記径方向の補助磁場の大きさおよび方向のいずれかまたは両方を調整する動作を含む、機械可読記憶媒体。
【請求項22】
請求項21に記載の機械可読記憶媒体であって、
前記動作は、さらに、前記軸方向磁場を表す前記第1の信号の前記大きさと前記径方向磁場を表す前記第2の信号の前記大きさとの比が比率閾値に達するまで、前記少なくとも2つの磁場源を流れる前記電流を独立して調整する動作を含む、機械可読記憶媒体。
【請求項23】
請求項21に記載の機械可読記憶媒体であって、
前記動作は、さらに、前記軸方向磁場を表す前記第1の信号の前記大きさが第1の閾値に達し、前記径方向磁場を表す前記第2の信号の大きさが第2の閾値に達するまで、前記少なくとも2つの磁場源を流れる前記電流を独立して調整する動作を含む、機械可読記憶媒体。
【発明の詳細な説明】
【技術分野】
【0001】
[優先権主張]
本願は、その全体が参照により本明細書に組み込まれる、2020年9月18日出願の米国特許出願第63/080,513号に対する優先権の利益を主張する。
【0002】
本明細書で開示される主題は、一般に、容量結合プラズマ(CCP)または誘導結合プラズマ(ICP)基板製造などのプラズマベースの基板製造において、磁場を用いてエッチング速度およびプラズマ均一性を制御するための方法、システム、および機械可読記憶媒体に関する。
【背景技術】
【0003】
半導体基板処理システムは、エッチング、物理蒸着(PVD)、化学蒸着(CVD)、プラズマ強化化学蒸着(PECVD)、原子層堆積(ALD)、プラズマ強化原子層堆積(PEALD)、パルス堆積層(PDL)、プラズマ強化パルス堆積層(PEPDL)、およびレジスト除去を含む技術によって半導体基板を処理するために用いられる。半導体基板処理装置の一種は、上部電極および下部電極を含む真空チャンバを備える、CCPを使用するプラズマ処理装置であり、ここでは、反応チャンバ内の半導体基板を処理するために、プロセスガスをプラズマに励起するように無線周波数(RF)電力が電極間に印加される。半導体基板処理装置の別の種類としては、プラズマ処理装置ICPがある。
【0004】
基板を製造するためのCCPベースまたはICPベースの真空チャンバなどの半導体基板処理システムでは、基板中心でのエッチングの均一性およびイオンの傾きはプラズマ密度の均一性に影響され、弱い磁場に敏感であることが示されている。例えば、CCPベースおよびICPベースの真空チャンバにおけるプラズマ密度均一性は、磁化チャンバ構成要素(5~10ガウスの磁場強度を伴ってよい)に伴う磁場、および地球の磁場(0.25~0.65ガウスの磁場強度を有してよい)、または他の周囲磁場(0.4~0.5ガウスの磁場強度を有してよい)を含む、他の外部磁場に影響されうる。
【0005】
現在、プラズマの均一性を、特に基板の中心および基板表面にわたって調整することは困難である。チャンバ内の接地電極の寸法、ガスおよび化学物質の流れ、または送出される無線周波数(RF)の周波数内容を変更することは、プラズマの均一性を制御するために用いられる主な要素である。しかし、処理チャンバ構成要素の磁化および外部磁場への曝露は、プラズマ密度の均一性に影響を及ぼし、製造場所内のチャンバ間および異なる製造場所内のチャンバ間で大きく変化する。これまで、ハードウェア設計およびプロセスノブの利用における改善は、厳しいプラズマ均一性要件に対する業界のニーズに対処してきた。それにもかかわらず、均一性仕様がますます求められるようになり、基板表面全体にわたって極めて均一な密度を実現するために追加の技術が必要とされている。本開示は、とりわけ、プラズマ密度均一性のための従来技術に関する欠点に対処しようとするものである。
【0006】
本明細書に記載の背景技術は、本開示の内容を一般的に提示するためである。本欄に記載の情報は、以下に開示の主題の内容を当業者に提供するために提示され、認められた先行技術を見なされるべきでないことに注意されたい。具体的には、現在名前が挙げられている発明者の発明は、本背景技術欄、および出願時の先行技術に該当しない説明の態様において記載される範囲で、本開示に対する先行技術として明示的にも黙示的にも認められない。
【発明の概要】
【0007】
基板製造において磁場を用いてエッチング速度およびプラズマ均一性を制御するための方法、システム、コンピュータプログラムが示される。1つの一般的な態様は、基板処理装置を含む。装置は、プラズマを用いて基板を処理するための処理ゾーンを備える真空チャンバを含む。装置は、真空チャンバに伴う軸方向磁場を表す第1の信号および径方向磁場を表す第2の信号を検出するように構成された磁場センサをさらに備える。径方向磁場は基板に平行で、軸方向磁場に直交する磁場である。装置は、真空チャンバの処理ゾーンを通る軸方向の補助磁場および径方向の補助磁場を生成するように構成された少なくとも2つの磁場源をさらに備える。装置は、磁場センサおよび少なくとも2つの磁場源に結合された磁場制御装置をさらに備える。磁場制御装置は、第1の信号および第2の信号に基づいて、軸方向の補助磁場および径方向の補助磁場のいずれかまたは両方の少なくとも1つの特性を調整するように構成されている。
【0008】
1つの一般的な態様は、真空チャンバを用いて基板を処理するための方法を含む。この方法は、真空チャンバの処理ゾーン内の軸方向磁場を表す第1の信号を検出することを含み、処理ゾーンはプラズマを用いて基板を処理するためのものである。この方法は、処理ゾーン内の径方向磁場を表す第2の信号を検出することをさらに含む。径方向磁場は基板に平行で、軸方向磁場に直交する磁場である。軸方向磁場を表す第1の信号の大きさおよび径方向磁場を表す第2の信号の大きさは、処理ゾーン内の複数の位置で決定される。この方法はさらに、第1および第2の信号の決定された大きさに基づいて、真空チャンバの処理ゾーンを通る軸方向の補助磁場および径方向の補助磁場を、少なくとも2つの磁場源用いて生成することを含む。
【0009】
1つの一般的な態様は、命令を含む非一時的機械可読記憶媒体であって、命令が機械によって実行されるときに、プラズマを用いて基板を処理するための真空チャンバの処理ゾーン内で軸方向磁場を表す第1の信号を検出することを含む動作を機械に実行させる命令を備える非一時的機械可読記憶媒体を含む。処理ゾーン内の径方向磁場を表す第2の信号が検出される。径方向磁場は基板に平行で、軸方向磁場に直交する磁場である。軸方向磁場を表す第1の信号の大きさおよび径方向磁場を表す第2の信号の大きさは、処理ゾーン内の複数の位置で決定される。真空チャンバの処理ゾーンを通る軸方向の補助磁場および径方向の補助磁場は、第1および第2の信号の決定された大きさに基づいて、少なくとも2つの磁場源を用いて生成される。
【図面の簡単な説明】
【0010】
添付の様々な図面は、本開示の例示的な実施形態を示すに過ぎず、その範囲を限定するものと見なすことはできない。
【0011】
【
図1】いくつかの例示的な実施形態による、CCPを用いて基板を製造するための、エッチングチャンバなどの真空チャンバの図。
【0012】
【
図2】いくつかの例示的な実施形態による、磁気シールド構造で囲まれた真空チャンバ、およびエッチング速度およびプラズマ均一性の制御を向上させるための軸方向および径方向の磁場の印加の図。
【0013】
【
図3A】一部の例示的実施形態による、CCPを含む処理ゾーン内の補助的な軸方向および径方向磁場を伴う真空チャンバの斜視図。
【0014】
【
図3B】いくつかの例示的な実施形態による、
図3Aの真空チャンバの上面図。
【0015】
【
図3C】いくつかの例示的な実施形態による、
図3Aの真空チャンバの側面図。
【0016】
【
図4】いくつかの例示的実施形態による、真空チャンバ内のプラズマ均一性に対する軸方向磁場の効果を示す図。
【
図5】いくつかの例示的実施形態による、真空チャンバ内のプラズマ均一性に対する軸方向磁場の効果を示す図。
【0017】
【
図6】いくつかの例示的実施形態による、真空チャンバ内のプラズマ均一性に対する径方向磁場の効果を示す図。
【0018】
【
図7】いくつかの例示的な実施形態による、真空チャンバ内のプラズマ均一性に対する軸方向磁場および径方向磁場の複合効果を示す図。
【
図8】いくつかの例示的な実施形態による、真空チャンバ内のプラズマ均一性に対する軸方向磁場および径方向磁場の複合効果を示す図。
【
図9】いくつかの例示的な実施形態による、真空チャンバ内のプラズマ均一性に対する軸方向磁場および径方向磁場の複合効果を示す図。
【0019】
【
図10A】いくつかの例示的実施形態による、軸方向および径方向の補助磁場のための磁場源として用いられる単一コイルを備える真空チャンバの斜視図。
【0020】
【
図10B】一部の例示的実施形態による、磁場源の搭載オプションを示す
図10Aの真空チャンバの側面図。
【0021】
【
