IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ルドルフ・テクノロジーズ,インコーポレーテッドの特許一覧

特表2023-550527光学計測デバイスのための焦点システム
<>
  • 特表-光学計測デバイスのための焦点システム 図1
  • 特表-光学計測デバイスのための焦点システム 図2
  • 特表-光学計測デバイスのための焦点システム 図3
  • 特表-光学計測デバイスのための焦点システム 図4
  • 特表-光学計測デバイスのための焦点システム 図5
  • 特表-光学計測デバイスのための焦点システム 図6
  • 特表-光学計測デバイスのための焦点システム 図7
  • 特表-光学計測デバイスのための焦点システム 図8
  • 特表-光学計測デバイスのための焦点システム 図9
  • 特表-光学計測デバイスのための焦点システム 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-12-01
(54)【発明の名称】光学計測デバイスのための焦点システム
(51)【国際特許分類】
   G01N 21/01 20060101AFI20231124BHJP
   G01N 21/21 20060101ALI20231124BHJP
   G01N 21/55 20140101ALI20231124BHJP
【FI】
G01N21/01
G01N21/21
G01N21/55
【審査請求】有
【予備審査請求】未請求
(21)【出願番号】P 2023533665
(86)(22)【出願日】2021-11-03
(85)【翻訳文提出日】2023-08-01
(86)【国際出願番号】 US2021057904
(87)【国際公開番号】W WO2022119683
(87)【国際公開日】2022-06-09
(31)【優先権主張番号】17/110,210
(32)【優先日】2020-12-02
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】516312501
【氏名又は名称】オントゥー イノヴェイション インコーポレイテッド
(74)【代理人】
【識別番号】100094569
【弁理士】
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100103610
【弁理士】
【氏名又は名称】▲吉▼田 和彦
(74)【代理人】
【識別番号】100109070
【弁理士】
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100067013
【弁理士】
【氏名又は名称】大塚 文昭
(74)【代理人】
【識別番号】100109335
【弁理士】
【氏名又は名称】上杉 浩
(74)【代理人】
【識別番号】100120525
【弁理士】
【氏名又は名称】近藤 直樹
(74)【代理人】
【識別番号】100139712
【弁理士】
【氏名又は名称】那須 威夫
(74)【代理人】
【識別番号】100141553
【弁理士】
【氏名又は名称】鈴木 信彦
(72)【発明者】
【氏名】シャチャフ アミット
(72)【発明者】
【氏名】トンプソン ダニエル
(72)【発明者】
【氏名】レソワーヌ ジョン エフ
【テーマコード(参考)】
2G059
【Fターム(参考)】
2G059AA02
2G059EE02
2G059EE05
2G059GG04
2G059JJ11
2G059JJ19
2G059JJ22
2G059KK01
2G059LL01
(57)【要約】
光学計測デバイスからの光は、集束システムを用いて試料上の測定スポットに集束される。集束システムは、測定スポットから反射された光の画像を使用して、試料の所望の位置における最良の焦点位置を決定する。集束システムは、集束に使用するために、偏光状態又は波長などの反射光の特性を選択する。焦点位置を決定する際に使用するために選択される反射光の特性は、試料の異なる部分によって異なる影響を受ける。例えば、試料の上面から反射された光は、下にある層によって反射された光とは異なる特性を有し得る。反射光の選択された特性は、試料の上面又は下にある層に測定スポットを集束させるために、集束システムによって使用される。
【特許請求の範囲】
【請求項1】
光学計測デバイスの焦点位置を決定するための集束システムであって、前記集束システムは、
反射光の光路に配置されたビームスプリッタであって、前記反射光の部分を測定検出器に向け、前記反射光の残りの部分を焦点検出器に向けるように構成されたビームスプリッタと、
