(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-12-01
(54)【発明の名称】静磁場を使用するプラズマ一様性制御
(51)【国際特許分類】
H05H 1/46 20060101AFI20231124BHJP
H01L 21/3065 20060101ALI20231124BHJP
【FI】
H05H1/46 M
H01L21/302 101C
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023528590
(86)(22)【出願日】2021-11-02
(85)【翻訳文提出日】2023-06-29
(86)【国際出願番号】 US2021057786
(87)【国際公開番号】W WO2022108753
(87)【国際公開日】2022-05-27
(32)【優先日】2020-11-20
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】592010081
【氏名又は名称】ラム リサーチ コーポレーション
【氏名又は名称原語表記】LAM RESEARCH CORPORATION
(74)【代理人】
【識別番号】110000028
【氏名又は名称】弁理士法人明成国際特許事務所
(72)【発明者】
【氏名】マラクタノフ・アレクセイ
(72)【発明者】
【氏名】ジ・ビング
(72)【発明者】
【氏名】ルッケージ・ケン
(72)【発明者】
【氏名】ホランド・ジョン
【テーマコード(参考)】
2G084
5F004
【Fターム(参考)】
2G084AA02
2G084BB05
2G084BB14
2G084CC12
2G084CC33
2G084DD02
2G084DD15
2G084DD23
2G084DD37
2G084DD55
2G084FF15
2G084FF27
2G084FF29
5F004AA01
5F004BA20
5F004BB07
5F004BB12
5F004BB13
5F004BB22
5F004BB23
5F004BB25
5F004BD03
5F004CA03
5F004DA00
5F004DA17
5F004DA26
(57)【要約】
ウェハに対してプラズマプロセスを実行するためのシステムであって、プラズマ処理のためのウェハを受け取るように構成されたチャンバであって、プラズマ処理領域を画定する内部を有し、プラズマ処理領域において、ウェハのプラズマ処理のためにプラズマが提供される、チャンバと、チャンバの上方に配設され、ウェハの表面平面に対して垂直な軸であって、ウェハの略中心を通る軸を中心とする、第1の磁気コイルと、プラズマ処理中に第1の磁気コイルに第1のDC電流を印加するように構成された第1のDC電源であって、印加された第1のDC電流が、プラズマの非一様性を低減する磁界をプラズマ処理領域において生成する、第1のDC電源と、を備える、システムが提供される。
【選択図】
図2A
【特許請求の範囲】
【請求項1】
ウェハに対してプラズマプロセスを実行するためのシステムであって、
プラズマ処理のためのウェハを受け取るように構成されたチャンバであって、プラズマ処理領域を画定する内部を有し、前記プラズマ処理領域において、前記ウェハの前記プラズマ処理のためにプラズマが提供される、チャンバと、
前記チャンバの上方に配設され、前記ウェハの表面平面に対して垂直な軸であって、前記ウェハの略中心を通る軸を中心とする、第1の磁気コイルと、
前記プラズマ処理中に前記第1の磁気コイルに第1のDC電流を印加するように構成された第1のDC電源であって、前記印加された第1のDC電流が、前記プラズマの非一様性を低減する磁界を前記プラズマ処理領域において生成する、第1のDC電源と、
を備える、システム。
【請求項2】
請求項1に記載のシステムであって、
前記磁界は、前記プラズマ処理領域の中央領域を通って実質的に垂直であるように構成される、システム。
【請求項3】
請求項2に記載のシステムであって、
前記プラズマ処理領域の前記中央領域を通る前記磁界は、約10ガウス未満である強度を有する、システム。
【請求項4】
請求項1に記載のシステムであって、
前記磁界は、前記プラズマ処理によって実行されるエッチングの半径方向非一様性を低減するように構成される、システム。
【請求項5】
請求項1に記載のシステムであって、
前記第1の磁気コイルは、形状が実質的に環状である、システム。
【請求項6】
請求項1に記載のシステムであって、
前記第1の磁気コイルは、前記ウェハの前記表面平面に平行な水平平面に沿って配向される、システム。
【請求項7】
請求項1に記載のシステムであって、
前記第1の磁気コイルの内径は、約15~20インチの範囲内にある、システム。
【請求項8】
請求項1に記載のシステムであって、
前記第1の磁気コイルは、複数巻のマグネットワイヤを含む、システム。
【請求項9】
請求項1に記載のシステムであって、
前記チャンバの上方に配設された第2の磁気コイルであって、前記第2の磁気コイルは、前記第1の磁気コイルと同心である、第2の磁気コイルと、
前記プラズマ処理中に前記第2の磁気コイルに第2のDC電流を印加するように構成された第2のDC電源であって、前記印加された第2のDC電流は、前記プラズマの非一様性を低減する前記磁界を前記プラズマ処理領域において生成することに寄与する、第2のDC電源と、
をさらに備える、システム。
【請求項10】
請求項9に記載のシステムであって、
前記第2の磁気コイルは、実質的に、前記第1の磁気コイルと同じ水平平面に沿って配向される、システム。
【請求項11】
請求項9に記載のシステムであって、
前記第1のDC電流および前記第2のDC電流は、同じ大きさまたは異なる大きさを有するように構成される、システム。
【請求項12】
請求項9に記載のシステムであって、
前記第1のDC電流および前記第2のDC電流は、同じ方向に、または反対方向に印加されるように構成される、システム。
【請求項13】
請求項9に記載のシステムであって、
前記第1の磁気コイルの内径は、約10~15インチの範囲内にあり、
前記第2の磁気コイルの内径は、約15~25インチの範囲内にある、
システム。
【請求項14】
請求項1に記載のシステムであって、
前記プラズマ処理領域を側方から囲むように構成された第2の磁気コイルと、
前記プラズマ処理中に前記第2の磁気コイルに第2のDC電流を印加するように構成された第2のDC電源であって、前記印加された第2のDC電流は、前記プラズマの非一様性を低減する前記磁界を前記プラズマ処理領域において生成することに寄与する、第2のDC電源と、
をさらに備える、システム。
【請求項15】
請求項1に記載のシステムであって、
前記プラズマ処理領域の下方に配設された第2の磁気コイルと、
前記プラズマ処理中に前記第2の磁気コイルに第2のDC電流を印加するように構成された第2のDC電源であって、前記印加された第2のDC電流は、前記プラズマの非一様性を低減する前記磁界を前記プラズマ処理領域において生成することに寄与する、第2のDC電源と、
をさらに備える、システム。
【請求項16】
ウェハに対してプラズマプロセスを実行するための方法であって、
プラズマ処理のために構成されたチャンバの中にウェハを移動することであって、前記チャンバの内部は、プラズマ処理領域を画定する、ウェハを移動することと、
前記ウェハの前記プラズマ処理のために前記プラズマ処理領域においてプラズマを提供することと、
前記プラズマ処理中に磁気コイルにDC電流を印加することであって、前記印加されたDC電流が、前記プラズマの非一様性を低減する磁界を前記プラズマ処理領域において生成する、DC電流を印加することと、
を含み、
前記磁気コイルは、前記チャンバの上方に配設され、前記ウェハの表面平面に対して垂直な軸であって、前記ウェハの略中心を通る軸を中心とする、
方法。
【請求項17】
請求項16に記載の方法であって、
前記磁界は、前記プラズマ処理領域の中央領域を通って実質的に垂直であるように構成される、方法。
【請求項18】
請求項17に記載の方法であって、
前記プラズマ処理領域の前記中央領域を通る前記磁界は、約10ガウス未満である強度を有する、方法。
【請求項19】
請求項16に記載の方法であって、
前記磁界は、前記プラズマ処理によって実行されるエッチングの半径方向非一様性を低減するように構成される、方法。
【請求項20】
請求項16に記載の方法であって、
前記磁気コイルは、形状が実質的に環状である、方法。
【請求項21】
請求項16に記載の方法であって、
前記磁気コイルは、前記ウェハの前記表面平面に平行な水平平面に沿って配向される、方法。
【請求項22】
請求項16に記載の方法であって、
前記第1の磁気コイルの内径は、約15~20インチの範囲内にある、方法。
【発明の詳細な説明】
【技術分野】
【0001】
1.開示の分野
本開示は、半導体デバイス製造に関する。
【背景技術】
【0002】
2.関連技術の説明
プラズマエッチングプロセスは、半導体ウェハ上の半導体デバイスの製造において使用されることが多い。プラズマエッチングプロセスでは、製造中の半導体デバイスを含む半導体ウェハが、プラズマ処理ボリューム内で生成されたプラズマに曝される。プラズマは、半導体ウェハから材料を除去するように、および/または、半導体ウェハから後で材料を除去することを可能にするためにその材料を改質するように、半導体ウェハ上の材料と相互作用する。プラズマは、特定の反応ガスを用いて生成されることができ、それによりプラズマの構成成分は、除去/改質されるべきでないウェハ上の他の材料と顕著に相互作用することなく、半導体ウェハから除去/改質されるべき材料と相互作用する。プラズマは、特定の反応ガスに電圧を加えるための無線周波数信号を使用することによって生成される。これらの無線周波数信号は、半導体ウェハがプラズマ処理ボリュームに曝された状態で、反応ガスを含むプラズマ処理ボリュームを通して伝送される。プラズマ処理ボリュームを通る無線周波数信号の伝送路は、プラズマがプラズマ処理ボリューム内でどのように生成されるかに影響を及ぼし得る。例えば、反応ガスは、より大量の無線周波数信号電力が伝送されるプラズマ処理ボリュームの領域ではより大きく電圧が加えられ得ることにより、プラズマ処理ボリューム全体でのプラズマ特性に空間的非一様性を引き起こす。プラズマ特性における空間的非一様性は、他のプラズマ特性のうちでもとりわけ、イオン密度、イオンエネルギー、および/または反応性構成成分密度における空間的非一様性として現れ得る。プラズマ特性における空間的非一様性は、対応して、半導体ウェハ上のプラズマ処理結果における空間的非一様性を引き起こす。したがって、無線周波数信号がプラズマ処理ボリュームを通して伝送される様態は、半導体ウェハ上のプラズマ処理結果の一様性に対して影響を有し得る。本開示が行われるのは、この文脈においてである。
【発明の概要】
【0003】
大まかに言って、本開示の実施形態は、静磁場を使用するプラズマ一様性制御のための方法およびシステムを提供する。
【0004】
いくつかの実施態様では、ウェハに対してプラズマプロセスを実行するためのシステムであって、プラズマ処理のためのウェハを受け取るように構成されたチャンバであって、プラズマ処理領域を画定する内部を有し、プラズマ処理領域において、ウェハのプラズマ処理のためにプラズマが提供される、チャンバと、チャンバの上方に配設され、ウェハの表面平面に対して垂直な軸であって、ウェハの略中心を通る軸を中心とする、第1の磁気コイルと、プラズマ処理中に第1の磁気コイルに第1のDC電流を印加するように構成された第1のDC電源であって、印加された第1のDC電流が、プラズマの非一様性を低減する磁界をプラズマ処理領域において生成する、第1のDC電源と、を備える、システムが提供される。
【0005】
いくつかの実施態様では、磁界は、プラズマ処理領域の中央領域を通って実質的に垂直であるように構成される。
【0006】
いくつかの実施態様では、プラズマ処理領域の中央領域を通る磁界は、約10ガウス未満である強度を有する。
【0007】
いくつかの実施態様では、磁界は、プラズマ処理によって実行されるエッチングの半径方向非一様性を低減するように構成される。
【0008】
いくつかの実施態様では、第1の磁気コイルは、形状が実質的に環状である。
【0009】
いくつかの実施態様では、第1の磁気コイルは、ウェハの表面平面に平行な水平平面に沿って配向される。
【0010】
いくつかの実施態様では、第1の磁気コイルの内径は、約15~20インチの範囲内にある。
【0011】
いくつかの実施態様では、第1の磁気コイルは、複数巻のマグネットワイヤを含む。
【0012】
いくつかの実施態様では、システムは、チャンバの上方に配設された第2の磁気コイルであって、第2の磁気コイルが、第1の磁気コイルと同心である、第2の磁気コイルと、プラズマ処理中に第2の磁気コイルに第2のDC電流を印加するように構成された第2のDC電源であって、印加された第2のDC電流が、プラズマの非一様性を低減する磁界をプラズマ処理領域において生成することに寄与する、第2のDC電源と、をさらに含む。
【0013】
いくつかの実施態様では、第2の磁気コイルは、実質的に、第1の磁気コイルと同じ水平平面に沿って配向される。
【0014】
いくつかの実施態様では、第1のDC電流および第2のDC電流は、同じ大きさまたは異なる大きさを有するように構成される。
【0015】
いくつかの実施態様では、第1のDC電流および第2のDC電流は、同じ方向に、または反対方向に印加されるように構成される。
【0016】
いくつかの実施態様では、第1の磁気コイルの内径は、約10~15インチの範囲内にあり、第2の磁気コイルの内径は、約15~25インチの範囲内にある。
【0017】
いくつかの実施態様では、システムは、プラズマ処理領域を側方から囲むように構成された第2の磁気コイルと、プラズマ処理中に第2の磁気コイルに第2のDC電流を印加するように構成された第2のDC電源であって、印加された第2のDC電流が、プラズマの非一様性を低減する磁界をプラズマ処理領域において生成することに寄与する、第2のDC電源と、をさらに含む。