図11A】いくつかの例示的実施形態による、軸方向および径方向の補助磁場のための磁場源として用いられる単一コイルを備える真空チャンバ。
【0022】
【
図11B】いくつかの例示的実施形態による、
図11Aの真空チャンバ内の軸方向および径方向の補助磁場の大きさ、ならびに軸方向と径方向との大きさの比を示すグラフ。
【0023】
【
図12A】いくつかの例示的実施形態による、軸方向および径方向の補助磁場のための複合磁場源として用いられる2つのコイルを備える真空チャンバ。
【0024】
【
図12B】いくつかの例示的実施形態による、1つのコイルの巻き数およびそこを流れる電流が固定されたときの、
図12Aにおける2つのコイルから生じる軸方向および径方向の補助磁場の大きさを示すグラフ。
【0025】
【
図12C】いくつかの例示的実施形態による、両方のコイルを流れる電流は固定されるが、1つのコイルの巻数が変化するときの、
図12Aにおける2つのコイルから生じる軸方向および径方向の補助磁場の大きさを示すグラフ。
【0026】
【
図13A】いくつかの例示的実施形態による、軸方向および径方向の補助磁場のための複合磁場源として用いられる4つのコイルを備える真空チャンバ。
【0027】
【
図13B】いくつかの実施形態による、
図13Aにおける4つのコイルから生じる軸方向および径方向の補助磁場の大きさだけでなく、軸方向と径方向との大きさの比を示すグラフ。
【0028】
【
図14】いくつかの例示的実施形態による、プラズマ均一性を向上させるための1つ以上の補助磁場を構成するために異なる種類の磁気センサおよび磁場制御装置を備える真空チャンバ。
【0029】
【
図15】いくつかの例示的な実施形態による、真空チャンバを用いて基板を処理するための方法のフローチャート。
【0030】
【
図16】1つ以上の例示的な方法の実施形態が実施されうる、または1つ以上の例示的な実施形態が制御されうる機械の一例を示すブロック図。
【発明を実施するための形態】
【0031】
例示的な方法、システム、およびコンピュータプログラムは、基板製造装置において磁場を用いてエッチング速度およびプラズマ均一性を制御することを対象とする。例は、可能な変形例を単に代表するものである。特に明記しない限り、構成要素および機能は任意であり、組み合わされてよく、または細分されてよく、動作は順序が変わってもよく、または組み合わされてもよく、または細分されてもよい。以下の記載では、説明の目的で、例示的な実施形態の十分な理解を提供するためにいくつかの具体的な詳細が記載される。しかし、本主題がこれらの具体的な詳細なしに実施されてよいことは、当業者には明らかであろう。
【0032】
基板表面にわたる基板の均一性は、エッチングプロセス条件に依存するため、制御が困難である。条件が変わると、均一性も変化しうる。プラズマの均一性を制御するための静的解決策(接地電極の寸法を調整するなど)は、広範囲のプロセス条件では効率的に実行できない可能性がある。プロセスパラメータを含む解決策は、均一性に対処するように修正されると、望ましくない副作用をもたらす可能性がある。
【0033】
本明細書に記載の技術は、軸方向および径方向の磁場を用いて真空チャンバ内のプラズマ均一性を制御する。本明細書で用いる「軸方向磁場」という用語は、真空チャンバ内の基板の表面に直交する磁場を指す。本明細書で用いる「径方向磁場」という用語は、真空チャンバ内の基板の表面に平行な磁場を指す。開示の技術は、径方向磁場と軸方向磁場との組み合わせの多用性および有効性に基づいている。より具体的には、径方向磁場は基板を横切るプラズマ密度を増加させ、軸方向磁場は基板中心でのプラズマ密度を抑制し、端部高プロファイルをもたらす(例えば、基板半径rが80mmより大きい場合)。この点に関し、基板処理装置(CCPベースまたはICPベースの基板処理装置など)の真空チャンバ内の基板の全表面にわたるプラズマ密度を制御するために、径方向磁場および軸方向磁場の両方の組み合わせが用いられてよい。
【0034】
いくつかの態様では、開示の技術を用いて既存の径方向磁場および既存の軸方向磁場が検出されてよく、結果として生じるチャンバ内の径方向磁場および軸方向磁場が所望の閾値に達するように、軸方向の補助磁場および径方向の補助磁場が生成されてよい。具体的には、1つ以上の磁場センサを用いて、既存の径方向磁場および既存の軸方向磁場に基づく、真空チャンバの処理ゾーン内の残留磁場(ΔB)を検出してよい。例えば、磁気センサは、真空チャンバ内で検出される残留磁場を形成する軸方向磁場の大きさ(Bz)および径方向磁場の大きさ(Br)を検出してよい。結果として生じる軸方向および径方向の磁場の大きさが閾値に達するように、または、大きさの比が所望の閾値に達するよう調整されるように、少なくとも2つの磁場源を用いて、軸方向の補助磁場および径方向の補助磁場が生成されてよい。基板表面にわたるプラズマ均一性を向上させるために、径方向および軸方向の磁場を構成する様々な技術およびオプションが
図2~16に関連して示されている。
【0035】
図1は、一実施形態による、CCPを用いて基板を製造するための真空チャンバ100(例えば、エッチングチャンバ)を示す。二つの電極の間で電場を励起することは、真空チェンバ内で高周波(RF)ガス放電を得るための一つの方法である。電極間に振動電圧を印加したときに得られる放電は、CCP放電と呼ばれる。
【0036】
プラズマ102は、電子-中性衝突によって生じた様々な分子の解離によって生成される多種多様な化学反応性副生成物を得るために、安定した原料ガスを用いて生成されてよい。エッチングの化学的態様は、中性ガス分子およびそれらの解離した副生成物と、エッチングされる表面の分子との反応、ならびに揮発性分子の生成を含み、揮発性分子はポンプで除去することができる。プラズマが生成されると、正イオンは、チャンバ壁からプラズマを分離する空間-電荷シースを横切ってプラズマから加速されて、基板表面から材料を除去するのに十分なエネルギーで基板表面に衝突する。これは、イオン衝撃またはイオンスパッタリングとして知られている。しかし、工業用プラズマの中には、物理的な手段のみで表面を効率的にエッチングするのに十分なエネルギーのイオンを生成しないものもある。
【0037】
制御装置116は、RF発生器118、ガス源122、ガスポンプ120などの、チャンバ内の異なる要素を制御することによって真空チャンバ100の動作を管理する。一実施形態では、CF4およびC4F8などのフルオロカーボンガスは、その異方性および選択的エッチング能力のために誘電体エッチングプロセスで用いられるが、本明細書に記載の原理は、他のプラズマ生成ガスに適用することができる。フルオロカーボンガスは、より小さな分子および原子ラジカルを含む化学反応性副生成物に容易に解離される。これらの化学反応性副生成物は、誘電体材料をエッチング除去する。
【0038】
真空チャンバ100は、上部電極104および下部電極108を備える処理チャンバを示す。上部電極104は接地されるかRF発生器(図示せず)に結合されてよく、下部電極108は整合ネットワーク114を介してRF発生器118に結合される。RF発生器118は、1つ以上(例えば、2つまたは3つ)の異なるRF周波数でRF電力を供給する。特定の動作のための真空チャンバ100の所望の構成により、3つのRF周波数のうちの少なくとも1つをオンまたはオフにすることができる。
図1に示す実施形態では、RF発生器118は、例えば2MHz、27MHz、および60MHzの周波数を供給するように構成されるが、他の周波数も可能である。
【0039】
真空チャンバ100は、ガス源122によって提供されるプロセスガスを真空チャンバ100に導入するためのガスシャワーヘッドを上部電極104上に備え、ガスポンプ120によって真空チャンバ100からガスを排出することを可能にする有孔閉じ込めリング112を備える。いくつかの例示的な実施形態では、ガスポンプ120はターボ分子ポンプであるが、他の種類のガスポンプが用いられてもよい。
【0040】
基板106が真空チャンバ100内に存在するときは、基板106の表面における均一なエッチングのために、プラズマ102の底面が均一なRF電界となるように、シリコンフォーカスリング110は基板106の隣に位置する。
図1の実施形態は、上部電極104が対称RF接地電極124によって囲まれる三極管リアクタ構成を示す。絶縁体126は、接地電極124を上部電極104から絶縁する誘電体である。開示の実施形態の範囲を変更することなく、ICPベースの実施形態を含む真空チャンバ100の他の実施形態も可能である。
【0041】
基板106は、例えばウエハ(例えば、100mm、150mm、200mm、300mm、450mm、またはそれ以上の直径を有するウエハ)を含むことができ、例えば、元素半導体材料(例えば、シリコン(Si)もしくはゲルマニウム(Ge))または化合物半導体材料(例えば、シリコンゲルマニウム(SiGe)もしくはガリウムヒ素(GaAs))を含む。さらに、他の基板は、例えば石英またはサファイア(その上に半導体材料を塗布することができる)のような誘電体材料を含む。