【0018】
いくつかの実施態様では、システムは、プラズマ処理領域の下方に配設された第2の磁気コイルと、プラズマ処理中に第2の磁気コイルに第2のDC電流を印加するように構成された第2のDC電源であって、印加された第2のDC電流が、プラズマの非一様性を低減する磁界をプラズマ処理領域において生成することに寄与する、第2のDC電源と、をさらに含む。
【0019】
いくつかの実施態様では、ウェハに対してプラズマプロセスを実行するための方法であって、プラズマ処理のために構成されたチャンバの中にウェハを移動することであって、チャンバの内部が、プラズマ処理領域を画定する、ウェハの移動と、ウェハのプラズマ処理のためにプラズマ処理領域においてプラズマを提供することと、プラズマ処理中に磁気コイルにDC電流を印加することであって、印加されたDC電流が、プラズマの非一様性を低減する磁界をプラズマ処理領域において生成する、DC電流の印加と、を含む。
【0020】
磁気コイルが、チャンバの上方に配設され、ウェハの表面平面に対して垂直な軸であって、ウェハの略中心を通る軸を中心とする、方法が提供される。
【0021】
いくつかの実施態様では、磁界は、プラズマ処理領域の中央領域を通って実質的に垂直であるように構成される。
【0022】
いくつかの実施態様では、プラズマ処理領域の中央領域を通る磁界は、約10ガウス未満である強度を有する。
【0023】
いくつかの実施態様では、磁界は、プラズマ処理によって実行されるエッチングの半径方向非一様性を低減するように構成される。
【0024】
いくつかの実施態様では、磁気コイルは、形状が実質的に環状である。
【0025】
いくつかの実施態様では、磁気コイルは、ウェハの表面平面に平行な水平平面に沿って配向される。
【0026】
いくつかの実施態様では、第1の磁気コイルの内径は、約15~20インチの範囲内にある。
【図面の簡単な説明】
【0027】
【
図1】いくつかの実施形態による、半導体チップ製造において使用するためのプラズマ処理システムを通る垂直断面図である。
【0028】
【
図2A】本開示の実施態様による、プラズマ処理中に磁界を印加するための単一の磁気コイルを有するプロセスチャンバの断面図を概念的に示す図である。
【0029】
【
図2B】本開示の実施態様による、プラズマ処理中に磁界を印加するための2つの磁気コイルを有するプロセスチャンバの断面図を概念的に示す図である。
【0030】
【
図2C】本開示の実施態様による、プラズマ処理中に磁界を印加するための3つの磁気コイルを有するプロセスチャンバの断面図を概念的に示す図である。
【0031】
【
図2D】本開示の実施態様による、プラズマ処理中に磁界を印加するための4つの磁気コイルを有するプロセスチャンバの断面図を概念的に示す図である。
【0032】
【
図3A】本開示の実施態様による、異なる印加された磁場の下での持続波プラズマについてのエッチレート結果を示すグラフである。
【0033】
【
図3B】
図3Aの実施態様による、印加された磁場によってもたらされるエッチレートの変化を示すグラフである。
【0034】
【
図4A】本開示の実施態様による、異なる印加された磁場を用いたプラズマプロセスについてのウェハ半径に応じたエッチレートを示すグラフである。
【0035】
【
図4B】
図4Aの実施態様による、印加された磁場の結果としてのエッチレートの変化を示すグラフである。
【0036】
【
図5】本開示の実施態様による、特徴部傾斜に対する印加された磁場の影響を例証する、エッチングされた特徴部をその上に有するウェハの部分の断面画像を示す図である。
【0037】
【
図6A】本開示の実施態様による、さまざまな単一コイル電流構成についての、300mm直径ウェハに沿った半径方向位置に対する、z方向(垂直方向、またはウェハ表面に対して垂直)でのウェハレベルにおける磁界強度を示す図である。
【0038】
【
図6B】
図6Aの実施態様による、さまざまな単一コイル電流構成についての、300mm直径ウェハに沿った半径方向位置に対する、半径方向でのウェハレベルにおける磁界強度を(ガウスで)示す図である。
【0039】
【
図7A】本開示の実施態様による、単一のコイルA(12インチ)、B(14インチ)、C(17インチ)、およびD(23インチ)に印加されたさまざまな正電流(反時計回り)についての、300mmウェハに沿った半径方向位置に対する熱酸化物エッチレートを示すグラフである。
【0040】
【
図7B】本開示の実施態様による、単一のコイルA(12インチ)、B(14インチ)、C(17インチ)、およびD(23インチ)に印加された負電流(時計回り)についての、300mmウェハに沿った半径方向位置に対する熱酸化物エッチレートを示すグラフである。
【0041】
【
図8A】本開示の実施態様による、さまざまな2コイル電流構成についての、300mm直径ウェハに沿った半径方向位置に対する、z方向(垂直方向、またはウェハ表面に対して垂直)でのウェハレベルにおける磁界強度を示す図である。
【0042】
【
図8B】
図8Aの実施態様による、さまざまな2コイル電流構成についての、300mm直径ウェハに沿った半径方向位置に対する、半径方向でのウェハレベルにおける磁界強度を(ガウスで)示す図である。
【0043】
【
図9A】本開示の実施態様による、さまざまな3コイル電流構成についての、300mm直径ウェハに沿った半径方向位置に対する、z方向(垂直方向、またはウェハ表面に対して垂直)でのウェハレベルにおける磁界強度を示す図である。
【0044】
【
図9B】
図9Aの実施態様による、さまざまな3コイル電流構成についての、300mm直径ウェハに沿った半径方向位置に対する、半径方向でのウェハレベルにおける磁界強度を(ガウスで)示す図である。
【0045】
【
図10A】本開示の実施態様による、2コイル組合せについての、300mmウェハに沿った半径方向位置に応じたエッチレートを示すグラフである。
【0046】
【
図10B】
図10Aの実施態様による、ゼロ電流状態と比較したエッチレートデルタを示すグラフである。
【0047】
【
図11】本開示の実施態様による、複数の磁気コイルへの電力を制御するためのシステムの概念概略図である。
【0048】
【
図12】いくつかの実施形態による、
図1の制御システムの例示的概略図である。
【発明を実施するための形態】
【0049】
以下の説明では、本開示の実施形態の理解を提供するために、多くの具体的詳細が記載される。しかし、当業者には明らかとなるように、本開示は、これらの具体的詳細の一部または全部なしに実施され得る。他の場合には、本開示を不必要にわかりにくくしないために、周知のプロセス動作は詳細に記載されていない。
【0050】
半導体ウェハ製造のためのプラズマエッチングシステムにおいて、半導体ウェハにわたるエッチング結果の空間的ばらつきは、半径方向エッチ一様性および方位角エッチ一様性によって特徴づけられ得る。半径方向エッチ一様性は、半導体ウェハの中心から半導体ウェハ上の所与の方位角位置における半導体ウェハのエッジまで外向きに延在する、半導体ウェハ上の半径方向位置に応じたエッチレートのばらつきによって特徴づけられ得る。また、方位角エッチ一様性は、半導体ウェハ上の所与の半径方向位置における、半導体ウェハの中心についての、半導体ウェハ上の方位角位置に応じたエッチレートのばらつきによって特徴づけられ得る。本明細書で説明されるシステムにおいてなど、いくつかのプラズマ処理システムにおいて、半導体ウェハは、半導体ウェハの上にあるプラズマ発生領域内にプラズマを生成するために無線周波数信号がそれから出る電極上に配置され、プラズマは、規定されたエッチングプロセスが、半導体ウェハ上で生じることを引き起こすように制御された特性を有する。
【0051】
容量結合型プラズマ(CCP)システムにおいて、定在波ならびに正イオンおよび負イオンの局所累積により、中心プラズマ非一様性を呈する傾向がある。これは、エッチレートの半径方向非一様性を生じる。例えば、多くのCCPツールは、ウェハの中心に向かってエッチレートの劇的な増加を呈することがある。
【0052】
その上、半径方向非一様性に関してツール間のばらつきがある。いくつかのツールは、中心においてエッチレートの顕著なスパイクを呈することがあるのに対して、他のツールは、そのようなスパイクを呈しないことがある。しばしば、これは、ツールごとに構成が異なり得るチャンバ部からの磁束が異なるので、磁界の存在または不在に相関する。さらに、所与のツールのローカル環境または特定のロケーション、および周囲のハードウェアは、存在しているローカル磁場に影響を及ぼし得、ローカル磁場は、エッチ半径方向非一様性に影響を及ぼす。
【0053】
既存のCCPシステムにおける上記の問題に鑑みて、本開示のいくつかの実施態様は、局所荷電種堆積を最小限に抑え、ウェハにわたってプラズマ/エッチ一様性を改善するための、プラズマへの静的磁場の印加を提供する。
【0054】
いくつかの実施態様では、パルス磁界が、半径方向電子拡散、および、それゆえ、半径方向負および正イオン音響波を制御するために、磁場の時間変動半径方向勾配を作成するために印加される。
【0055】
図1は、いくつかの実施形態による、半導体チップ製造において使用するためのプラズマ処理システム100を通る垂直断面図を示す。システム100は、壁101A、上部部材101B、および下部部材101Cによって形成されたチャンバ101を含む。壁101A、上部部材101B、および下部部材101Cは、チャンバ101内の内部領域103を集団的に形成する。下部部材101Cは、排気ポート105を含み、排気ポート105を通じて、プラズマ処理動作からの排気ガスが導かれる。いくつかの実施形態では、動作中に、チャンバ101の内部領域103からプロセス排気ガスを引き出すために、吸引力が、ターボポンプまたは他の真空デバイスによってなどで排気ポート105に印加される。いくつかの実施形態では、チャンバ101は、アルミニウムで形成される。しかし、さまざまな実施形態では、チャンバ101は、とりわけステンレススチールなどの、十分な機械的強度、受容可能な熱性能を提供する本質的に任意の材料であって、チャンバ101内のプラズマ処理動作中に接触し曝される他の材料と化学的に親和性の材料で形成され得る。チャンバ101の少なくとも1つの壁101Aは、ドア107を含み、半導体ウェハWは、ドア107を通ってチャンバ101の内外に移送される。いくつかの実施形態では、ドア107は、スリットバルブドアとして構成される。
【0056】
いくつかの実施形態では、半導体ウェハWは、製造手順を受ける半導体ウェハである。説明を簡単にするため、半導体ウェハWは、以下ではウェハWと称される。しかし、理解されるべきであるが、さまざまな実施形態では、ウェハWは、プラズマ系製造プロセスを受ける本質的に任意の種類の基板であり得る。例えば、いくつかの実施形態では、本明細書で言及されるウェハWは、シリコン、サファイア、GaN、GaAsもしくはSiC、または他の基板材料で形成される基板であることができ、ガラスパネル/基板、金属箔、金属シート、ポリマー材料などを含み得る。また、さまざまな実施形態では、本明細書で言及されるウェハWは、形態、形状、および/またはサイズにおいて異なり得る。例えば、いくつかの実施形態では、本明細書で言及されるウェハWは、その上に集積回路デバイスが製造される円形半導体ウェハに対応し得る。さまざまな実施形態では、円形ウェハWは、直径200mm(ミリメートル)、300mm、450mm、または他のサイズを有し得る。また、いくつかの実施形態では、本明細書で言及されるウェハWは、他の形状のうちでもとりわけ、フラットパネルディスプレイなどのための矩形基板のような非円形基板に対応し得る。
【0057】
プラズマ処理システム100は、設備プレート111上に配置された電極109を含む。いくつかの実施形態では、電極109および設備プレート111は、アルミニウムで形成される。しかし、他の実施形態では、電極109および設備プレート111は、十分な機械的強度を有し、親和性の熱的および化学的性能特性を有する、他の導電性材料で形成され得る。セラミック層110が、電極109の上面上に形成される。セラミック層110は、ウェハWに対するプラズマ処理動作の実行中にウェハWを受けて支持するように構成される。いくつかの実施形態では、セラミック層110の半径方向外側に位置する電極190の上面および電極109の周囲側面は、セラミックのスプレーコートで被覆される。
【0058】
セラミック層110は、セラミック層110の上面にウェハWを保持するための静電気力を生成するための1つまたは複数のクランプ電極112の配置を含む。いくつかの実施形態では、セラミック層110は、ウェハWにクランプ力を与えるために双極的に動作する2つのクランプ電極112の配置を含む。クランプ電極112は、セラミック層110の上面に対してウェハWを保持するための制御されたクランプ電圧を生成する直流(DC)電源117に接続される。電線119A、119Bが、DC電源117と設備プレート111との間に接続される。電線119A、119Bをクランプ電極112に電気的に接続するために、電線/導体が、設備プレート111および電極109を通って引き回される。DC電源117は、1つまたは複数の信号導体121を通じて制御システム120に接続される。
【0059】
電極109はまた、温度制御流体チャネル123の配置を含み、温度制御流体チャネル123を通じて、温度制御流体が、電極109の温度を制御し、ひいてはウェハWの温度を制御するように流される。温度制御流体チャネル123は、設備プレート111上のポートに配管(流体的に接続)される。温度制御流体供給および復帰ラインが、矢印126によって示されるように、設備プレート111上のこれらのポートに、および温度制御流体循環システム125に接続される。温度制御流体循環システム125は、規定されたウェハW温度を取得および維持するために、電極109を通じて温度制御流体の制御された流れを提供するように、他のデバイスのうちでもとりわけ、温度制御流体供給源、温度制御流体ポンプ、および熱交換器を含む。温度制御流体循環システム125は、1つまたは複数の信号導体127を通じて制御システム120に接続される。さまざまな実施形態では、水または冷却液体/気体などのさまざまな種類の温度制御流体が使用され得る。また、いくつかの実施形態では、温度制御流体チャネル123は、ウェハWを横切る2つの次元(xおよびy)においてなど、ウェハWの温度の空間的に変化する制御を可能にするように構成される。
【0060】
セラミック層110はまた、電極109内の対応する裏側ガス供給チャネルに流体的に接続された裏側ガス供給ポート(図示せず)の配置を含む。電極109内の裏側ガス供給チャネルは、電極109と設備プレート111との間の界面へ電極109を通って引き回される。1つまたは複数の裏側ガス供給ラインが、矢印130によって示されるように、設備プレート111上のポートに、および裏側ガス供給システム129に接続される。設備プレート111は、1つまたは複数の裏側ガス供給ラインから電極109内の裏側ガス供給チャネルに裏側ガスを供給するように構成される。裏側ガス供給システム129は、セラミック層110内の裏側ガス供給ポートの配置を通じて裏側ガスの制御された流れを提供するために、他のデバイスのうちでもとりわけ、裏側ガス供給源、マスフローコントローラ、およびフロー制御バルブを含む。いくつかの実施形態では、裏側ガス供給システム129はまた、裏側ガスの温度を制御するための1つまたは複数の構成要素を含む。いくつかの実施形態では、裏側ガスはヘリウムである。また、いくつかの実施形態では、裏側ガス供給システム129は、セラミック層110内の裏側ガス供給ポートの配置にクリーンドライエア(CDA)を供給するために使用され得る。裏側ガス供給システム129は、1つまたは複数の信号導体131を通じて制御システム120に接続される。
【0061】
3つのリフトピン132が、セラミック層110の上面に対するウェハWの垂直移動に備えるために設備プレート111、電極109、およびセラミック層110を通って延在する。いくつかの実施形態では、リフトピン132の垂直移動は、設備プレート111に接続されたそれぞれの電気機械式および/または空気圧式の昇降デバイス133によって制御される。3つの昇降デバイス133は、1つまたは複数の信号導体134を通じて制御システム120に接続される。いくつかの実施形態では、3つのリフトピン132は、セラミック層110の上面に対して垂直に延在する電極109/セラミック層110の垂直中心線の周りに実質的に等しい方位角間隔を有するように配置される。理解されるべきであるが、リフトピン132は、ウェハWをチャンバ101内に受け入れるため、およびチャンバ101からウェハWを取り出すために上げられる。また、リフトピン132は、ウェハWの処理中にウェハWがセラミック層110の上面に載ることを可能にするために下げられる。
【0062】
また、さまざまな実施形態では、電極109、設備プレート111、セラミック層110、クランプ電極112、リフトピン132、またはそれらに関連する本質的に任意の他の構成要素のうちの1つまたは複数は、とりわけ、温度測定、電圧測定、および電流測定のためのセンサなどの1つまたは複数のセンサを含むように装備され得る。電極109、設備プレート111、セラミック層110、クランプ電極112、リフトピン132、またはそれらに関連する本質的に任意の他の構成要素内に配設される任意のセンサは、電線、光ファイバを介して、または無線接続を通じて、制御システム120に接続される。
【0063】
設備プレート111は、セラミック支持体113の開口内に設置され、セラミック支持体113によって支持される。セラミック支持体113は、片持ちアームアセンブリ115の支持面114上に配置される。いくつかの実施形態では、セラミック支持体113は、実質的に円環の形状を有することにより、セラミック支持体113は、設備プレート111の半径方向外周に実質的に外接する一方で、設備プレート111の底部外周面が載る支持面116をも提供する。片持ちアームアセンブリ115は、チャンバ101の壁101Aを通って延在する。いくつかの実施形態では、封止機構135が、チャンバ101の壁101A内に設けられ、そこに、片持ちアームアセンブリ115は、チャンバ101の内部領域103の封止に備えるために配置される一方、片持ちアームアセンブリ115が、制御された方式でz方向に上下に移動することをも可能にする。
【0064】
片持ちアームアセンブリ115は、開領域118を有し、それを通って、さまざまなデバイス、ワイヤ、ケーブル、および配管が、システム100の動作をサポートするために引き回される。片持ちアームアセンブリ内の開領域118は、チャンバ101の外側の周囲大気条件、例えば空気組成、温度、圧力、および相対湿度に曝される。また、無線周波数信号供給ロッド137が、片持ちアームアセンブリ115の内側に配置される。より具体的には、無線周波数信号供給ロッド137が管139の内壁から離間されるように、無線周波数信号供給ロッド137は、導電性の管139の内側に配置される。無線周波数信号供給ロッド137および管139のサイズはさまざまであり得る。管139の内壁と無線周波数信号供給ロッド137との間の管139の内側の領域は、管139の全長に沿って空気によって占められる。
【0065】
いくつかの実施形態では、無線周波数信号供給ロッド137は、管139内で実質的に中心に配置されることにより、空気の実質的に一様な半径方向厚さが、管139の長さに沿って、無線周波数信号供給ロッド137と管139の内壁との間に存在する。しかし、いくつかの実施形態では、無線周波数信号供給ロッド137は、管139内で中心に配置されないが、管139内のエアギャップは、管139の長さに沿って、無線周波数信号供給ロッド137と管139の内壁との間のすべての位置で存在する。無線周波数信号供給ロッド137の送出端は、無線周波数信号供給シャフト141の下端に電気的および物理的に接続される。いくつかの実施形態では、無線周波数信号供給ロッド137の送出端は、無線周波数信号供給シャフト141の下端にボルト締めされる。無線周波数信号供給シャフト141の上端は、設備プレート111の底部に電気的および物理的に接続される。いくつかの実施形態では、無線周波数信号供給シャフト141の上端は、設備プレート111の底部にボルト締めされる。いくつかの実施形態では、無線周波数信号供給ロッド137および無線周波数信号供給シャフト141は、両方とも銅で形成される。いくつかの実施形態では、無線周波数信号供給ロッド137は、銅、またはアルミニウム、または陽極酸化アルミニウムで形成される。いくつかの実施形態では、無線周波数信号供給シャフト141は、銅、またはアルミニウム、または陽極酸化アルミニウムで形成される。他の実施形態では、無線周波数信号供給ロッド137および/または無線周波数信号供給シャフト141は、無線周波数電気信号の伝送に備える他の導電性材料で形成される。いくつかの実施形態では、無線周波数信号供給ロッド137および/または無線周波数信号供給シャフト141は、無線周波数電気信号の伝送に備える導電性材料(銀または他の導電性材料など)で被覆される。また、いくつかの実施形態では、無線周波数信号供給ロッド137は、中実なロッドである。しかし、他の実施形態では、無線周波数信号供給ロッド137は管である。また、理解されるべきであるが、無線周波数信号供給ロッド137と無線周波数信号供給シャフト141との間の接続を囲む領域140は、空気によって占められる。
【0066】
無線周波数信号供給ロッド137の供給端は、インピーダンス整合システム143に電気的および物理的に接続される。インピーダンス整合システム143は、第1の無線周波数信号生成器147および第2の無線周波数信号生成器149に接続される。インピーダンス整合システム143はまた、1つまたは複数の信号導体144を通じて制御システム120に接続される。第1の無線周波数信号生成器147はまた、1つまたは複数の信号導体148を通じて制御システム120に接続される。第2の無線周波数信号生成器149はまた、1つまたは複数の信号導体150を通じて制御システム120に接続される。インピーダンス整合システム143は、無線周波数電力が、無線周波数信号供給ロッド137に沿って、無線周波数信号供給シャフト141に沿って、設備プレート111を通じて、電極109を通じて、セラミック層110の上方のプラズマ処理領域182内に伝送され得るように、インピーダンス整合に備えるためにサイズ決めされ接続されたインダクタおよびキャパシタの配置を含む。いくつかの実施形態では、第1の無線周波数信号生成器147は、高周波数無線周波数信号生成器であり、第2の無線周波数信号生成器149は、低周波数無線周波数信号生成器である。いくつかの実施形態では、第1の無線周波数信号生成器147は、約50メガヘルツ(MHz)から約70MHzまでにわたる範囲内で、または約54MHzから約63MHzまでにわたる範囲内で、または約60MHzで、無線周波数信号を生成する。いくつかの実施形態では、第1の無線周波数信号生成器147は、約5キロワット(kW)から約25kWまでにわたる範囲内の、または約10kWから約20kWまでにわたる範囲内の、または約15kWから約20kWまでにわたる範囲内の、または約10kWの、または約16kWの無線周波数電力を供給する。いくつかの実施形態では、第2の無線周波数信号生成器149は、約50キロヘルツ(kHz)から約500kHzまでにわたる範囲内で、または約330kHzから約440kHzまでにわたる範囲内で、または約400kHzで、無線周波数信号を生成する。いくつかの実施形態では、第2の無線周波数信号生成器149は、約15kWから約100kWまでにわたる範囲内の、または約30kWから約50kWまでにわたる範囲内の、または約34kWの、または約50kWの無線周波数電力を供給する。一例示的実施形態では、第1の無線周波数信号生成器147は、約60MHzの周波数を有する無線周波数信号を生成するように設定され、第2の無線周波数信号生成器149は、約400kHzの周波数を有する無線周波数信号を生成するように設定される。
【0067】
結合リング161が、電極109の半径方向外周の周りに延在するように構成および配置される。いくつかの実施形態では、結合リング161は、セラミック材料で形成される。石英リング163が、結合リング161およびセラミック支持体113の両方の半径方向外周の周りに延在するように構成および配置される。いくつかの実施形態では、結合リング161および石英リング163は、石英リング163が結合リング161およびセラミック支持体113の両方の周りに配置されるときに、実質的に整列した上面を有するように構成される。また、いくつかの実施形態では、結合リング161および石英リング163の実質的に整列した上面は、電極109の上面と実質的に整列し、前記上面は、セラミック層110の半径方向周囲の外側に存在する。また、いくつかの実施形態では、カバーリング165が、石英リング163の上面の半径方向外周の周りに延在するように構成および配置される。いくつかの実施形態では、カバーリング165は、石英で形成される。いくつかの実施形態では、カバーリング165は、石英リング163の上面の上方に垂直に延在するように構成される。このようにして、カバーリング165は、周囲境界を提供し、その内部にエッジリング167が配置される。
【0068】
エッジリング167は、ウェハWの周囲付近のプロセス結果を改善するために、ウェハWの周囲エッジを越えて半径方向外側へのプラズマシースの延在を容易にするように構成される。さまざまな実施形態では、エッジリング167は、他の材料のうちでもとりわけ、結晶シリコン、多結晶シリコン(ポリシリコン)、ホウ素添加単結晶シリコン、酸化アルミニウム、石英、窒化アルミニウム、窒化ケイ素、炭化ケイ素、もしくは酸化アルミニウム層上の炭化ケイ素層、もしくはシリコンの合金、またはその組合せなどの導電性材料で形成される。理解されるべきであるが、エッジリング167は、円環状構造体、例えば、リング状構造体として形成される。エッジリング167は、プラズマ処理領域182内に形成されるプラズマ180のイオンによって損傷されることからエッジリング167の下にある構成要素を遮蔽することを含む、多くの機能を実行することができる。また、エッジリング167は、ウェハWの外周領域において、およびそれに沿って、プラズマ180の一様性を改善する。
【0069】
固定外側支持フランジ169が、片持ちアームアセンブリ115に取り付けられる。固定外側支持フランジ169は、セラミック支持体113の外側垂直側面の周りに、および石英リング163の外側垂直側面の周りに、およびカバーリング165の下部外側垂直側面の周りに、延在するように構成される。固定外側支持フランジ169は、セラミック支持体113、石英リング163、およびカバーリング165のアセンブリに外接する円環形状を有する。固定外側支持フランジ169は、垂直部分および水平部分を含むL字形垂直断面を有する。固定外側支持フランジ169のL字形断面の垂直部分は、セラミック支持体113の外側垂直側面に対して、および石英リング163の外側垂直側面に対して、およびカバーリング165の下部外側垂直側面に対して、配置された内側垂直面を有する。いくつかの実施形態では、固定外側支持フランジ169のL字形断面の垂直部分は、セラミック支持体113の外側垂直側面の全体にわたって、および石英リング163の外側垂直側面の全体にわたって、およびカバーリング165の下部外側垂直側面の全体にわたって、延在する。いくつかの実施形態では、カバーリング165は、固定外側支持フランジ169のL字形断面の垂直部分の上面の上方で半径方向外側に向かって延在する。また、いくつかの実施形態では、カバーリング165の上部外側垂直側面(固定外側支持フランジ169のL字形断面の垂直部分の上面の上方に位置する)は、固定外側支持フランジ169のL字形断面の垂直部分の外側垂直面と実質的に垂直方向に整列する。固定外側支持フランジ169のL字形断面の水平部分は、片持ちアームアセンブリ115の支持面114上に配置され、支持面114に固定される。固定外側支持フランジ169は、導電性材料で形成される。いくつかの実施形態では、固定外側支持フランジ169は、アルミニウムまたは陽極酸化アルミニウムで形成される。しかし、他の実施形態では、固定外側支持フランジ169は、銅またはステンレススチールなどの他の導電性材料で形成され得る。いくつかの実施形態では、固定外側支持フランジ169のL字形断面の水平部分は、片持ちアームアセンブリ115の支持面114にボルト締めされる。