【0042】
RF発生器118によって生成される各周波数は、基板製造プロセスにおいて特定の目的のために選択されてよい。
図1の例では、2MHz、27MHz、および60MHzで提供されるRF電力を用い、2MHzのRF電力はイオンエネルギー制御を提供し、27MHzおよび60MHzの電力はプラズマ密度および化学物質の解離パターンの制御を提供する。各RF電力がオンまたはオフにされうるこの構成は、基板またはウエハ上の超低イオンエネルギーを使用する特定のプロセス、およびイオンエネルギーが低く(例えば、700または200eV未満)なければならない特定のプロセス(例えば、低k材料のソフトエッチング)を可能にする。
【0043】
別の実施形態では、超低エネルギーおよび非常に高い密度を得るために、60MHzのRF電力が上部電極104に用いられる。この構成は、基板106が真空チャンバ100内にないときに、静電チャック(ESC)表面上のスパッタリングを最小限にしながら、高密度プラズマによるチャンバクリーニングを可能にする。ESC表面は、基板106が存在しないときは露出しており、表面上のあらゆるイオンエネルギーが回避されるべきである。そのため、底部の2MHzおよび27MHzの電源は、洗浄中はオフであってよい。
【0044】
いくつかの態様において、真空チャンバ100は、地球の磁場または他の周囲磁場(例えば、
図2に示されるようなホイストなどの真空チャンバの磁化構成要素からの磁場)などの外部磁場に曝される。結果として生じる真空チャンバ100内の残留磁場は、特に処理ゾーン134内の基板106の中心領域132の周囲でエッチング速度およびプラズマの均一性に悪影響を及ぼしうるため、望ましくない。例示的な実施形態では、大きさBzの軸方向磁場130Aおよび大きさBrの無線磁場130Bは、大きさBz/Brの比が所望の閾値に達するように処理ゾーン134内に導入され、処理ゾーン134内の基板106の表面全体にわたるプラズマ均一性を容易にしてよい。軸方向および径方向の磁場を生成するための様々な技術、または基板表面にわたるプラズマ均一性の調整が
図2~16と関連して説明される。
【0045】
図2は、いくつかの例示的な実施形態による、磁気シールド構造で囲まれた真空チャンバ、およびエッチング速度およびプラズマ均一性の制御を向上させるための軸方向および径方向の磁場の印加を示す。
図2を参照すると、
図1の真空チャンバ100などの真空チャンバは、外部磁場の影響を低減するために磁気シールド構造200で囲まれてよい。
【0046】
例示的な実施形態では、磁気シールド構造200は、上側シールド部分210および下側シールド部分218を備えることができ、各シールド部分は、
図2に示されるように複数のシールド副部分を含んでよい。例えば、上側シールド部分210は、シールド副部分212、214、216、および217を含むことができる。下側シールド部分218は、シールド副部分220、222、および224を含むことができる。いくつかの態様では、磁気シールド構造200は、真空チャンバに用いられる様々な設備を収容するための1つ以上の開口部228(例えば、RF構成要素および通信リンク、換気装置、ガス供給装置、ヒータ、高電圧クランプ、基板供給機構などを収容するための開口部)を含むことができる。
【0047】
例示的な実施形態では、磁気シールド構造200は、少なくとも40ミルの厚さを有する高透磁率材料から作ることができる。例示的な実施形態では、磁気シールド構造200の様々なシールド副部分は、真空チャンバの様々な表面にボルトで固定(または、他の手段によって確実に取り付け)することができる。
【0048】
例示的な実施形態では、シールド副部分224は、CCPを用いた処理ゾーンからの基板の供給および除去に用いられる、真空チャンバ開口部226を囲むトンネルとして形成することができる。
【0049】
磁気シールド構造200の不完全性(例えば、真空チャンバ設備を収容するための1つ以上の開口部228)のために、磁化チャンバ構成要素(例えば、磁化ホイスト230)からの磁場を含む外部磁場の結果、残留磁場202は、磁気シールド構造200の下および真空チャンバ100の内部に存在することができる。例示的実施形態では、残留磁場208の影響を打ち消し(例えば、結果として生じる、特定の比率の大きさを有する径方向磁場および軸方向磁場を実現し)、基板表面全体にわたってプラズマ均一性を調整するために、軸方向の補助磁場204(大きさBz)および径方向の補助磁場206(大きさBr)などの1つ以上の補助磁場が、(例えば、
図12Aおよび13Aに関連して開示された技術を用いて)真空チャンバ100内に生成されてよい。
【0050】
図3Aは、いくつかの例示的な実施形態による、CCPを含む処理ゾーン内の補助的な軸方向および径方向の磁場を伴う真空チャンバ302の斜視
図300を示す。
図3Aを参照すると、真空チャンバ302は、第1の外部磁場306および第2の外部磁場308などの外部磁場に曝露されて、処理ゾーン304(例えば、真空チャンバ302内のCCPで満たされた容積)内に残留磁場309を集合的に形成することができる。残留磁場309は、軸方向磁場316(大きさBz)および径方向磁場318(大きさBr)によって形成されてよい。
【0051】
例示的な実施形態では、処理ゾーン304内の基板表面にわたるプラズマ均一性に対する残留磁場309の影響は、対応する大きさBzおよびBrを有する、軸方向の補助磁場320および径方向の補助磁場322を含む補助磁場を導入することによって軽減することができる。処理ゾーン304内で生じた磁場(例えば、残留磁場309、ならびに、軸方向の補助磁場320および径方向の補助磁場322を含む補助磁場を含む)は、処理ゾーン304内で基板表面にわたってより大きなプラズマ均一性をもたらすように構成されてよい。具体的には、複数の磁場発生源(例えば、
図12Aおよび13Aに関連して説明したようなもの)を用いて、所望の比率の大きさの軸方向の補助磁場320および径方向の補助磁場322が実現するように補助磁場を生成してよい。
図4~9は、径方向磁場および軸方向磁場の両方の組み合わせが、処理ゾーン内の基板の表面全体にわたってプラズマ密度を制御できることを示す。この点に関して、基板表面全体にわたって所望のプラズマ均一性を実現するために大きさの比率(例えば、Bz/Br)を調整するように、複数の磁場源を用いて軸方向および径方向の磁場を生成することができる。
【0052】
図3Bは、いくつかの例示的な実施形態による、
図3Aの真空チャンバ302の上面図を示す。
図3Cは、いくつかの例示的な実施形態による、
図3Aの真空チャンバ302の側面図を示す。
図3Cを参照すると、真空チャンバ302は、トッププレート312、および、処理ゾーン304内における基板処理に関連して用いられる様々な設備314(例えば、RF構成要素および通信リンク、ガス供給部、ヒータ、高電圧クランプ、基板供給機構など)を含むことができる。トッププレート312は、ガスの流れ、温度制御のための電力、ガス真空機能に関連付けられた機械的構成要素などを操作するために、サーモカプラおよび補助構成要素を含むことができる。
【0053】
例示的な実施形態において、トッププレート312または設備314は、真空チャンバ302内の残留磁場を打ち消し、基板表面にわたるプラズマ均一性について所望の比率の大きさBz/Brを実現するために、1つ以上の補助磁場(例えば、軸方向の補助磁場および径方向の補助磁場)を生成することができる少なくとも1つの磁場源を取り付けるために用いられてよい。
【0054】
図4および
図5は、いくつかの例示的な実施形態による、真空チャンバ内のプラズマ均一性に対する軸方向磁場の効果を示す。
図4および
図5を参照すると、300Wで60MHzのRF電力が真空チャンバの下部電極(例えば、真空チャンバ100の下部電極108)に供給されたときの、軸方向磁場効果のグラフ400、402、404、406、408、410、および500が示されている。グラフ400は、磁場が真空チャンバ100に印加されないとき(例えば、磁場が0ガウスの大きさ(0G))のプラズマ分布を示す。グラフ402~410および500は、それぞれの大きさが0.25G(グラフ402)、0.5G(グラフ404)、1G(グラフ406)、2G(グラフ408)、3G(グラフ410)、10G(グラフ500)の軸方向磁場が真空チャンバ100に印加されたときのプラズマ均一性を示す。
図4および
図5から分かるように、真空チャンバ内のプラズマ分布は、印加される軸方向磁場の大きさが増加するにつれて変化する。
【0055】