【0070】
関節式外側支持フランジ171が、固定外側支持フランジ169のL字形断面の垂直部分の外側垂直面169Dの周りに延在するように、およびカバーリング165の上部外側垂直側面の周りに延在するように、構成および配置される。関節式外側支持フランジ171は、固定外側支持フランジ169のL字形垂直断面の垂直部分およびカバーリング165の上部外側垂直側面の両方に外接する円環形状を有する。関節式外側支持フランジ171は、垂直部分および水平部分を含むL字形垂直断面を有する。関節式外側支持フランジ171のL字形断面の垂直部分は、固定外側支持フランジ169のL字形断面の垂直部分の外側垂直側面およびカバーリング165の上部外側垂直側面の両方に近接し、そこから離間して配置された内側垂直面を有する。このようにして、関節式外側支持フランジ171は、固定外側支持フランジ169のL字形垂直断面の垂直部分およびカバーリング165の上部外側垂直側面の両方に沿って垂直方向(z方向)に移動可能である。関節式外側支持フランジ171は、導電性材料で形成される。いくつかの実施形態では、関節式外側支持フランジ171は、アルミニウムまたは陽極酸化アルミニウムで形成される。しかし、他の実施形態では、関節式外側支持フランジ171は、銅またはステンレススチールなどの他の導電性材料で形成され得る。
【0071】
いくつかの導電性ストラップ173が、関節式外側支持フランジ171と固定外側支持フランジ169との間で、関節式外側支持フランジ171および固定外側支持フランジ169の両方の半径方向外周の周りに接続される。例示的実施形態では、導電性ストラップ173が固定外側支持フランジ169から離れて外向きに湾曲するという点で、導電性ストラップ173は、「外向き」構成を有するように示されている。いくつかの実施形態では、導電性ストラップ173は、ステンレススチールで形成される。しかし、他の実施形態では、導電性ストラップ173は、とりわけアルミニウムまたは銅などの他の導電性材料で形成され得る。
【0072】
いくつかの実施形態では、48の導電性ストラップ173が、関節式外側支持フランジ171および固定外側支持フランジ169の半径方向外周の周りに、実質的に等間隔に分布する。しかし、理解されるべきであるが、導電性ストラップ173の数は、異なる実施形態では異なり得る。いくつかの実施形態では、導電性ストラップ173の数は、約24から約80までにわたる範囲内、または約36から約60までにわたる範囲内、または約40から約56までにわたる範囲内にある。いくつかの実施形態では、導電性ストラップ173の数は、24よりも少ない。いくつかの実施形態では、導電性ストラップ173の数は、80よりも多い。導電性ストラップ173の数は、プラズマ処理領域182の周囲の周りの無線周波数信号に対する接地復帰経路に対する効果を有するため、導電性ストラップ173の数は、ウェハW全体にわたるプロセス結果の一様性に対する効果を有し得る。また、導電性ストラップ173のサイズは、異なる実施形態では異なり得る。
【0073】
いくつかの実施形態では、導電性ストラップ173は、固定外側支持フランジ169のL字形断面の水平部分の上面にクランプリング175を固定することによって印加されるクランプ力によって、固定外側支持フランジ169に接続される。いくつかの実施形態では、クランプリング175は、固定外側支持フランジ169にボルト締めされる。いくつかの実施形態では、固定外側支持フランジ169にクランプリング175を固定するボルトは、導電性ストラップ173間の位置に配置される。しかし、いくつかの実施形態では、固定外側支持フランジ169にクランプリング175を固定する1つまたは複数のボルトが、導電性ストラップ173を通って延在するように配置され得る。いくつかの実施形態では、クランプリング175は、固定外側支持フランジ169と同じ材料で形成される。しかし、他の実施形態では、クランプリング175および固定外側支持フランジ169は、異なる材料で形成され得る。
【0074】
いくつかの実施形態では、導電性ストラップ173は、関節式外側支持フランジ171のL字形断面の水平部分の底面にクランプリング177を固定することによって印加されるクランプ力によって、関節式外側支持フランジ171に接続される。代替的に、いくつかの実施形態では、複数の導電性ストラップ173の各々の第1の端部は、クランプリング177によって関節式外側支持フランジ171の水平部分の上面に接続される。いくつかの実施形態では、クランプリング177は、関節式外側支持フランジ171にボルト締めされる。いくつかの実施形態では、関節式外側支持フランジ171にクランプリング177を固定するボルトは、導電性ストラップ173間の位置に配置される。しかし、いくつかの実施形態では、関節式外側支持フランジ171にクランプリング177を固定する1つまたは複数のボルトが、導電性ストラップ173を通って延在するように配置され得る。いくつかの実施形態では、クランプリング177は、関節式外側支持フランジ171と同じ材料で形成される。しかし、他の実施形態では、クランプリング177および関節式外側支持フランジ171は、異なる材料で形成され得る。
【0075】
支持ロッド201のセットが、固定外側支持フランジ169のL字形断面の水平部分169Bを通って垂直に延在するように、片持ちアームアセンブリ115の周りに配置される。支持ロッド201の上端は、関節式外側支持フランジ171のL字形断面の水平部分の底面と係合するように構成される。いくつかの実施形態では、支持ロッド201の各々の下端は、抵抗機構203と係合する。抵抗機構203は、支持ロッド201の多少の下方移動を可能にしながら、支持ロッド201の下方移動に抵抗する上向きの力を、対応する支持ロッド201に与えるように構成される。いくつかの実施形態では、抵抗機構203は、対応する支持ロッド201に上向きの力を与えるためのばねを含む。いくつかの実施形態では、抵抗機構203は、対応する支持ロッド201に上向きの力を与えるための十分なばね定数を有する材料、例えば、ばねおよび/またはゴムを含む。理解されるべきであるが、関節式外側支持フランジ171が、支持ロッド201のセットと係合するように下方に移動すると、支持ロッド201のセットおよび対応する抵抗機構203は、関節式外側支持フランジ171に上向きの力を与える。いくつかの実施形態では、支持ロッド201のセットは、3つの支持ロッド201および対応する抵抗機構203を含む。いくつかの実施形態では、支持ロッド201は、電極109の垂直中心線に対して実質的に等しい方位角間隔を有するように配置される。しかし、他の実施形態では、支持ロッド201は、電極109の垂直中心線に対して等しくない方位角間隔を有するように配置される。また、いくつかの実施形態では、3つよりも多くの支持ロッド201および対応する抵抗機構203が、関節式外側支持フランジ171を支持するように設けられる。
【0076】
再び
図1の参照を続けると、プラズマ処理システム100は、電極109の上方に配置されたC覆い部材185をさらに含む。C覆い部材185は、関節式外側支持フランジ171に接触するように構成される。具体的には、シール179が、関節式外側支持フランジ171のL字形断面の水平部分の上面上に配設されることにより、関節式外側支持フランジ171がC覆い部材185に向かって上方に移動されるときに、シール179は、C覆い部材185と係合する。いくつかの実施形態では、シール179は、C覆い部材185と関節式外側支持フランジ171との間の電気伝導を確立することを支援するように導電性である。いくつかの実施形態では、C覆い部材185は、ポリシリコンで形成される。しかし、他の実施形態では、C覆い部材185は、プラズマ処理領域182内に形成されるプロセスと化学的に親和性があり、十分な機械的強度を有する他の種類の導電性材料で形成される。
【0077】
Cシュラウドは、プラズマ処理領域182の周りに延在するように構成され、C覆い部材185内に画定される領域内へのプラズマ処理領域182ボリュームの半径方向の延在を提供するように構成される。C覆い部材185は、下部壁185A、外側垂直壁185B、および上部壁185Cを含む。いくつかの実施形態では、C覆い部材185の外側垂直壁185Bおよび上部壁185Cは、中実な、孔のない部材であり、C覆い部材185の下部壁185Aは、プラズマ処理領域182内からのプロセスガスが流れるいくつかの通気孔186を含む。いくつかの実施形態では、スロットル部材196が、通気孔186を通るプロセスガスの流れを制御するために、C覆い部材185の通気孔186の下方に配設される。より具体的には、いくつかの実施形態では、スロットル部材196は、通気孔186を通るプロセスガスの流れを制御するために、C覆い部材185に対してz方向に垂直に上下に移動するように構成される。いくつかの実施形態では、スロットル部材196は、通気孔186に係合および/または進入するように構成される。
【0078】
C覆い部材185の上部壁185Cは、上部電極187A/187Bを支持するように構成される。いくつかの実施形態では、上部電極187A/187Bは、内側上部電極187Aおよび外側上部電極187Bを含む。代替的に、いくつかの実施形態では、内側上部電極187Aは存在し、外側上部電極187Bは存在せず、内側上部電極187Aは、外側上部電極187Bによって占められていたであろう位置を覆うように半径方向に延在する。いくつかの実施形態では、内側上部電極187Aは、単結晶シリコンで形成され、外側上部電極187Bは、ポリシリコンで形成される。しかし、他の実施形態では、内側上部電極187Aおよび外側上部電極187Bは、プラズマ処理領域182内で実行されるプロセスと構造的、化学的、電気的、および機械的に親和性の他の材料で形成され得る。内側上部電極187Aは、内側上部電極187Aの垂直方向全厚を通じて延在する孔として画定されるいくつかの貫通ポート197を含む。貫通ポート197は、上部電極187A/187Bの上方のプレナム領域188から上部電極187A/187Bの下方のプラズマ処理領域182へのプロセスガスの流れに備えるために、x-y平面に対して内側上部電極187Aの全体にわたって分布する。
【0079】
理解されるべきであるが、内側上部電極187Aの全体にわたる貫通ポート197の分布は、異なる実施形態に対して異なる方法で構成され得る。例えば、内側上部電極187A内の貫通ポート197の総数および/または内側上部電極187A内の貫通ポート197の空間的分布は、異なる実施形態間で異なり得る。また、貫通ポート197の直径は、異なる実施形態間で異なり得る。一般的に、貫通ポート197の直径を、プラズマ処理領域182から貫通ポート197内へのプラズマ180の侵入を防ぐほどに十分に小さいサイズに縮小することが重要である。いくつかの実施形態では、貫通ポート197の直径が縮小するほど、プロセスガスプレナム領域188から内側上部電極187Aを通ってプラズマ処理領域182へのプロセスガスの規定された全体的流量を維持するために、内側上部電極187A内の貫通ポート197の総数は増大する。また、いくつかの実施形態では、上部電極187A/187Bは、基準接地電位に電気的に接続される。しかし、他の実施形態では、内側上部電極187Aおよび/または外側上部電極187Bは、対応するインピーダンス整合システムを介して、それぞれの直流(DC)電源またはそれぞれの無線周波数電源のいずれかに電気的に接続される。
【0080】
プレナム領域188は、上部部材189によって画定される。1つまたは複数のガス供給ポート192が、プレナム領域188と流体連通するように、チャンバ101および上部部材189を通って形成される。1つまたは複数のガス供給ポート192は、プロセスガス供給システム191に流体的に接続(配管)される。プロセスガス供給システム191は、矢印193によって示されるように、1つまたは複数のガス供給ポート192を通ってプレナム領域188への1つまたは複数のプロセスガスの制御された流れを提供するために、他のデバイスのうちでもとりわけ、1つまたはプロセスガス供給源、1つまたは複数のマスフローコントローラ、1つまたは複数のフロー制御バルブを含む。いくつかの実施形態では、プロセスガス供給システム191はまた、プロセスガスの温度を制御するための1つまたは複数の構成要素を含む。プロセスガス供給システム191は、1つまたは複数の信号導体194を通じて制御システム120に接続される。
【0081】
処理ギャップ(g1)が、セラミック層110の上面と内側上部電極187Aの底面との間で測定された垂直(z方向)距離として定義される。処理ギャップ(g1)のサイズは、垂直方向(z方向)に片持ちアームアセンブリ115を移動することによって調節され得る。片持ちアームアセンブリ115が上向きに移動すると、関節式外側支持フランジ171は、C覆い部材185の下部壁185Aと最終的に係合し、その点で関節式外側支持フランジ171は、固定外側支持フランジ169に沿って移動し、そのときに片持ちアームアセンブリ115は、支持ロッド201のセットが関節式外側支持フランジ171と係合し、規定された処理ギャップ(g1)サイズが達成されるまで、上向きに移動し続ける。その後、チャンバからウェハWを取り出すためにこの移動を逆転させるためには、片持ちアームアセンブリ115は、関節式外側支持フランジ171がC覆い部材185の下部壁185Aから離れるまで、下向きに移動される。理解されるべきであるが、