図5のグラフ504は、大きさが0G、0.25G、0.5G、1G、2G、3G、および10Gの軸方向磁場が印加されたときの、真空チャンバ100の中心線502を横切るミッドギャッププラズマ密度を示す。グラフ504から分かるように(グラフ400~410および500と同様に)、プラズマ分布は、基板中心付近の高い(0G)ところから、基板全体にわたってより均一な分布(例えば、0.25G)に変化し、基板エッジ付近で高く(例えば、1G~10Gの大きさに)変化する。軸方向磁場を印加すると、径方向の電子移動度を減少させながら、上下の電極に対する電子損失速度が増加する。基板エッジ付近に高電場が存在するため(フリンジング効果)、電子はその領域に閉じ込められ、その位置付近のプラズマ密度にピークを生じさせる。この点に関し、軸方向磁場を印加することによって、基板中心(例えば、チャンバ中心線502)付近の密度が抑制される一方で、基板エッジ付近の密度が高められる(例えば、電子移動度の低下による隣接する半径への限定的な電子拡散のため)。
【0056】
図6は、いくつかの例示的実施形態による、真空チャンバ内のプラズマ均一性に対する径方向磁場の効果を示す。
図6を参照すると、300Wで60MHzのRF電力が真空チャンバの下部電極(例えば、真空チャンバ100の下部電極108)に供給されたときの、径方向磁場効果のグラフ600、602、および604が示されている。グラフ600は、磁場が真空チャンバ100に印加されないとき(例えば、磁場が0ガウスの大きさ(0G))のプラズマ分布を示す。グラフ602および604は、それぞれの大きさが0.25G(グラフ602)および0.5G(グラフ604)の径方向磁場が真空チャンバ100内に印加されたときのプラズマ均一性を示す。
図6のグラフ606は、大きさが0G、0.25G、および0.5Gの径方向磁場を印加したときの真空チャンバ100の中心線を横切るミッドギャッププラズマ密度を示す。グラフ604から分かるように、径方向磁場は、0.5Gの大きさでプラズマ密度をわずかに増加させる。この点に関し、基板表面に平行な径方向磁場を印加することは、上下の電極に対する電子損失を低減できる。損失率の低下は、バルクプラズマ密度の増加をもたらす。その結果、所望の範囲の値でプラズマ密度を調節するために、径方向磁場の強度の調節が用いられてよい。
【0057】
図7、
図8、および
図9は、いくつかの例示的な実施形態による、真空チャンバ内のプラズマ均一性に対する軸方向磁場および径方向磁場の複合効果を示す。
【0058】
図7を参照すると、300Wで60MHzのRF電力が真空チャンバの下部電極(例えば、真空チャンバ100の下部電極108)に供給されたときの、複合磁場効果(例えば、軸方向磁場および径方向磁場の両方の組み合わせ)のグラフ700、702、704、および706が示されている。グラフ700は、磁場が真空チャンバ100に印加されないとき(例えば、磁場が0ガウスの大きさ(0G))のプラズマ分布を示す。グラフ702は、大きさが0.25Grの径方向磁場が印加されたときのプラズマ均一性を示す(Grは、径方向磁場に対するガウス測度)。グラフ704は、大きさが0.25Gzの軸方向磁場が印加されたときのプラズマ均一性を示す(Gzは、軸方向磁場に対するガウス測度)。グラフ706は、大きさが0.25Gの径方向磁場および大きさが0.25Gzの軸方向磁場が真空チャンバ内に印加されたときのプラズマの均一性を示す。グラフ708は、大きさ0G、0.25Gr、0.25Gz、および0.25Gzの0.25Grの磁場が印加されたときの、真空チャンバ100の中心線を横切るミッドギャッププラズマ密度を示す。
【0059】
図8を参照すると、300Wで60MHzのRF電力が真空チャンバの下部電極(例えば、真空チャンバ100の下部電極108)に供給されたときの、複合磁場効果(例えば、軸方向磁場および径方向磁場の両方の組み合わせ)のグラフ800、802、804、および806が示されている。グラフ800は、磁場が真空チャンバ100に印加されないとき(例えば、磁場が0ガウスの大きさ(0G))のプラズマ分布を示す。グラフ802は、大きさが0.5Grの径方向磁場が印加されたときのプラズマ均一性を示す。グラフ804は、大きさが0.5Gzの軸方向磁場が印加されたときのプラズマの均一性を示す。グラフ806は、大きさが0.5Gの径方向磁場および大きさが0.5Gzの軸方向磁場が真空チャンバ内に印加されたときのプラズマの均一性を示す。グラフ808は、大きさが0G、0.5Gr、0.5Gz、および0.5Gzの0.5Grの磁場を印加したときの、真空チャンバ100の中心線を横切るミッドギャッププラズマ密度を示す。
【0060】
図9を参照すると、300Wで60MHzのRF電力が真空チャンバの下部電極(例えば、真空チャンバ100の下部電極108)に供給されたときの、複合磁場効果(例えば、軸方向磁場および径方向磁場の両方の組み合わせ)のグラフ900、902、904、および906が示されている。グラフ900は、磁場が真空チャンバ100に印加されないとき(例えば、磁場が0ガウス(0G))のプラズマ分布を示す。グラフ902は、大きさが0.5Grの径方向磁場および大きさが0.25Gzの軸方向磁場が印加されたときのプラズマ均一性を示す。グラフ904は、大きさが0.25Grの径方向磁場および大きさが0.5Gzの軸方向磁場が印加されたときのプラズマ均一性を示す。グラフ906は、大きさが0.5Grの径方向磁場および大きさが0.5Gzの軸方向磁場が真空チャンバ内に印加されたときのプラズマの均一性を示す。グラフ908は、大きさが0G、0.25Gzの0.5Gr、0.5Gzの0.25Gr、および0.5Gzの0.5Grの磁場が印加されたときの、真空チャンバ100の中心線を横切るミッドギャッププラズマ密度を示す。
【0061】
図4~
図9のグラフデータに基づいて、径方向磁場および軸方向磁場の両方を印加することにより、軸方向磁場または径方向磁場の個々の印加に関する上記の傾向の釣り合いを取ることができ、基板中心または基板エッジ付近の増加するプラズマ密度変化のための調整ノブを提供する。この点に関し、軸方向磁場および径方向磁場の大きさの比率Bz/Brを調整することによって、プラズマの均一性は真空チャンバ内で基板表面にわたって調整されてもよい。例示的な実施形態では、比率Bz/Brを制御することは、
図12A~
図13Bに関連して説明したように、複数の磁場源の電流(または、他の特性)を個別に制御することによって実現されてよい。いくつかの実施形態では、真空チャンバ内に既存の磁場(例えば、残留磁場)が既に存在するときに、残留磁場に関する軸方向および径方向の磁場の大きさが決定され、所望の大きさの径方向および軸方向の成分(例えば、大きさBzおよびBr)を有する、結果として生じた(例えば、複合の)磁場が実現されるように軸方向の補助磁場および径方向の補助磁場が生成されてよい。
【0062】
図10Aは、いくつかの例示的な実施形態による、軸方向および径方向の磁場のための磁場源として用いられる単一コイルを備える真空チャンバ1002の斜視図を示す。
図10Aを参照すると、真空チャンバ1002は、真空チャンバの処理ゾーン内の位置1008で測定された残留磁場1003に曝されうる。いくつかの態様において、磁場源1004(例えば、単一コイル)は、真空チャンバ1002内で補助磁場1006を生成するように構成されてよい。補助磁場1006は、大きさBzの径方向磁場1010および大きさBrの径方向磁場1012を含んでよい。補助磁場の1つ以上の特性(例えば、コイル1004の電流、巻数など)は、真空チャンバ内のプラズマ分布の均一性を調整するように構成されてよい。
【0063】
例示的な実施形態において、残留磁場1003は、位置1008またはその付近に設置された磁場センサによって検出および測定されてよい。残留磁場を検出するために使用できる例示的な磁場センサは、
図14に関連して示される。さらに、補助磁場1006の1つ以上の特性を調整するために(例えば、
図14に示すような)磁場制御装置を用いてよい。例えば、磁場制御装置は、コイル1004の電流(例えば、直流(DC))を調節し、それにより補助磁場1006の大きさ(および、対応する大きさBzおよびBr)を変化させてよい。いくつかの態様では、残留磁場1003の大きさと組み合わされた補助磁場1006の大きさが所望の大きさBzまたはBrをもたらすように電流が調節され、その結果、真空チャンバ内で均一なプラズマ分布が実現されてよい。他の態様では、磁場制御装置は、所望の全Bzおよび/またはBrがチャンバ内で実現されるように、異なる特性(例えば、巻数、チャンバの中心線までの距離など)を調整してよい。
【0064】
図10Bは、いくつかの例示的な実施形態による、磁場源1004のための搭載オプションを示す
図10Aの真空チャンバ1002の側面図である。
図10Bを参照すると、例示的な実施形態では、磁場源1004(例えば、コイル)は、真空チャンバ1002の内部に、処理ゾーン1014に近接して取り付けられてよい。例示的な実施形態では、コイル1004は、真空チャンバ1002のトッププレート1016に固定された台座1018に取り付けられてよい。例示的な実施形態では、コイル1004は、接続部1020を介して真空チャンバ1002の内面(例えば、