図1は、ウェハWがプラズマ処理のためにセラミック層110上に位置する、閉じた構成におけるシステム100を示す。
【0082】
プラズマ処理システム100内のプラズマ処理動作中に、1つまたは複数のプロセスガスは、プロセスガス供給システム191、プレナム領域188、および内側上部電極187A内の貫通ポート197を介してプラズマ処理領域182に供給される。また、無線周波数信号が、第1および第2の無線周波数信号生成器147、149、インピーダンス整合システム143、無線周波数信号供給ロッド137、無線周波数信号供給シャフト141、設備プレート111、電極109を介して、セラミック層110を通じて、プラズマ処理領域182内に伝送される。無線周波数信号は、プラズマ処理領域182内でプロセスガスをプラズマ180に変換する。プラズマのイオンおよび/または反応性構成成分が、ウェハW上の1つまたは複数の材料と相互作用して、ウェハW上に存在する特定の材料の組成および/または形状における変化を引き起こす。プラズマ処理領域182からの排気ガスは、矢印195によって示されるように、排気ポート105に印加された吸引力の影響下で、C覆い部材185内の通気孔186を通り、チャンバ101内の内部領域103を通って、排気ポート105に流れる。
【0083】
さまざまな実施形態では、電極109は、異なる直径を有するように構成され得る。しかし、いくつかの実施形態では、エッジリング167がその上に載る電極109の表面を増大させるために、電極109の直径が拡大される。いくつかの実施形態では、導電性ゲル226が、エッジリング167の底部と電極109の上部との間および/またはエッジリング167の底部と結合リング161の上部との間に配設される。これらの実施形態では、電極109の増大した直径は、エッジリング167と電極109との間で導電性ゲルが配設される表面積をより大きくする。
【0084】
理解されるべきであるが、関節式外側支持フランジ171、導電性ストラップ173、および固定外側支持フランジ169の組合せは、電気的に基準接地電位にあり、電極109からセラミック層110を通ってプラズマ処理領域182内に伝送される無線周波数信号のための接地復帰経路を集団的に形成する。電極109の周囲の周りのこの接地復帰経路の方位角方向の一様性は、ウェハW上のプロセス結果の一様性に対する効果を有し得る。例えば、いくつかの実施形態では、ウェハW全体にわたるエッチレートの一様性は、電極109の周囲の周りの接地復帰経路の方位角方向の一様性によって影響され得る。この目的のために、理解されるべきであるが、電極109の周囲の周りの導電性ストラップ173の数、構成、および配置は、ウェハW全体にわたるプロセス結果の一様性に影響を及ぼし得る。
【0085】
再び
図1を参照すると、調整可能エッジシース(TES)システムが、結合リング161内に配設された(埋め込まれた)TES電極225を含むように実装される。TESシステムはまた、TES電極225と物理的および電気的に接続されたいくつかのTES無線周波数信号供給ピン223を含む。各TES無線周波数信号供給ピン223は、セラミック支持体113および片持ちアームアセンブリ115構造体からなど、周囲の構造体から、TES無線周波数信号供給ピン223を電気的に分離するように構成された対応する絶縁体フィードスルー部材231を通って延在する。いくつかの実施形態では、絶縁体フィードスルー部材231の内側の領域がプラズマ処理領域182内に存在する任意の材料/ガスに曝されないことを保証するように、Oリング227および229が配設される。いくつかの実施形態では、TES無線周波数信号供給ピン223は、とりわけ、銅、またはアルミニウム、または陽極酸化アルミニウムで形成される。
【0086】
TES無線周波数信号供給ピン223は、片持ちアームアセンブリ115の内側の開領域118内へ延在し、そこでTES無線周波数信号供給ピン223の各々は、対応するTES無線周波数信号フィルタ221を通じて、TES無線周波数信号供給導体219に電気的に接続される。いくつかの実施形態では、3つのTES無線周波数信号供給ピン223が、電極109の中心線の周りに実質的に等間隔の方位角位置でTES電極225と物理的および電気的に接続するように配置される。しかし、理解されるべきであるが、他の実施形態は、TES電極225と物理的および電気的に接続する3つよりも多くのTES無線周波数信号供給ピン223を有し得る。また、いくつかの実施形態は、TES電極225と物理的および電気的に接続する1つまたは2つのいずれかのTES無線周波数信号供給ピン223を有し得る。各TES無線周波数信号供給ピン223は、対応するTES無線周波数信号フィルタ221に電気的に接続され、各TES無線周波数信号フィルタ221は、TES無線周波数信号供給導体219に電気的に接続される。いくつかの実施形態では、各TES無線周波数信号フィルタ221は、インダクタとして構成される。例えば、いくつかの実施形態では、各TES無線周波数信号フィルタ221は、誘電体コア構造体の周りに巻き付けられた金属コイルなどの巻回導体として構成される。さまざまな実施形態では、金属コイルは、とりわけ、中実な銅ロッド、銅管、アルミニウムロッド、またはアルミニウム管で形成され得る。また、いくつかの実施形態では、各TES無線周波数信号フィルタ221は、誘導性および容量性構造体の組合せとして構成され得る。ウェハW全体にわたるプラズマ処理結果一様性を改善するために、TES無線周波数信号フィルタ221の各々は、実質的に同じ構成を有する。
【0087】
いくつかの実施形態では、TES無線周波数信号供給導体219は、方位角方向に分布したTES無線周波数信号フィルタ221とTES無線周波数信号供給導体219との物理的および電気的接続を可能にするために、片持ちアームアセンブリ115の内側の開領域118の周りに延在するように、リング状(円環状)構造体として形成される。いくつかの実施形態では、TES無線周波数信号供給導体219は、中実な(非管状の)構造体として形成される。代替的に、いくつかの実施形態では、TES無線周波数信号供給導体219は、管状構造体として形成される。いくつかの実施形態では、TES無線周波数信号供給導体219は、とりわけ、銅、またはアルミニウム、または陽極酸化アルミニウムで形成される。
【0088】
TES無線周波数信号供給導体219は、TES無線周波数供給ケーブル217に電気的に接続される。また、キャパシタ218が、TES無線周波数信号供給導体219と、片持ちアームアセンブリ115の構造体などの基準接地電位との間に接続される。より具体的には、キャパシタ218は、TES無線周波数供給ケーブル217およびTES無線周波数信号供給導体219の両方に電気的に接続された第1の端子を有し、キャパシタ218は、基準接地電位に電気的に接続された第2の端子を有する。いくつかの実施形態では、キャパシタ218は、可変キャパシタである。いくつかの実施形態では、キャパシタ218は、固定キャパシタである。いくつかの実施形態では、キャパシタ218は、約10ピコファラドから約100ピコファラドまでにわたる範囲内のキャパシタンスを有するように設定される。TES無線周波数供給ケーブル217は、TESインピーダンス整合システム211に接続される。TESインピーダンス整合システム211は、TES無線周波数信号生成器213に接続される。TES無線周波数信号生成器213によって生成される無線周波数信号は、TESインピーダンス整合システム211を通じてTES無線周波数供給ケーブル217に伝送された後、TES無線周波数信号供給導体219に伝送され、それからTES無線周波数信号フィルタ221を通じてそれぞれのTES無線周波数信号供給ピン223に伝送され、結合リング161内のTES電極225に伝送される。いくつかの実施形態では、TES無線周波数信号生成器213は、約50キロヘルツから約27MHzまでにわたる周波数範囲内の無線周波数信号を生成するように構成され動作する。いくつかの実施形態では、TES無線周波数信号生成器213は、約50ワットから約10キロワットまでにわたる範囲内の無線周波数電力を供給する。TES無線周波数信号生成器213はまた、1つまたは複数の信号導体215を通じて制御システム120に接続される。
【0089】
TESインピーダンス整合システム211は、無線周波数電力が、TES無線周波数信号生成器213から、TES無線周波数供給ケーブル217に沿って、TES無線周波数信号供給導体219に沿って、TES無線周波数信号フィルタ221を通じて、それぞれのTES無線周波数信号供給ピン223を通じて、結合リング161内のTES電極225に、およびエッジリング167の上方のプラズマ処理領域182内に伝送され得るように、インピーダンス整合に備えるためにサイズ決めされ接続されたインダクタおよびキャパシタの配置を含む。TESインピーダンス整合システム211は、1つまたは複数の信号導体214を通して制御システム120にも接続される。
【0090】
結合リング161内に配設された(埋め込まれた)TES電極225を通じて無線周波数信号/電力を伝送することによって、TESシステムは、ウェハWの周囲エッジ付近におけるプラズマ180の特性を制御することが可能である。例えば、いくつかの実施形態では、TESシステムは、プラズマ180シースの形状を制御することによって、および/またはサイズを制御する(シース厚さの増大またはシース厚さの減少のいずれか)ことによってなどで、エッジリング167付近のプラズマ180シースの性質を制御するように動作する。また、いくつかの実施形態では、エッジリング167付近のプラズマ180シースの形状を制御することによって、ウェハWの上のバルクプラズマ180のさまざまな性質を制御することが可能である。また、いくつかの実施形態では、TESシステムは、エッジリング167付近のプラズマ180の密度を制御するように動作する。例えば、いくつかの実施形態では、TESシステムは、エッジリング167付近のプラズマ180の密度を増大させるか、または減少させるかのいずれかを行うように動作する。また、いくつかの実施形態では、TESシステムは、エッジリング167上に存在するバイアス電圧を制御するように動作し、これは、ひいてはエッジリング167付近のプラズマ180内のイオンおよび他の荷電構成成分の移動を制御する/移動に影響を及ぼす。例えば、いくつかの実施形態では、TESシステムは、プラズマ180からより多くのイオンをウェハWのエッジに向かって引きつけるように、エッジリング167上に存在するバイアス電圧を制御するように動作する。また、いくつかの実施形態では、TESシステムは、プラズマ180からのイオンがウェハWのエッジから離れて反発するように、エッジリング167上に存在するバイアス電圧を制御するように動作する。理解されるべきであるが、TESシステムは、とりわけ上記のようなさまざまな異なる機能を、別個に、または組合せでのいずれかで、実行するように動作し得る。
【0091】
いくつかの実施形態では、結合リング161は、とりわけ、石英、またはセラミック、またはアルミナ(Al2O3)、またはポリマーなどの誘電体材料で形成される。
【0092】
エッジリング167の底面は、結合リング161の熱をエッジリング167に放出するように、熱伝導性および導電性のゲルの層を通じて結合リング161の上面に結合された部分を有する。また、エッジリング167の底面は、熱伝導性および導電性のゲルの層を通じて電極109の上面に結合された他の部分を有する。熱伝導性および導電性のゲルの例は、とりわけ、ポリイミド、ポリケトン、ポリエーテルケトン、ポリエーテルスルホン、ポリエチレンテレフタレート、フルオロエチレンプロピレンコポリマー、セルロース、トリアセテート、およびシリコーンを含む。いくつかの実施形態では、熱伝導性および導電性のゲルの例は、両面テープとして形成される。いくつかの実施形態では、エッジリング167は、セラミック層110の外径に近接してサイズ決めされた内径を有する。
【0093】
さまざまな実施形態では、TES電極225は、とりわけ、白金、スチール、アルミニウム、または銅などの導電性材料で形成される。動作中に、TES電極225とエッジリング167との間に容量性結合が生じることにより、エッジリング167は、ウェハWの外周付近におけるウェハWの処理に影響を及ぼすように電源供給される。
【0094】
大まかに言って、本開示の実施態様は、チャンバ外に配置された少なくとも1つの磁気コイルを有するCCPチャンバを提供する。いくつかの実施態様では、単一の磁気コイルまたは複数の磁気コイルが、チャンバの上方に、またはチャンバ上に配置される。DC電流が、磁界(磁場)を生成するために、磁気コイルに印加される。これらの電流からの磁場を用いて、中心非一様性の制御が達成される。いくつかの実施態様では、異なるコイルの組合せを使用して、異なる磁界を提供し、全体的な一様性のさらなる制御を可能にする。
【0095】
標準的なプラズマシステムは、正イオンおよび負イオンの密度が、電子密度によって、およびさらに、温度に基づいて少なくとも部分的に制御されるので、正イオンおよび負イオンの累積が存在する非一様性を起こしやすい。そのような非一様性に対処するために、本開示の実施態様は、局所荷電種堆積を最小限に抑え、それにより、一様性を改善するための、プラズマへの静的磁場の印加を企図する。
【0096】
動作の任意の特定の理論によって縛られることなしに、本開示の実施態様によれば、磁場は、磁場がプラズマを完全に磁化しないように、比較的弱く構成されると考えられる。しかしながら、磁場に対して敏感である電子は、影響を及ぼされる。これにより、磁場は、電子が、磁力線にほぼ沿って進むように、電子の拡散の方向を変更するために使用されると考えられる。このようにして、磁場は、放電する中間において電子の量に影響を及ぼし、制御するために利用され得る。上から下へ、プラズマの中央部分においてほぼ垂直な磁場を提供することによって、中央に集まる傾向がある電子は、電子が磁場線にほぼ沿って移動するように、磁化することができる。それゆえに、上側の電子および下側の電子により多くの損失があることになり、それゆえ、中心部分における電子の量の、結果として生じる低減があることになる。
【0097】
図2Aは、本開示の実施態様による、プラズマ処理中に磁界を印加するための単一の磁気コイルを有するプロセスチャンバの断面図を概念的に示す。示されているように、単一の磁気コイル200が、チャンバ101の上に配設される。磁気コイル200は、実質的に、形状が円形であるか、またはリング形状であるか、または形状が環状であることが諒解されよう。さらに、磁気コイル200は、ウェハの表面平面に平行である平面に沿って配設される。すなわち、磁気コイルの巻回/巻は、磁気コイルそれ自体が、水平方向に配向し、ウェハの中心を垂直に通る軸を中心とするように、ウェハの平面に平行である水平平面に実質的に沿う。いくつかの実施態様では、磁気コイル200は、300mmウェハを処理するように構成されたチャンバについて、約15~20インチ(約38~51cm)の範囲内の直径(中心間直径、または内径、または外径)を有し、いくつかの実施態様では、直径は、約16~18インチ(約41~46cm)の範囲内にある。
【0098】
いくつかの実施態様では、ウェハの表面レベルを超える磁気コイル200の高さは、約3~15インチ(約8~38cm)の範囲内にあり、いくつかの実施態様では、約5~12インチ(約13~30cm)の範囲内にあり、いくつかの実施態様では、約7~8インチ(約18~20cm)の範囲内にある。
【0099】
本開示の実施態様によれば、DC電流が、チャンバ101において静的磁場を生成するために、磁気コイル200に印加される。
【0100】
図2Bは、本開示の実施態様による、プラズマ処理中に磁界を印加するための2つの磁気コイルを有するプロセスチャンバの断面図を概念的に示す。示されているように、第1の磁気コイル200および第2の磁気コイル202は、チャンバ101の上に配設された同心コイルである。いくつかの実施態様では、第1の磁気コイル200および第2の磁気コイル202は、ほぼ同一平面上にある。いくつかの実施態様では、第1の磁気コイル200および第2の磁気コイル202は、同一平面上にないが、同じ中心軸について同心であると同時に、平行平面中に配置される。いくつかの実施態様では、第1の磁気コイル200は、
図2Aに関して上記で説明されたような直径を有する。
【0101】
いくつかの実施態様では、第2の磁気コイル202は、300mmウェハを処理するように構成されたチャンバについて、約20~25インチ(約51~63cm)の範囲内の直径(中心間直径、または内径、または外径)を有し、いくつかの実施態様では、第2の磁気コイル202の直径は、約22~24インチ(約56~61cm)の範囲内にある。
【0102】
本開示の実施態様によれば、DC電流が、チャンバ101において静的磁場を生成するために、磁気コイル200および202に印加される。さまざまな実施態様では、コイルの各々に印加されるDC電流は、ほぼ同じであることも、異なることもあり、同じ方向にあることも、反対の方向にあることもある。
【0103】
具体的には示されていないが、他の実施態様では、チャンバ101の上に配設された追加の磁気コイルがあり得ることが諒解されよう。例えば、いくつかの実施態様では、第3の磁気コイルが、提供され、同じくチャンバ101の上に配設され、第1の磁気コイル200よりも小さい直径を有する。いくつかの実施態様では、そのような第3の磁気コイルは、300mmウェハを処理するように構成されたチャンバについて、約10~15インチ(約25~38cm)の範囲内の直径を有し、いくつかの実施態様では、第3の磁気コイルは、約11~13インチ(約28~33cm)の範囲内の直径を有する。
【0104】
いくつかの実施態様では、第1の磁気コイル、第2の磁気コイルおよび第3の磁気コイルは、ほぼ同一平面上にある。いくつかの実施態様では、第1の磁気コイル、第2の磁気コイル、および第3の磁気コイルは、同一平面上にないが、同じ中心軸について同心であると同時に、平行平面中に配置される。いくつかの実施態様では、磁気コイルのうちの2つは、同一平面上にあるが、他の磁気コイルは、同一平面上にある2つのいずれとも同一平面上にない。
【0105】
いくつかの実施態様では、チャンバ101の上に配設された追加の磁気コイルがあり得る。
【0106】
図2Cは、本開示の実施態様による、プラズマ処理中に磁界を印加するための3つの磁気コイルを有するプロセスチャンバの断面図を概念的に示す。示されている実施態様中に示されているように、2つの磁気コイル200および202が、チャンバ101の上に配設される。いくつかの実施態様では、磁気コイル200および202は、
図2Bの実施態様と同様に構成される。その上、下部磁気コイル204が、プラズマ処理領域182の下方にあるように、電極109の下方に配設される。いくつかの実施態様では、下部磁気コイル204は、約10~25インチ(約25~63cm)の範囲内の直径(中心間直径、または内径、または外径)を有する。本開示の実施態様によれば、DC電流が、チャンバ101において静的磁場を生成するために、単独で、または他の磁気コイルに印加されるDC電流と組み合わせて、磁気コイル204に印加される。
【0107】
単一の下部磁気コイル204が、示されている実施態様において示され、説明されるが、他の実施態様では、2つ以上の下部磁気コイルがあり得る。複数の下部磁気コイルの場合、そのような下部磁気コイルは、互いに同一平面上にあることも、互いに同一平面上にないこともある。
【0108】
図2Dは、本開示の実施態様による、プラズマ処理中に磁界を印加するための4つの磁気コイルを有するプロセスチャンバの断面図を概念的に示す。示されている実施態様中に示されているように、
図2Cの構成と同様に、チャンバ101の上に配設された2つの磁気コイル200および202、ならびに電極109の下方に配設された下部磁気コイル104がある。その上、側部磁気コイル206が、プラズマ処理領域182を側方から囲むように、配置される。いくつかの実施態様では、側部磁気コイル206は、C覆い部材185に隣接して配置される。いくつかの実施態様では、側部磁気コイル206は、チャンバ101の壁101aに隣接して配置される。いくつかの実施態様では、側部磁気コイル206は、プラズマ処理領域182の少なくとも一部分の高さにほぼあるように、垂直方向に配置される。いくつかの実施態様では、側部磁気コイル206は、300mmウェハを処理するように構成されたチャンバについて、約25~30インチ(約63~76cm)の範囲内の直径(中心間直径、または内径、または外径)を有する。本開示の実施態様によれば、DC電流が、チャンバ101において静的磁場を生成するために、単独で、または他の磁気コイルに印加されるDC電流と組み合わせて、磁気コイル206に印加される。
【0109】
単一の側部磁気コイル206が、示されている実施態様において示され、説明されるが、他の実施態様では、2つ以上の側部磁気コイルがあり得る。いくつかの実施態様では、複数の側部磁気コイルが、提供され、同じ直径を有するように構成され、互いに垂直方向に整列される。いくつかの実施態様では、複数の側部磁気コイルは、異なる直径を有することができ、互いと同一平面上にあることも、互いと同一平面上にないこともある。
【0110】
説明されたように、さまざまな実施態様では、プラズマ処理領域182の上方に、プラズマ処理領域182の下方に、および/またはプラズマ処理領域182を囲んで配置された1つまたは複数の磁気コイルがあり得る。各磁気コイルは、プラズマ処理領域182において静的磁場を生成するために、DC電流を供給される。大まかに言って、いくつかの実施態様では、磁場は、中心エッチレートの抑制をもたらすように、プラズマ処理領域182の中央部分において実質的にz方向に作成される。これにより、所与のCCPチャンバが、ウェハの中心部分においてエッチレートのピークを呈する場合、磁場は、中心ピークを抑制するために、プラズマに印加され得る。
【0111】
いくつかの実施態様では、本開示の実施態様による磁気コイルは、絶縁された銅線、またはマグネットワイヤから形成される。いくつかの実施態様では、マグネットワイヤは、約16~10AWGのマグネットワイヤである。いくつかの実施態様では、マグネットワイヤのコイリングは、所与の磁気コイルについて、約30~60巻を有するように構成される。いくつかの実施態様では、コイリングは、約40~50巻を有するように構成される。いくつかの実施態様では、磁気コイルは、約1~3cmの断面幅または高さを有する。
【0112】
いくつかの実施態様では、本開示の実施態様による磁気コイルは、さらに、他の構成要素またはハードウェアから磁気コイルを絶縁するように、絶縁材料(例えば、プラスチック絶縁体)から形成された支持構造によって支持される。
【0113】
プラズマ処理のコンテキストにおける磁界の他の印加と比較すると、本開示の実施態様に従って生成される磁場は、低強度界であり、それにより、他の構成要素に対する影響は最小である。しかしながら、プラズマ中の電子は、荷電種の低減された局所堆積を促進し、それゆえ、プラズマおよびエッチ一様性を改善するような様式で、磁場によって影響を及ぼされる。いくつかの実施態様では、生成される磁場の強度は、約10ガウス未満(ウェハレベルにおいて、およびほぼ中心で測定された)であるように構成され、いくつかの実施態様では、約5ガウス未満であるように構成される。
【0114】
それに応じて、本開示の実施態様によれば、弱い磁界を生成するために、低電流レベルが印加されることが諒解されよう。いくつかの実施態様では、所与の磁気コイルへの印加電流は、約10アンペアまたはそれ以下、いくつかの実施態様では、約7アンペアまたはそれ以下、いくつかの実施態様では、約5アンペアまたはそれ以下、いくつかの実施態様では、約3アンペアまたはそれ以下である。
【0115】
低強度磁界が提供されるが、チャンバ壁は、一般的に、アルミニウムおよび/またはシリコン含有材料から構築され、それゆえ、磁場は、チャンバを浸透する。
【0116】
依然として、低強度磁界でさえ、近接デバイスに干渉し得る。それゆえに、いくつかの実施態様では、ニッケル含有材料から構築されたカバーが、磁界から近接デバイスを遮蔽するために、提供される。
【0117】
プラズマ処理における磁界のこれまでの印加は、はるかにより強力な磁界を採用し、ここで、界の方向は、ウェハに平行である。これは、ウェハの表面に平行な磁場線に沿った電子移動を促進し、全体的な一様性を制御するためのやり方として実行された。しかしながら、そのような印加は、デバイス上での電荷蓄積も存在するので、デバイス損傷を起こしやすく、強力な磁場の相互作用は、デバイス損傷を生成する傾向があった。
【0118】
しかしながら、強力な磁界のこれらの従来の使用とは対照的に、本開示の実施態様は、それと比較して極めて低い強度の磁場を採用する。磁化されたスチール部分によって生成された磁場、および非常に弱い電界でさえ、中心における一様性に対する影響を有することができることが観測された。さらに、デバイスサイズが小さくなり、非一様性についての許容差が低減される(例えば、1%を顕著に下回る)につれて、イオン密度の変化は、一様性に対する顕著な影響を有し得る。一般に、本開示の実施態様によれば、印加される磁場の強度が大きければ大きいほど、ウェハの中心部分におけるエッチレートの抑制も大きくなる。
【0119】
図3Aは、本開示の実施態様による、異なる印加された磁場の下での持続波プラズマについてのエッチレート結果を示すグラフである。示されている実施態様では、半径に応じたエッチレートが、ブランケット酸化物ウェハに対して行われた持続波プラズマプロセスについて示されている。曲線300は、上記の実施態様において説明されたような磁気コイルに対する印加電流がゼロである場合のエッチレート結果を示すプロットである。曲線302は、5アンペアの電流が磁気コイルに印加された場合のエッチレート結果を示すプロットである。曲線304は、10アンペアの電流が磁気コイルに印加された場合のエッチレート結果を示すプロットである。結果からわかるように、曲線300によって示されているように磁気コイルに印加された電流がゼロである場合)、ウェハの中央部分においてエッチレートの顕著なピーキングがある。しかしながら、磁気コイルにおける電流が、5アンペア(曲線302)に、および10アンペア(曲線304)に増加されるにつれて、ウェハの中央部分におけるエッチレートは、低減される。この結果は、中心エッチレートピーキングを低減し、それにより、エッチレートの非一様性を低減するために磁場を増加させることの有効性を例証する。
【0120】
図3Bは、
図3Aの実施態様による、印加された磁場によってもたらされるエッチレートの変化を示すグラフである。
図3B中に示されているように、曲線306は、(曲線300によって前に示されたような)ゼロ電流状態に対する、(曲線302によって前に示されたような)磁気コイルに印加された5アンペアの電流を用いて実行された持続波プラズマプロセスのエッチレートの変化(またはデルタ)を示すプロットである。曲線308は、ゼロ電流状態に対する、(曲線304によって前に示されたような)磁気コイルに印加された10アンペアの電流を用いて実行された持続波プラズマプロセスのエッチレートの変化を示すプロットである。
【0121】
エッチレートデルタ結果によって示されているように、本開示の実施態様による、磁場の印加は、主に(例えば、略50mm半径内の)ウェハの中央部分におけるエッチレートの顕著な低減を提供する。また、エッチレートの低減は、印加された磁場がより強力になるにつれて、より大きくなる。