図10Bに示されているような上面)に取り付けられてもよい。
【0065】
例示的な実施形態において、真空チャンバ1002は、磁気シールド構造200などの磁気シールド構造内に封入されてよく、コイル1004は、磁気シールド構造内ではあるが真空チャンバ1002の外側(例えば、磁気シールド構造の内面上)に固定されてよい。例示的な実施形態では、コイル1004は、磁気シールド構造および真空チャンバ1002の外側に設置されてよい。例示的な実施形態では、軸方向および径方向の補助磁場(例えば、
図12Aおよび
図13Aに示されるような)を生成するために複数のコイルが磁場源として用いられてよく、各コイルは、別々に(例えば、真空チャンバの内側または外側に)配置されてよい。
【0066】
図11Aは、いくつかの例示的な実施形態による、軸方向および径方向の補助磁場のための磁場源として用いられる単一コイル1108を備える真空チャンバ1102の
図1100Aを示す。
図11Aを参照すると、単一コイル1108は、大きさBzの軸方向補助磁場1110および大きさBrの径方向補助磁場1112の発生源として用いられる。
【0067】
図11Bは、いくつかの実施形態による、
図11Aの真空チャンバ内の軸方向および径方向の補助磁場の大きさ、ならびに軸方向および径方向の大きさの比を示すグラフ1100Bである。
【0068】
台座1104上に設置された基板1106の基板処理の間、単一コイル1108が動作され、軸方向の補助磁場1110および径方向の補助磁場1112が生じる。軸方向の補助磁場1110の大きさは、位置S(基板1106の中間点の近く)よりも位置A(単一コイル1108の近く)において高い。グラフ1100Bに示されるように、Bzは、基板中心付近の約3Gから基板エッジ付近の約2.1Gまで(直径300mmの基板の場合)変化する。径方向の補助磁場1112の大きさBrは、基板中心付近の約0.1Gから基板エッジ付近の約1.5Gまで変化する。基板エッジ付近のBz/Brの比は約1.5である。
【0069】
例示的な実施形態では、単一コイル1108の位置(例えば、真空チャンバ1102の内側または外側)、単一コイルの真空チャンバの上面までの距離H(または、単一コイルの基板1106までの距離)、単一コイル1108を通る電流、または単一コイルの他の特性は、基板表面にわたるプラズマ均一性を調整するためのBz/Br比の異なる振幅を実現するために、(例えば、真空チャンバの設定中、または処理中に動的に)変更されてよい。しかし、単一コイル1108の特性の変化は、BzおよびBrの比例変化をもたらすが、比率Bz/Brは変化しないままである。
【0070】
例示的な実施形態では、比率Bz/Brの調整可能性、および真空チャンバ内の基板表面にわたるより最適なプラズマ均一性を実現するために、複数の磁場源(例えば、少なくとも2つの磁場源)を用いて、真空チャンバ内に軸方向および径方向の磁場を生成してよく、真空チャンバ内で磁場源の処理特性は個々に(例えば、設定時間に、または基板処理中に動的に)調整されてよい。複数の磁場源を用いる実施形態の例は、
図12A~
図13Bに関連して説明される。
【0071】
図12Aは、いくつかの例示的な実施形態による、軸方向および径方向の補助磁場のための複合磁場源として用いられる2つのコイル(例えば、コイル1204および1206)を備える真空チャンバ1202の
図1200Aを示す。
図12Aを参照すると、コイル1204および1206は、大きさBzの軸方向の補助磁場1214および大きさBrの径方向の補助磁場1212の複合発生源として用いられる。
【0072】
図12Aに示されているように、基板1210は、真空チャンバ1202内の台座1208上に設置される。コイル1204は、真空チャンバ1202の上面からH1の距離に設置され、コイル1206は、真空チャンバ1202の底面からH2の距離に設置される。コイル1204および1206は、いずれも真空チャンバ1202の外側にあるものとして図示されているが、本開示はこの点に関して限定されず、コイル1204および1206のいずれも真空チャンバ1202の内側または外側に配置されてよい。
【0073】
台座1208上に設置された基板1210の基板処理の間、コイル1204および1206は起動されて、軸方向の補助磁場1214および径方向の補助磁場1212を生じさせる。
図12Bは、いくつかの例示的な実施形態による、1つのコイルの巻き数およびそこを流れる電流が固定されたときの、
図12Aの2つのコイル1204および1206から生じる軸方向および径方向の補助磁場(1214および1212)の大きさを示すグラフ1200Bである。具体的には、グラフ1200Bは、コイル1206が40ターンおよび電流10Aに固定され、コイル1204を通る電流は1Aから5Aに変化するときの大きさBzおよびBrを示す。
【0074】
図12Cは、いくつかの例示的な実施形態による、両方のコイルを流れる電流は固定されるが1つのコイルの巻数が変化するときの、
図12Aにおける2つのコイル1204および1206から生じる軸方向および径方向の補助磁場(1214および1212)の大きさを示すグラフ1200Cである。具体的には、グラフ1200Cは、コイル1204が40ターンおよび電流5Aに固定されたときの大きさBzおよびBrを示し、コイル1206は10Aの電流を有し、40ターンと80ターンとの間で変化する。
【0075】
図12Bおよび
図12Cから分かるように、コイル1206が10Aおよび40ターンに固定されるときは、Bzはコイル1204の電流5AにおけるBrにほぼ等しい。さらに、コイル1206の巻き数が80に増加されたとき(または、より低いコイル1206の電流が20Aに増加されたとき)は、Brの大きさはさらに低減する可能性がある。
【0076】
例示的な実施形態では、コイル1206および1204の位置(例えば、真空チャンバ1202の内側または外側)、真空チャンバの対応する上面および底面までの距離H1およびH2(または、コイル1204および1206の基板1210までのそれぞれの距離)、コイル1204および1206の各々を通る電流(または、コイルの任意の他の処理特性)は、基板表面にわたるプラズマ均一性を最適に調整するための異なるBz/Br比を実現するために、コイルごとに個別に(例えば、真空チャンバの設定中に、または処理中に動的に、磁場制御装置1418によって)変更されてよい。
【0077】
図13Aは、いくつかの例示的な実施形態による、軸方向および径方向の補助磁場の複合磁場源として用いられる4つのコイル(例えば、コイル1302、1304、1306、および1308)を備える真空チャンバ1310の
図1300Aを示す。
図13Aを参照すると、コイル1302~1308は、大きさBzの軸方向の補助磁場1318および大きさBrの径方向の補助磁場1316の複合発生源として用いられる。
【0078】
図13Aに示すように、基板1314は、真空チャンバ1310内の台座1312上に設置される。コイル1308、1306、1304、および1302は、真空チャンバ1310の上面から対応する距離H1、H2、H3、およびH4に設置される。コイル1302~1308は、真空チャンバ1310の外側にあるものとして図示されているが、本開示はこの点に関して限定されず、コイル1302~1308のいずれも、真空チャンバ1310の内側または外側に(互いにおよび基板1314に平行のままで)配置されてよい。
【0079】
例示的な実施形態では、
図13Aに示されるように、コイル1302~1308は異なる直径を有する。しかし、本開示はこの点に関して限定されず、コイル1302~1308のうちの2つ以上は同じ直径を有してよい。さらに、
図13Aは、軸方向および径方向の補助磁場を生成するためのコイル1302~1308のみを示しているが、本開示はこの点に関して限定されず、より多くのコイルが同様に用いられて、真空チャンバ1310の複数の側面上に異なる構成で配置されてもよい。
【0080】
台座1312上に設置された基板1314の基板処理の間、コイル1302~1308が起動され、軸方向の補助磁場1318および径方向の補助磁場1316が生じる。
図13Bは、いくつかの実施形態による、
図13Aの4つのコイルにおける5Aの電流から生じた軸方向および径方向の補助磁場の大きさだけでなく、軸方向と径方向の大きさの比(Bz/Br)を示すグラフ1300Bである。
図13Bから分かるように、Bzは、基板中心付近の約4.2Gから基板エッジ付近の約3.2Gまで変化するが、Brは、基板中心付近の約0.4Gから基板エッジ付近の約2.4Gまで変化する。
【0081】