【0122】
図4Aは、本開示の実施態様による、異なる印加された磁場を用いたプラズマプロセスについてのウェハ半径に応じたエッチレートを示すグラフである。示されている実施態様では、ブランケット酸化物ウェハ上でのエッチレートが、パルスプラズマプロセスについて示されている。示されている実施態様では、曲線400は、本開示の実施態様による、上記で説明されたような、磁気コイルに印加された電流がゼロである場合のパルスプラズマプロセスについてのウェハ半径に応じたエッチレートを示す。曲線402は、5アンペアの電流が磁気コイルに印加された場合のパルスプラズマプロセスについてのウェハ半径に応じたエッチレートを示す。曲線404は、10アンペアの電流が磁気コイルに印加された場合のパルスプラズマプロセスについてのウェハ半径に応じたエッチレートを示す。示されているように、(存在する周囲界以外の)追加の磁場が印加されないような、ゼロ電流状態において、ウェハの中心に向かってエッチレートの顕著なピークがある。しかしながら、電流が、5アンペアで磁気コイルに印加されると、エッチレートの中心ピークは、低減される。また、電流が、10アンペアで磁気コイルに印加されると、中心エッチレートは、さらに低減される。これ、印加された磁場が、増加されるにつれて、ウェハの中心部分におけるエッチレートは、より低下され、それにより、ウェハの中心にわたる非一様性を低減する。
【0123】
図4Bは、
図4Aの実施態様による、印加された磁場の結果としてのエッチレートの変化を示すグラフである。曲線406は、ゼロ電流状態と比較した、5アンペアの電流が磁気コイルに印加された場合のパルスプラズマプロセスについてのエッチレートの変化を示す。曲線408は、ゼロ電流状態と比較した、10アンペアの電流が磁気コイルに印加された場合のパルスプラズマプロセスについてのエッチレートの変化を示す。わかるように、印加された磁場の影響は、主に、(例えば、中心の約50mm半径内の)ウェハの中心部分においてエッチレートを低減する。
【0124】
図5は、本開示の実施態様による、特徴部傾斜に対する印加された磁場の影響を例証する、エッチングされた特徴部をその上に有するウェハの部分の断面画像を示す。上側の画像は、印加された磁場なしに処理された、エッチングされた特徴部を有するウェハ部分の断面図を提供する。それに対して、下側の画像は、(磁気コイルへの1アンペアの電流の印加から得られた)印加された磁場を用いて処理された、エッチングされた特徴部を有するウェハ部分の断面図を提供する。わかるように、印加された磁場の下でエッチングされた特徴部は、より小さい傾斜を呈し、印加された磁場の不在下でエッチングされた特徴部よりも垂直である。磁場を印加することは、印加された磁場が、ウェハにおけるプラズマシースの形状を変更するので、傾きを改善する。不均一なプラズマは、いくつかの半径において傾斜を生じ、それゆえ、非一様性を低減する磁界をプラズマに印加することはまた、傾斜を低減し、より垂直なエッチングを可能にすることができる。
【0125】
いくつかの実施態様によれば、チャンバの上方に配設された4つの磁気コイルを有するシステムが、提供される。4つの磁気コイルは、実質的に同一平面上にあり、ウェハの中心を通って実質的に垂直である同じ軸について同心である。4つの磁気コイルは、コイル「A」、「B」、「C」、および「D」と参照符号をつけられる。コイルAは、約12インチ(約30cm)の内径を有し、コイルBは、約14インチ(約36cm)の内径を有し、コイルCは、約17インチ(約43cm)の内径を有し、コイルDは、約23インチ(約58cm)の内径を有する。どのコイルが電流を受けるかを変動させ、所与のコイルに印加される電流の量を変動させ、所与のコイルに印加される電流の方向を変動させることによって、さまざまな磁気プロファイルが、達成され得、それらの磁気プロファイルは、例えば、半径方向エッチ非一様性を低減するようにチューニングされ得る。
【0126】
図6Aは、本開示の実施態様による、さまざまな単一コイル電流構成についての、300mm直径ウェハに沿った半径方向位置に対する、z方向(垂直方向、またはウェハ表面に対して垂直)でのウェハレベルにおける磁界強度を示す。すなわち、電流が、コイルA、B、C、およびDのうちの単一のコイルに印加され、z方向の磁界の強度が、ガウス単位で測定された。
【0127】
正電流は、コイルの俯瞰図から考えると、反時計回り方向に印加された電流を示す。それに応じて、負電流は、時計回り方向に印加された電流を示す。
【0128】
示されている実施態様では、グラフの凡例は、以下の形態のものである:(coil#)(電流)_(coil#)(電流)_(coil#)(電流)_(coil#)(電流)。これにより、「A5_B0_C0_D0」と示されている曲線は、5アンペアの電流が、コイルAに印加され、ゼロ電流が、コイルB、C、およびDに印加された場合の結果と理解され得る。「A-5_B0_C0_D0」と示されている曲線は、-5アンペアの電流が、コイルAに印加され、ゼロ電流が、コイルB、C、およびDに印加された場合の結果と理解され得る。「A0_B5_C0_D0」と示されている曲線は、5アンペアの電流が、コイルBに印加され、ゼロ電流が、コイルA、C、およびDに印加された場合の結果と理解され得、以下同様である。
【0129】
図6Bは、
図6Aの実施態様による、さまざまな単一コイル電流構成についての、300mm直径ウェハに沿った半径方向位置に対する、半径方向でのウェハレベルにおける磁界強度を(ガウスで)示す。これらの結果からわかるように、ウェハエッジにおける半径方向磁場強度は、z方向磁場強度と同等である。
【0130】
いくつかの実施態様では、ウェハレベルにおける磁界強度は、磁気コイルのレベルにおける磁界強度の約1/3であることが諒解されよう。
【0131】
図7Aは、本開示の実施態様による、単一のコイルA(12インチ)、B(14インチ)、C(17インチ)、およびD(23インチ)に印加されたさまざまな正電流(反時計回り)についての、300mmウェハに沿った半径方向位置に対する熱酸化物エッチレートを示すグラフである。
【0132】
図7Bは、本開示の実施態様による、単一のコイルA(12インチ)、B(14インチ)、C(17インチ)、およびD(23インチ)に印加されたさまざまな負電流(時計回り)についての、300mmウェハに沿った半径方向位置に対する熱酸化物エッチレートを示すグラフである。
【0133】
図7Aおよび
図7Bの結果が例証するように、異なるコイルサイズおよび電流は、酸化物エッチレートに対する異なる影響を有することができる。同じコイルについて、反対の電流方向は、とりわけより低い電流の大きさにおいて、酸化物エッチレートに対する異なる影響を有することができる。これは、コイルが誘起した磁場が、より低いとき、周囲磁場オフセットは、より著しい影響を有すると理解され得る。
【0134】
図8Aは、本開示の実施態様による、さまざまな2コイル電流構成についての、300mm直径ウェハに沿った半径方向位置に対する、z方向(垂直方向、またはウェハ表面に対して垂直)でのウェハレベルにおける磁界強度を示す。すなわち、電流が、コイルA、B、C、およびDのうちの2つに印加され、z方向の磁界の強度が、ガウス単位で測定された。
【0135】
図8Bは、
図8Aの実施態様による、さまざまな2コイル電流構成についての、300mm直径ウェハに沿った半径方向位置に対する、半径方向でのウェハレベルにおける磁界強度を(ガウスで)示す。
【0136】
これらの結果が例証するように、同じまたは異なる方向をもつ異なるコイル電流を組み合わせることによって、ウェハ半径に沿って異なる磁場プロファイルを作成し、それにより、プラズマおよびエッチプロファイルに対する異なる影響を達成することが、可能である。
【0137】
図9Aは、本開示の実施態様による、さまざまな3コイル電流構成についての、300mm直径ウェハに沿った半径方向位置に対する、z方向(垂直方向、またはウェハ表面に対して垂直)でのウェハレベルにおける磁界強度を示す。すなわち、電流が、コイルA、B、C、およびDのうちの3つに印加され、z方向の磁界の強度が、ガウス単位で測定された。
【0138】
図9Bは、
図9Aの実施態様による、さまざまな3コイル電流構成についての、300mm直径ウェハに沿った半径方向位置に対する、半径方向でのウェハレベルにおける磁界強度を(ガウスで)示す。
【0139】
これらの結果が例証するように、同じまたは異なる方向をもつ異なるコイル電流を組み合わせることによって、ウェハ半径に沿って異なる磁場プロファイルを作成し、それにより、プラズマおよびエッチプロファイルに対する異なる影響を達成することが、可能である。
【0140】
図10Aは、本開示の実施態様による、2コイル組合せについての、300mmウェハに沿った半径方向位置に応じたエッチレートを示すグラフである。示されている実施態様では、特定の2コイル組合せは、コイルA(12インチの直径)およびコイルD(23インチの直径)を含む。
【0141】
図10Bは、
図10Aの実施態様による、ゼロ電流状態と比較したエッチレートデルタを示すグラフである。
【0142】
示されているように、12インチコイルと23インチコイルとの間での異なる電流組合せは、エッチレート一様性に影響を及ぼす調節可能性を提供することができる。
【0143】
図11は、本開示の実施態様による、複数の磁気コイルへの電力を制御するためのシステムの概念概略図である。示されている実施態様では、制御システム120は、数個のDC電源1100、1102、1104、および1106に動作可能に接続され、DC電源1100、1102、1104、および1106の動作を制御する。DC電源は、それぞれ、磁気コイル1108、1110、1112、および1114にDC電流を印加する。制御システム120は、DC電源のうちの所与のDC電源によって供給される、DC電流の大きさ/強度(例えば、アンペア数)と、DC電流の極性(例えば、正または負、あるいは反時計回りまたは時計回り)と、を制御することができる。
【0144】
いくつかの実施態様では、磁気コイル1108、1110、1112、および1114は、上記で説明されたコイルA、B、C、およびDである。いくつかの実施態様では、磁気コイル1108、1110、1112、および1114は、本開示のさまざまな実施態様に従って説明された磁気コイルのうちのいずれかであり得る。4つの磁気コイルおよび4つの対応するDC電源が示されているが、他の実施態様では、追加の磁気コイルおよびDC電源があり得ることが、諒解されよう。
【0145】
いくつかの実施態様では、任意の所与のDC電源について、DC電流の大きさおよびそれの極性の調節のための設定を提供することなどによって、オペレータが、DC電源のパラメータを調節することを可能にするために、ユーザインタフェースが、提供される。
【0146】
論じられたように、いくつかの実施態様では、プラズマ非一様性を低減し、それにより、エッチ非一様性を低減するために、プラズマ処理中の磁場の印加が、使用され得る。その上、いくつかの実施態様では、磁場の印加は、環境磁界によるツール間のばらつきを補償するために、チャンバ整合のために使用され得る。周囲磁界は、ツールごとに異なることがあり、それゆえ、印加された磁場は、そのような周囲環境界を無効にし/オフセットし、それにより、ツール間の一貫性を提供するために使用され得る。
【0147】
理解されるべきであるが、本開示に記載される方法のいずれも、制御システム120によって自動的に動作するように実施され得る。
【0148】
図12は、いくつかの実施形態による、
図1の制御システム120の例示的概略図を示す。いくつかの実施形態では、制御システム120は、プラズマ処理システム100内で実行される半導体製造プロセスを制御するためのプロセスコントローラとして構成される。さまざまな実施形態では、制御システム120は、プロセッサ1401と、記憶ハードウェアユニット(HU)1403(例えば、メモリ)と、入力HU1405と、出力HU1407と、入出力(I/O)インタフェース1409と、I/Oインタフェース1411と、ネットワークインタフェースコントローラ(NIC)1413と、データ通信バス1415と、を含む。プロセッサ1401、記憶HU1403、入力HU1405、出力HU1407、I/Oインタフェース1409、I/Oインタフェース1411、およびNIC1413は、データ通信バス1415を介して互いにデータ通信をする。入力HU1405は、いくつかの外部デバイスからデータ通信を受信するように構成される。入力HU1405の例は、データ収集システム、データ収集カードなどを含む。出力HU1407は、いくつかの外部デバイスにデータを送信するように構成される。出力HU1407の例は、デバイスコントローラである。NIC1413の例は、ネットワークインタフェースカード、ネットワークアダプタなどを含む。I/Oインタフェース1409および1411の各々は、I/Oインタフェースに結合された異なるハードウェアユニット間に互換性を提供するように規定される。例えば、I/Oインタフェース1409は、入力HU1405から受信される信号をデータ通信バス1415と互換性のある形式、振幅、および/または速度に変換するように規定され得る。また、I/Oインタフェース1407は、データ通信バス1415から受信される信号を出力HU1407と互換性のある形式、振幅、および/または速度に変換するように規定され得る。さまざまな動作は、制御システム120のプロセッサ1401によって実行されるように本明細書に記載されるが、理解されるべきであるが、いくつかの実施形態では、さまざまな動作は、制御システム120の複数のプロセッサによって、および/または制御システム120とデータ通信する複数のコンピューティングシステムの複数のプロセッサによって、実行され得る。
【0149】
いくつかの実施形態では、制御システム120は、検知された値に部分的に基づいてさまざまなウェハ製造システム内のデバイスを制御するために使用される。例えば、制御システム120は、検知された値および他の制御パラメータに基づいて、バルブ1417、フィルタヒータ1419、ウェハ支持構造体ヒータ1421、ポンプ1423、および他のデバイス1425のうちの1つまたは複数を制御し得る。バルブ1417は、裏側ガス供給システム129、プロセスガス供給システム191、および温度制御流体循環システム125の制御に関連づけられたバルブを含み得る。制御システム120は、例えば、圧力マノメータ1427、流量計1429、温度センサ1431、および/または他のセンサ1433、例えば、電圧センサ、電流センサなどから、検知された値を受信する。制御システム120はまた、ウェハWに対するプラズマ処理動作の実行中にプラズマ処理システム100内のプロセス条件を制御するために使用され得る。例えば、制御システム120は、プロセスガス供給システム191からプラズマ処理領域182に供給されるプロセスガスの種類および量を制御することができる。また、制御システム120は、第1の無線周波数信号生成器147、第2の無線周波数信号生成器149、インピーダンス整合システム143、TES無線周波数信号生成器213、およびTESインピーダンス整合システム211の動作を制御することができる。また、制御システム120は、クランプ電極112に対するDC電源117の動作を制御することができる。制御システム120はまた、リフトピン132に対する昇降デバイス133の動作およびドア107の動作を制御することができる。制御システム120はまた、裏側ガス供給システム129および温度制御流体循環システム125の動作を制御する。制御システム120はまた、片持ちアームアセンブリ115の垂直移動を制御する。制御システム120はまた、スロットル部材196と、排気ポート105での吸引を制御するポンプと、の動作を制御する。制御システム120はまた、TESシステム1000の抑制ロッド911の抑制制御機構913の動作を制御する。制御システム120はまた、TESシステム1000の温度プローブからの入力を受信する。理解されるべきであるが、制御システム120は、プラズマ処理システム100内の任意の機能のプログラム制御および/または手動制御に備えるように装備される。
【0150】
いくつかの実施形態では、制御システム120は、特定のプロセスのプロセスタイミング、プロセスガス送出システム温度、および圧力差、バルブ位置、プロセスガスの混合、プロセスガス流量、裏側冷却ガス流量、チャンバ圧力、チャンバ温度、ウェハ支持構造体温度(ウェハ温度)、RF電力レベル、RF周波数、RFパルシング、インピーダンス整合システム143設定、片持ちアームアセンブリ位置、バイアス電力、ならびに他のパラメータを制御するための命令のセットを含むコンピュータプログラムを実行するように構成される。制御システム120に関連づけられたメモリデバイス上に記憶される他のコンピュータプログラムが、いくつかの実施形態で使用され得る。いくつかの実施形態では、制御システム120に関連づけられたユーザインタフェースがある。ユーザインタフェースは、ディスプレイ1435(例えば、装置および/またはプロセス条件の表示画面および/またはグラフィカルソフトウェア表示)と、ポインティングデバイス、キーボード、タッチスクリーン、マイクロフォンなどのユーザ入力デバイス1437と、を含む。
【0151】
制御システム120の動作を指令するためのソフトウェアは、多くの異なる方法で設計または構成され得る。プロセスシーケンスにおけるさまざまなウェハ製造プロセスを実行するために制御システム120の動作を指令するためのコンピュータプログラムは、任意の従来のコンピュータ可読プログラミング言語、例えば、アセンブリ言語、C、C++、Pascal、Fortranなどで書かれ得る。コンパイルされたオブジェクトコードまたはスクリプトが、プログラム内で識別されるタスクを実行するためにプロセッサ1401によって実行される。制御システム120は、例えば、とりわけ、フィルタ圧力差、プロセスガス組成および流量、裏側冷却ガス組成および流量、温度、圧力、RF電力レベルおよびRF周波数などのプラズマ条件、バイアス電圧、冷却ガス/流体圧力、ならびにチャンバ壁温度などのプロセス条件に関連するさまざまなプロセス制御パラメータを制御するようにプログラムされ得る。ウェハ製造プロセス中に監視され得るセンサの例は、以下のものに限定されないが、マスフロー制御モジュール、圧力マノメータ1427などの圧力センサおよび温度センサ1431を含む。適切にプログラムされたフィードバックおよび制御アルゴリズムが、所望されるプロセス条件を維持するための1つまたは複数のプロセス制御パラメータを制御/調節するために、これらのセンサからのデータとともに使用され得る。
【0152】
いくつかの実施態様では、制御システム120は、より広範な製造制御システムの一部である。このような製造制御システムは、ウェハ処理のための処理ツール、チャンバ、および/またはプラットフォーム、および/またはウェハペデスタル、ガスフローシステムなどのような特定の処理構成要素を含む半導体処理設備を含み得る。これらの製造制御システムは、ウェハの処理前、処理中、および処理後にそれらの動作を制御するための電子機器と統合され得る。制御システム120は、製造制御システムのさまざまな構成要素またはサブ部分を制御し得る。制御システム120は、ウェハ処理要件に応じて、処理ガスの送出、裏側冷却ガスの送出、温度設定(例えば、加熱および/または冷却)、圧力設定、真空設定、電力設定、無線周波数(RF)生成器設定、RF整合回路設定、周波数設定、流量設定、流体送出設定、位置および動作設定、ツールおよび他の移送ツールおよび/または特定のシステムに接続または接触するロードロックを出入りするウェハ移送を含む、本明細書に開示されるプロセスのいずれかを制御するようにプログラムされ得る。
【0153】
概して、制御システム120は、命令を受け取り、命令を発行し、動作を制御し、ウェハ処理動作を可能にし、終点測定を可能にするなどを行うさまざまな集積回路、ロジック、メモリ、および/またはソフトウェアを有する電子機器として規定され得る。集積回路は、プログラム命令を記憶したファームウェア、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)として規定されるチップ、および/またはプログラム命令(例えば、ソフトウェア)を実行する1つまたは複数のマイクロプロセッサ、もしくはマイクロコントローラの形態のチップを含み得る。プログラム命令は、システム100内のウェハWに対して特定のプロセスを実行するための動作パラメータを規定する、さまざまな個別の設定(またはプログラムファイル)の形態で、制御システム120に通信される命令であり得る。動作パラメータは、いくつかの実施形態では、ウェハの1つまたは複数の層、材料、金属、酸化物、シリコン、二酸化シリコン、表面、回路、および/またはダイの製造中に1つまたは複数の処理ステップを遂行するために、プロセス技術者によって規定されたレシピの一部であり得る。
【0154】
制御システム120は、いくつかの実施態様では、プラズマ処理システム100に統合、結合され、もしくはさもなければシステム100にネットワーク接続されたコンピュータの一部であるか、もしくはそのコンピュータに結合されるか、またはその組合せであり得る。例えば、制御システム120は、ウェハ処理のリモートアクセスを可能にし得るファブホストコンピュータシステムの全部または一部の「クラウド」内にあり得る。コンピュータは、現在の処理のパラメータを変更し、現在の処理に後続する処理ステップを設定し、または新たなプロセスを開始するために、製造動作の現在の進行を監視し、過去の製造動作の履歴を検査し、複数の製造動作からトレンドまたはパフォーマンスメトリックを検査するように、システム100へのリモートアクセスを可能にし得る。いくつかの例では、リモートコンピュータ(例えば、サーバ)が、ローカルネットワークまたはインターネットを含み得るネットワークを通じてシステム100にプロセスレシピを提供することができる。
【0155】
リモートコンピュータは、パラメータおよび/または設定の入力またはプログラミングを可能にするユーザインタフェースを含むことができ、パラメータおよび/または設定は、その後、リモートコンピュータからシステム100に通信される。いくつかの例では、制御システム120は、データの形態で命令を受信し、データは、1つまたは複数の動作中に実行される処理ステップの各々に対するパラメータを指定する。理解されるべきであるが、パラメータは、プラズマ処理システム100内で実行されるプロセスの種類に固有であり得る。したがって、上記のように、制御システム120は、まとめてネットワーク接続され、本明細書に記載されるプロセスおよび制御などの共通の目的に向かって機能する1つまたは複数の個別のコントローラを備えることによるなどで分散され得る。このような目的のための分散されたコントローラの例は、プラズマ処理システム100に対して実行されるプロセスを制御するように組み合わされた、(プラットフォームレベルで、またはリモートコンピュータの一部としてなどで)リモートに配置された1つまたは複数の集積回路と通信するプラズマ処理システム100の1つまたは複数の集積回路であり得る。
【0156】
限定なしに、制御システム120がインタフェース接続し得る例示的なシステムは、プラズマエッチングチャンバまたはモジュール、堆積チャンバまたはモジュール、スピン洗浄チャンバまたはモジュール、金属めっきチャンバまたはモジュール、クリーンチャンバまたはモジュール、面取りエッジエッチングチャンバまたはモジュール、物理気相堆積(PVD)チャンバまたはモジュール、化学気相堆積(CVD)チャンバまたはモジュール、原子層堆積(ALD)チャンバまたはモジュール、原子層エッチング(ALE)チャンバまたはモジュール、イオン注入チャンバまたはモジュール、トラックチャンバまたはモジュール、ならびに半導体ウェハの製造および/または製作において関連づけまたは使用され得る任意の他の半導体処理システムを含み得る。上記のように、ツールによって実行される1つまたは複数のプロセスステップに応じて、制御システム120は、他のツール回路またはモジュール、他のツール構成要素、クラスタツール、他のツールインタフェース、隣接ツール、近隣ツール、工場全体に配置されたツール、メインコンピュータ、他のコントローラ、または半導体製造工場内のツール位置および/またはロードポートとの間でウェハのコンテナを運ぶ材料移送において使用されるツールのうちの1つまたは複数と通信し得る。
【0157】
本明細書に記載される実施形態はまた、携帯型ハードウェアユニット、マイクロプロセッサシステム、マイクロプロセッサに基づく、またはプログラム可能な、消費者向け電子機器、ミニコンピュータ、メインフレームコンピュータなどを含むさまざまなコンピュータシステム構成とともに実施され得る。本明細書に記載される実施形態はまた、ネットワークを通じて連結されたリモート処理ハードウェアユニットによってタスクが実行される分散コンピューティング環境とともに実施され得る。理解されるべきであるが、本明細書に記載される実施形態、特に制御システム120に関連する実施形態は、コンピュータシステムに記憶されたデータに関連するさまざまなコンピュータ実装された動作を使用し得る。これらの動作は、物理量の物理的操作を必要とする動作である。実施形態の一部を形成する本明細書に記載された動作のいずれも、有用な機械動作である。実施形態はまた、これらの動作を実行するためのハードウェアユニットまたは装置に関する。装置は、特殊目的コンピュータのために特別に構築され得る。特殊目的コンピュータとして規定される場合、コンピュータはまた、その特殊目的のための動作が依然として可能である一方で、その特殊目的の一部ではない他の処理、プログラム実行またはルーチンを実行し得る。いくつかの実施形態では、動作は、コンピュータメモリ、キャッシュに記憶され、またはネットワークを通じて取得される1つまたは複数のコンピュータプログラムによって選択的に起動または構成される汎用コンピュータによって処理され得る。データがネットワークを通じて取得される場合、データは、ネットワーク上の他のコンピュータ、例えば、コンピューティングリソースのクラウドによって処理され得る。
【0158】
本明細書に記載されるさまざまな実施形態は、非一時的コンピュータ可読媒体上のコンピュータ可読コードとして実体化されたプロセス制御命令を通じて実装され得る。非一時的コンピュータ可読媒体は、データを記憶することができる任意のデータ記憶ハードウェアユニットであり、データは、その後にコンピュータシステムによって読み出され得る。非一時的コンピュータ可読媒体の例は、ハードドライブ、ネットワークアタッチトストレージ(NAS)、ROM、RAM、コンパクトディスクROM(CD-ROM)、CDレコーダブル(CD-R)、CDリライタブル(CD-RW)、磁気テープ、ならびに他の光学的および非光学的なデータ記憶ハードウェアユニットを含む。非一時的コンピュータ可読媒体は、コンピュータ可読コードが分散された方式で記憶および実行されるように、ネットワーク結合コンピュータシステムにわたって分散されるコンピュータ可読有形媒体を含み得る。
【0159】
上記の開示は、理解を明確にする目的のための何からの詳細を含むが、明らかなように、特定の変更および修正が、添付の特許請求の範囲内で実施され得る。例えば、理解されるべきであるが、本明細書に開示された任意の実施形態からの1つまたは複数の特徴が、本明細書に開示された任意の他の実施形態の1つまたは複数の特徴と組み合わされ得る。したがって、本実施形態は、例示的であって制限的でないとみなされるべきであり、特許請求の範囲は、本明細書に与えられた詳細に限定されるべきでなく、記載された実施形態の範囲および均等物の範囲内で変更され得る。
【国際調査報告】