例示的な実施形態では、コイル1302~1308の位置(例えば、真空チャンバ1310の内側または外側)、真空チャンバの上面までの距離H1~H4(または、コイル1302~1308の基板1314までのそれぞれの距離)、コイル1302~1308の各々を通る電流(または、コイルの任意の他の処理特性)は、基板表面にわたるプラズマ均一性を最適に調整するための異なるBz/Br比を実現するために、コイルごとに個別に(例えば、真空チャンバの設定中に、または処理中に動的に、磁場制御装置1418によって)変更されてよい。
【0082】
図14は、いくつかの例示的実施形態による、プラズマ均一性を向上させるための1つ以上の補助磁場を構成するために、異なる種類の磁気センサおよび磁場制御装置を備える真空チャンバ1402を示す。
図14を参照すると、真空チャンバ1402は、大きさBzの径方向磁場1404および大きさBrの径方向磁場1406で構成される外部磁場に曝露されて、真空チャンバ内に残留磁場1403がもたらされてよい。
【0083】
例示的な実施形態では、真空チャンバ1402は、
図1の制御装置116と同じでありうる磁場制御装置1418を含む。磁場制御装置1418は、適切な回路、論理、インタフェース、および/またはコードを備え、磁場センサデータを受信して、少なくとも1つの磁場源によって生成される補助磁場の1つ以上の特性を調整するように構成されている。例示的な実施形態では、スマートウエハ1412は、開口部1410から真空チャンバ1402の処理ゾーン内に装填されてよい。スマートウエハ1412は、スマートウエハ1412が真空チャンバ1402内部の処理ゾーンに設置された後に残留磁場(例えば、残留磁場1403)を検出および測定するように構成された複数のセンサ1414(例えば、磁場センサ)を含んでよい。例示的実施形態では、磁場制御装置1418は、1つ以上の独立型センサ1416(例えば、磁場センサ)を用いて、残留磁場(残留磁場1403など)ならびに特定方向の磁場(例えば、軸方向磁場および径方向磁場を測定)を検出および測定してもよい。
【0084】
例示的な実施形態では、磁場制御装置1418は、残留磁場1403の大きさおよび方向を検出するために、センサ1414および/または1416を用いてよい。磁場制御装置1403は、特定のBz/Br比の大きさを有する複合磁場を実現するために、軸方向の補助磁場1408(大きさBzs)および/または径方向の補助磁場1409(大きさBrs)のいずれかまたは両方を含む、1つ以上の補助磁場の少なくとも1つの特性を調整してよい。例えば、磁場制御装置1418は、補助磁場を生成する少なくとも1つの磁場源を通る電流を調節(例えば、
図12Aおよび
図13Aに示す磁場源などの複数の磁場源に対して個別に電流を調節)してよい。さらに、磁場制御装置1418は、真空チャンバ1402内の径方向磁場の所望の大きさBz、真空チャンバ1402内の軸方向磁場の所望の大きさBr、または所望の比の大きさBz/Brを実現するために、複数の利用可能な磁場源(
図12Aおよび
図13Aに示すように構成された複数のコイル、または別の構成など)の1つ以上の磁場源を活性化または非活性化してよい。
【0085】
例示的な実施形態において、真空チャンバ1402は、磁場制御装置1418に結合されたプラズマ密度センサ(
図14には図示せず)をさらに備えてよい。いくつかの態様では、プラズマ密度センサはまた、1つ以上の磁場センサ1414および/または1416のいずれかまたは両方に結合されてよく、真空チャンバ内のプラズマの密度を測定するように構成されてよい。
【0086】
例示的な実施形態では、センサ1414および/または1416は、磁場制御装置1418が所望の大きさおよび方向を有する補助磁場の生成をもたらす調整を行うように初期磁場測定に用いられてよく、その結果、所望のBz、Br、またはBz/Brを有する全ての(結果として生じる)磁場が実現される。
【0087】
いくつかの実施形態では、センサ1414および/または1416を用いて周期的な測定および調整が実行されてよい。例示的な実施形態では、補助磁場の特性における自動(動的)測定および調整のために独立型センサ1416が用いられてよい。例示的な実施形態では、異なるセンサが異なる磁場源に関連しうるように、1つの磁場源について1つの磁場センサ(または1組の磁場センサ)が用いられてよい。例示的な実施形態において、磁場制御装置1418は、センサデータを受信するためにセンサ1414および1416と無線で通信してよい。
【0088】
例示的な実施形態では、センサ1414および/または1416のいずれかは、プラズマ密度を測定するように構成された光センサまたは熱センサを含むことができる。この場合、磁場制御装置1418は、センサ1414および/または1416によって測定されたプラズマ密度に基づいて特定のBz/Br比の大きさを有する複合磁場を実現するために、軸方向の補助磁場1408(大きさBzs)および径方向の補助磁場1409(大きさBrs)を生成するようにも構成される。
【0089】
図15は、いくつかの例示的な実施形態による、真空チャンバを用いて基板を処理するための方法1500のフローチャートである。方法1500は、
図14の磁場制御装置1418または
図16のプロセッサ1602などの磁場制御装置によって実行されうる動作1502、1504、1506、および1508を含む。
図15を参照すると、動作1502において、真空チャンバの処理ゾーン内の軸方向磁場を表す第1の信号が検出される。処理ゾーンは、プラズマを用いて基板を処理するためのものである。例えば、センサ1414または1416のいずれかは、真空チャンバ1402の処理ゾーン内の軸方向磁場1404を表す第1の信号を検出する。動作1504において、処理ゾーン内の径方向磁場を表す第2の信号が検出される。径方向磁場は、基板に平行で軸方向磁場に直交する磁場である。例えば、磁気センサは、径方向磁場1406を表す第2の信号をさらに検出することができる。動作1506において、処理ゾーン内の複数の位置で、軸方向磁場を表す第1の信号の大きさおよび径方向磁場を表す第2の信号の大きさが決定される。例えば、軸方向磁場1404を表す第1の信号の大きさBzおよび径方向磁場1406を表す第2の信号の大きさBrは、(例えば、磁場制御装置1418によって)決定される。動作1508において、第1および第2の信号の決定された大きさに基づいて、少なくとも2つの磁場源を用いて真空チャンバの処理ゾーンを通る軸方向の補助磁場および径方向の補助磁場が生成される。例えば、軸方向の補助磁場1408および径方向の補助磁場1409は、決定された大きさBzおよびBrに基づいて、少なくとも2つの磁場源(例えば、
図12Aおよび
図13Aに関連して示された磁場源)を用いて生成される。例えば、結果として生じる軸方向および径方向の補助磁場(例えば、既存の/残留する磁場1404および1406と補助磁場1409および1408との組み合わせに基づく磁場)が、磁場源の電流、コイルサイズ(例えば、巻数)、または他の特性を個々に設定した少なくとも2つの磁場源によって生成されるように、軸方向および径方向の補助磁場を生成することができ、その結果、所望の大きさ比で生じた軸方向および径方向の補助磁場が実現される。
【0090】
図16は、本明細書に記載の1つ以上の例示的なプロセス実施形態が実施または制御されうる機械1600の例を示すブロック図である。別の実施形態では、機械1600は、独立型装置として動作してよく、または他の機械に接続(例えば、ネットワーク接続)されてよい。ネットワーク化された配置では、機械1600は、サーバ-クライアントネットワーク環境においてサーバ機械、クライアント機械、またはその両方として動作してよい。一例では、機械1600は、ピアツーピア(P2P)(または、他の分散型)ネットワーク環境においてピア・マシンとして機能してよい。さらに、1つの機械1600のみが図示されているが、「機械」という用語は、クラウドコンピューティング、サービスとしてのソフトウェア(SaaS)、または他のコンピュータクラスタ構成などを介して、本明細書に記載の方法のうちの任意の1つ以上を実行するための命令のセット(または、複数のセット)を、個々にまたは協働で実行する機械群も含むものと解釈されるべきである。
【0091】
本明細書に記載の例は、ロジック、いくつかの構成要素、または機構を含んでよい、またはそれによって動作してよい。回路網は、ハードウェア(例えば、単純回路、ゲート、ロジック)を含む有形のエンティティに実装される回路の集合である。回路網の部材は時間とともに柔らかくなり、下にあるハードウェアを変化させる。回路網は、動作時に、単独でまたは組み合わせて特定の動作を実行できる部材を含む。一例では、回路網のハードウェアは、特定の動作(たとえば、ハードワイヤードされた動作)を実行するように不変に設計されうる。一例では、回路網のハードウェアは、特定の動作の命令を符号化するように物理的に(例えば、磁気的に、電気的に、不変量粒子の可動配置によって)変更されたコンピュータ可読媒体を含む、可変的に接続された物理的構成要素(例えば、実行ユニット、トランジスタ、単純回路)を含んでよい。物理的構成要素を接続する際に、ハードウェア構成要素の下にある電気的特性が変更される(例えば、絶縁体から導電体に、またはその逆に)。命令は、動作中に特定の動作の一部を実行するために、組み込みハードウェア(例えば、実行ユニットまたはローディング機構)が、可変接続部を介してハードウェア内の回路網の部材を作成することを可能にする。従って、コンピュータ可読媒体は、デバイスが動作しているとき、回路網の他の構成要素に通信可能に結合される。いくつかの態様では、物理的構成要素のいずれかが、2つ以上の回路網の2つ以上の部材において用いられてよい。例えば、動作中、実行ユニットは、ある時点で第1の回路網の第1の回路内で用いられ、第1の回路網の第2の回路によって、または第2の回路網の第3の回路によって、異なる時点で再利用されてよい。
【0092】
機械(例えば、コンピュータシステム)1600は、ハードウェアプロセッサ1602(例えば、中央処理ユニット(CPU)、ハードウェアプロセッサコア、またはそれらの任意の組合せ)、グラフィックス処理ユニット(GPU)1603、メインメモリ1604、およびスタティックメモリ1606を含み、これらの一部または全部は、インタリンク(例えば、バス)1608を介して相互に通信してよい。機械1600はさらに、表示装置1610、英数字入力装置1612(例えば、キーボード)、およびユーザインタフェース(UI)ナビゲーション装置1614(例えば、マウス)を含んでよい。一例では、表示装置1610、英数字入力装置1612、およびUIナビゲーション装置1614は、タッチスクリーン画面であってよい。機械1600はさらに、大容量記憶装置(例えば、ドライブユニット)1616、信号発生装置1618(例えば、スピーカ)、ネットワークインタフェースデバイス1620、および1つ以上のセンサ1621(全地球測位システム(GPS)センサ、コンパス、加速度計、または別のセンサなど)を含んでよい。機械1600は、1つ以上の周辺機器(例えば、プリンタ、カードリーダ)と通信し、またはそれらを制御するために、直列接続(例えば、ユニバーサルシリアルバス(USB))、並列接続、または他の有線もしくは無線(例えば、赤外線(IR)、近距離通信(NFC))接続などの出力制御装置1628を含んでよい。
【0093】
例示的な実施形態では、ハードウェアプロセッサ1602は、少なくとも
図14および
図15に関連して上記した磁場制御装置1418の機能を実行してよい。
【0094】
大容量記憶装置1616は、本明細書に記載の技術または機能の任意の1つまたは複数によって具体化または利用されるデータ構造または命令1624(例えば、ソフトウェア)の1つ以上のセットが記憶された機械可読媒体1622を含んでよい。命令1624はまた、機械1600によるそれらの実行中に、メインメモリ1604、スタティックメモリ1606、ハードウェアプロセッサ1602、またはGPU1603内に、完全にまたは少なくとも部分的に存在してもよい。一例では、ハードウェアプロセッサ1602、GPU1603、メインメモリ1604、スタティックメモリ1606、および大容量記憶装置1616の1つまたは任意の組合せが、機械可読媒体を構成してよい。
【0095】
機械可読媒体1622は単一の媒体として図示されるが、用語「機械可読媒体」は、1つ以上の命令1624を格納するように構成された単一の媒体または複数の媒体(例えば、集中型または分散型データベース、および/または関連キャッシュおよびサーバ)を含んでよい。
【0096】
「機械可読媒体」という用語は、機械1600による実行のための命令1624を記憶、符号化、または搬送することが可能な任意の媒体であり、機械1600に本開示の技術のうちの任意の1つ以上を実行させる、またはそのような命令1624によって用いられるもしくはそれに関連するデータ構造を記憶、符号化、または搬送することが可能な任意の媒体を含んでよい。非限定的な機械可読媒体の例は、ソリッドステートメモリ、ならびに光および磁気媒体を含んでよい。一例では、質量機械可読媒体は、不変(たとえば、静止)質量を有する複数の粒子を伴う機械可読媒体1622を備える。従って、質量機械可読媒体は、一時的な伝播信号ではない。質量機械可読媒体の特定の例は、半導体メモリデバイス(例えば、電気的プログラマブル読取り専用メモリ(EPROM)、電気的消去可能プログラマブル読取り専用メモリ(EEPROM))およびフラッシュメモリデバイスなどの不揮発性メモリ、内部ハードディスクおよびリムーバブルディスクなどの磁気ディスク、光磁気ディスク、ならびにCD-ROMおよびDVD-ROMディスクを含んでよい。
【0097】
命令1624はさらに、ネットワークインタフェースデバイス1620を介して、伝送媒体を用いて通信ネットワーク1626上で送信または受信されてよい。
【0098】
上記技術の実施は、任意の数の仕様、構成、またはハードウェアおよびソフトウェアの例示的な配置によって実現されてよい。本明細書に記載の機能ユニットまたは機能は、より具体的にそれらの実装独立性を強調するために、構成要素またはモジュールと呼ばれ、または分類されうることを理解されたい。そのような構成要素は、任意の数のソフトウェアまたはハードウェアの形態によって具現化されてよい。例えば、構成要素又はモジュールは、カスタムの超大規模集積(VLSI)回路又はゲートアレイ、既製の半導体(論理チップ、トランジスタ、または他の個別部品など)からなるハードウェア回路として実装されてよい。構成要素またはモジュールはまた、フィールドプログラマブルゲートアレイ、プログラマブルアレイロジック、プログラマブルロジックデバイスなどのプログラマブルハードウェアデバイスにおいて実装されてもよい。また、構成要素またはモジュールは、様々な種類のプロセッサによる実行のために、ソフトウェアに実装されてもよい。実行可能コードの特定された構成要素またはモジュールは、例えば、オブジェクト、プロシージャ、または機能として構成されうるコンピュータ命令の1つ以上の物理的または論理的ブロックを含んでよい。それでも、特定された構成要素またはモジュールの実行ファイルは、物理的に一緒に配置される必要はないが、論理的に一緒に結合されたときに構成要素またはモジュールを含み、構成要素またはモジュールの特定の目的を実現する、異なる位置に記憶された異種の命令を含んでよい。
【0099】
実際に、実行可能コードの構成要素またはモジュールは、単一の命令または多くの命令であってよく、いくつかの異なるコードセグメント、異なるプログラム、およびいくつかのメモリデバイスまたは処理システムにおいて分散されてもよい。特に、記載のプロセスのいくつかの態様(コード書き換えおよびコード分析など)は、コードが展開される処理システム(例えば、センサまたはロボットに組み込まれたコンピュータ)とは異なる処理システム(例えば、データセンタ内のコンピュータ)上で実施されてよい。同様に、動作データは、本明細書では構成要素またはモジュール内で識別および示され、任意の適切な形態で具現化され、任意の適切な種類のデータ構造内で編成されてよい。動作データは、単一のデータセットとして収集されてよく、または異なる記憶装置を含む異なる場所に分散されてよく、少なくとも部分的に、単にシステムまたはネットワーク上の電子信号として存在してよい。所望の機能を実行するように動作可能なエージェントを含む構成要素またはモジュールは、受動的または能動的であってよい。
【0100】
その他の注意事項と例
【0101】
例1は、基板処理装置であって、プラズマを用いて基板を処理するための処理ゾーンを含む真空チャンバと、軸方向磁場を表す第1の信号、および真空チャンバに伴う径方向磁場を表す第2の信号を検出するように構成された磁場センサであって、径方向磁場は基板に平行であり、軸方向磁場に直交する、磁場センサと、真空チャンバの処理ゾーンを通る軸方向の補助磁場および径方向の補助磁場を生成するように構成された少なくとも2つの磁場源と、磁場センサおよび少なくとも2つの磁場源に結合された磁場制御装置であって、第1の信号および第2の信号に基づいて軸方向の補助磁場および径方向の補助磁場のいずれかまたは両方の少なくとも1つの特性を調整するように構成された磁場制御装置と、を備える基板処理装置である。
【0102】
例2において、実施例1の主題は、磁場センサが、真空チャンバの処理ゾーン内に設置されたウエハセンサであることを含む。
【0103】
例3において、例2の主題は、ウエハセンサが、処理ゾーン内の複数の位置で軸方向磁場および径方向磁場の1つ以上のパラメータを測定するように構成された磁場センサのアレイを備え、磁場制御装置が、測定された1つ以上のパラメータに基づいて、軸方向および径方向の補助磁場の少なくとも1つの特性を調整することを含む。
【0104】
例4において、例1~3の主題は、磁場センサが、軸方向磁場を表す第1の信号の大きさと、径方向磁場を表す第2の信号の大きさとを測定するように構成されることを含む。
【0105】
例5において、例4の主題は、少なくとも1つの特性が、軸方向の補助磁場および径方向の補助磁場の大きさならびに方向のいずれかまたは両方を含むことを含む。
【0106】
例6において、例5の主題は、少なくとも2つの磁場源が、互いに平行な第1の磁場源および第2の磁場源を備え、磁場制御装置が、軸方向の補助磁場および径方向の補助磁場の大きさならびに方向のいずれかまたは両方を調整するために、第1の磁場源を通る電流および第2の磁場源を通る電流のいずれかまたは両方を調整するように構成されることを含む。
【0107】
実施例7において、実施例6の主題は、磁場制御装置が、第2の磁場源を流れる電流から独立して第1の磁場源を流れる電流を調節するように構成されることを含む。
【0108】
実施例8において、実施例6~7の主題は、磁場制御装置が、軸方向磁場を表す第1の信号の大きさと、径方向磁場を表す第2の信号の大きさとの比が比率閾値に達するまで、第1の磁場源を流れる電流および第2の磁場源を流れる電流を調整するように構成されることを含む。
【0109】
実施例9において、実施例6~8の主題は、磁場制御装置が、軸方向磁場を表す第1の信号の大きさが第1の閾値に達し、径方向磁場を表す第2の信号の大きさが第2の閾値に達するまで、第1の磁場源を通る電流および第2の磁場源を通る電流を調整するように構成されることを含む。
【0110】
実施例10において、実施例1~9の主題は、軸方向の補助磁場および径方向の補助磁場のいずれかまたは両方の少なくとも1つの特性が、少なくとも2つの磁場源の各々における巻数、少なくとも2つの磁場源の第1の磁場源から基板までの距離、少なくとも2つの磁場源の第2の磁場源から基板までの距離、および少なくとも2つの磁場源間の距離、のうちの1つ以上を含むことを含む。
【0111】
例11において、例1~10の主題は、少なくとも2つの磁場源が複数のコイルを含み、各コイルが複数の巻線を含むことを含む。
【0112】
例12において、例11の主題は、複数のコイルが真空チャンバの外側に取り付けられることを含む。
【0113】
例13において、例11~12の主題は、複数のコイルの少なくとも1つが真空チャンバの内側に取り付けられることを含む。
【0114】
例14において、例11~13の主題は、複数のコイルが、互いにおよび基板に平行な少なくとも4つのコイルを備え、磁場制御装置が、磁場センサによって測定された軸方向の補助磁場および径方向の補助磁場のいずれかまたは両方の大きさに基づいて、少なくとも4つのコイルの各々を通る電流を独立して調整するように構成されることを含む。
【0115】
例15において、例1~14の主題は、基板処理装置が、磁場制御装置に結合され、真空チャンバ内のプラズマの密度を測定するように構成されたプラズマ密度センサをさらに備え、磁場制御装置は、プラズマの測定密度に基づいて、少なくとも2つの磁場源の各々を通る電流を独立して調整するように構成されることを含む。
【0116】
例16は、真空チャンバを用いて基板を処理するための方法であって、プラズマを用いて基板を処理するための真空チャンバの処理ゾーン内で軸方向磁場を表す第1の信号を検出し、処理ゾーン内で径方向磁場を表す第2の信号を検出し、径方向磁場は基板に平行であり、軸方向磁場に直交し、処理ゾーン内の複数の位置で、軸方向磁場を表す第1の信号の大きさおよび径方向磁場を表す第2の信号の大きさを決定し、決定された第1および第2の信号の大きさに基づいて、真空チャンバの処理ゾーンを通る軸方向の補助磁場および径方向の補助磁場を、少なくとも2つの磁場源を用いて生成することを含む方法である。
【0117】
例17において、例16の主題は、少なくとも2つの磁場源の少なくとも1つを通る電流を調節して、軸方向の補助磁場および径方向の補助磁場の大きさおよび方向のいずれかまたは両方を調節することを含む。
【0118】
例18において、例17の主題は、軸方向磁場を表す第1の信号の大きさと径方向磁場を表す第2の信号の大きさとの比が比率閾値に達するまで、少なくとも2つの磁場源の少なくとも1つを通る電流を独立して調整することを含む。
【0119】
例19では、例17~18の主題は、軸方向磁場を表す第1の信号の大きさが第1の閾値に達し、径方向磁場を表す第2の信号の大きさが第2の閾値に達するまで、少なくとも2つの磁場源の少なくとも1つを通る電流を独立して調整することを含む。
【0120】
例20は、命令を含む非一時的機械可読記憶媒体であって、命令が機械によって実行されるときは、プラズマを用いて基板を処理するための真空チャンバの処理ゾーン内の軸方向磁場を表す第1の信号を検出し、処理ゾーン内の径方向磁場を表す第2の信号を検出することであって、径方向磁場は基板に平行であり、軸方向磁場に直交し、処理ゾーン内の複数の位置において、軸方向磁場を表す第1の信号の大きさおよび径方向磁場を表す第2の信号の大きさを決定し、第1および第2の信号の決定された大きさに基づいて、真空チャンバの処理ゾーンを通る軸方向の補助磁場および径方向の補助磁場を、少なくとも2つの磁場源を用いて生成することを含む動作を機械に実行させる命令を含む、非一時的機械可読記憶媒体である。
【0121】
例21において、例20の主題は、第1の磁場源を通る電流および第2の磁場源を通る電流のいずれかまたは両方を調節して、軸方向の補助磁場および径方向の補助磁場の大きさおよび方向のいずれかまたは両方を調節することをさらに含む。
【0122】
例22において、例21の主題は、軸方向磁場を表す第1の信号の大きさと径方向磁場を表す第2の信号の大きさとの比が比率閾値に達するまで、少なくとも2つの磁場源を流れる電流を独立して調整することをさらに含む。
【0123】
例23において、例21~22の主題は、軸方向磁場を表す第1の信号の大きさが第1の閾値に達し、径方向磁場を表す第2の信号の大きさが第2の閾値に達するまで、少なくとも2つの磁場源を流れる電流を独立して調整することをさらに含む。
【0124】
例24は、処理回路網によって実行されたときに、処理回路網に例1~23のいずれかを実施する動作を実行させる命令を含む、少なくとも1つの機械可読媒体である。
【0125】
例25は、例1~23のいずれかを実施する手段を備える装置である。
【0126】
例26は、例1~23のいずれかを実施するためのシステムである。
【0127】
例27は、例1~23のいずれかを実施するための方法である。
【0128】
本明細書全体を通して、複数の例は、1つの例として説明される構成要素、動作、または構造を含んでよい。1つ以上の方法の個々の動作が別々の動作として説明および記載されているが、個々の動作の1つ以上は同時に実行されてよく、動作は示された順序で実行される必要はない。構造および機能は、別個の構成要素(例えば、構成)が複合構造または構成要素として実装されうるように提示される。同様に、1つの構成要素として提示された構造および機能は、別々の構成要素として実装されてよい。これらおよび他の変形、修正、追加、および改善は、本明細書の主題の範囲内に該当する。
【0129】
本明細書に記載の実施形態は、当業者が開示の教示を実施できるほど十分詳細に説明される。本開示の範囲から逸脱することなく構造的および論理的な置換および変更が行われうるように、他の実施形態が用いられ、それらから導出されてよい。よって、発明を実施するための形態は限定的な意味で解釈されるべきではなく、様々な実施形態の範囲は、添付の特許請求の範囲、および、そのような特許請求の範囲が権利化された同等物の全範囲によってのみ規定される。
【0130】
実施形態は特徴の部分集合を特徴としうるため、特許請求の範囲は、本明細書に開示されるすべての特徴を記載しなくてよい。さらに、実施形態は、特定の例において開示された特徴よりも少ない特徴を含んでよい。よって、以下の特許請求の範囲は発明を実施するための形態に組み込まれ、1つの請求項は別個の実施形態として独立している。
【0131】
本明細書で用いられる「または」という用語は、包括的または排他的な意味のいずれかで解釈されてよい。また、複数の例は、1つの例として本明細書で説明されるリソース、動作、または構造のために提供されてよい。さらに、様々なリソース、動作、モジュール、エンジン、およびデータストア間の境界はいくぶん任意であり、特定の動作は、特定の例示的な構成の観点から説明される。他の割り当ての機能性が想定され、本開示の様々な実施形態の範囲内に含まれてよい。一般に、例示の構成において別個のリソースとして提示された構造および機能性は、複合構造またはリソースとして実装されてよい。同様に、単一のリソースとして提示された構造および機能性は、別個のリソースとして実装されてよい。これらおよび他の変形、修正、追加、および改良は、添付の特許請求の範囲に表されるように本開示の実施形態の範囲内に該当する。従って、本明細書および図面は、制限的ではなく例示的とみなされるべきである。
【国際調査報告】