前記ビームスプリッタからの前記反射光の前記残りの部分を受け取るように配置される前記焦点検出器であって、前記焦点検出器は、前記反射光の画像を検出器アレイ上で受け取り、前記反射光の前記画像は、前記試料の上面から反射された光の第1の画像及び前記上面の下にある1つ以上の層から反射された光の第2の画像のうちの少なくとも1つ、又はそれらの組み合わせを含み、前記画像の位置と、前記第1の画像及び前記第2の画像のうちの少なくとも1つを識別する前記反射光の特性とに基づいて信号を生成する、前記焦点検出器と、
前記焦点検出器から前記信号を受信し、前記信号に基づいて前記光学計測デバイスの前記焦点位置を決定するように結合された少なくとも1つのプロセッサと、を含む、集束システム。
【請求項2】
前記少なくとも1つのプロセッサは、前記光学計測デバイスの前記焦点位置を決定するために、前記検出器アレイ上の前記反射光の前記画像の前記位置を見つけるように構成される、請求項1に記載の集束システム。
【請求項3】
前記検出器アレイ上の前記試料からの反射光の前記画像は、前記試料の前記上面から反射された光の前記第1の画像と、前記上面の下にある前記1つ以上の層から反射された光の前記第2の画像との両方を含み、前記反射光の前記特性は、前記第1の画像と前記第2の画像とを区別する、請求項1に記載の集束システム。
【請求項4】
前記反射光の前記特性が偏光である、請求項1に記載の集束システム。
【請求項5】
前記焦点検出器は、複数のマクロピクセルを備える偏光検出器であり、各マクロピクセルは、前記検出器アレイの対応するピクセルと位置合わせされたマイクロ偏光子のマイクロ偏光子アレイを備え、マクロピクセル内の各マイクロ偏光子は、離散偏光配向を有し、前記少なくとも1つのプロセッサは、前記試料の上面又は前記試料の前記上面の下にある層のうちの1つ以上から反射された光に敏感な偏光状態に基づいて、前記焦点検出器からの前記信号を選択するように構成される、請求項4に記載の集束システム。
【請求項6】
前記試料に斜めに入射する前記光を偏光させる回転偏光子を更に含み、
前記少なくとも1つのプロセッサは、前記回転偏光子によって生成された前記光の偏光の変化に応答して、前記焦点検出器からの前記信号を選択するように構成される、請求項5に記載の集束システム。
【請求項7】
前記光学計測デバイスは、偏光状態発生器及び偏光状態分析器を備える偏光解析器であり、前記ビームスプリッタは、前記反射光の前記光路において前記偏光状態分析器の前に配置される、請求項1に記載の集束システム。
【請求項8】
前記反射光の前記特性が波長範囲である、請求項1に記載の集束システム。
【請求項9】
前記焦点検出器は、前記試料の上面から反射される紫外光を検出する検出器アレイを備える、請求項8に記載の集束システム。
【請求項10】
前記ビームスプリッタと前記検出器アレイとの間に配置され、第1の範囲の波長を有する前記反射光の前記残りの部分が前記検出器アレイ内の第1のセットのピクセルに入射して前記反射光の前記画像を形成することを可能にするように構成されたフィルタを更に備え、前記第1の範囲の波長を有する光が前記試料の上面に対して敏感である、請求項8に記載の集束システム。
【請求項11】
第2の範囲の波長を有する光が、前記試料の前記上面の下にある1つ以上の層から反射され、前記第2の範囲の波長を有する前記反射光の前記残りの部分が、前記検出器アレイ内の第2のセットのピクセルに入射し、前記少なくとも1つのプロセッサが、少なくとも、前記第2の範囲の波長を有する前記反射光を受け取る前記検出器アレイ内の前記第2のセットのピクセルからの前記信号に基づいて、前記試料の前記上面の下にある前記1つ以上の層に対する前記光学計測デバイスの前記焦点位置を決定するように更に構成される、請求項10に記載の集束システム。
【請求項12】
前記検出器アレイ上の前記試料からの反射光の前記画像が、前記試料の前記上面から反射された前記第1の範囲の波長を有する前記光の第1の画像と、前記上面の下にある1つ以上の層から反射された第2の範囲の波長を有する光の第2の画像とを含み、前記少なくとも1つのプロセッサが、前記第1の範囲の波長を有する光の前記第1の画像及び前記第2の範囲の波長を有する光の前記第2の画像のうちの少なくとも1つの前記位置を見つけて、前記光学計測デバイスの前記焦点位置を決定するように構成される、請求項10に記載の集束システム。
【請求項13】
前記フィルタは、前記検出器アレイの少なくとも一部分上にあるか、又は前記ビームスプリッタからの前記反射光を前記焦点検出器に向ける反射要素上にある、請求項10に記載の集束システム。
【請求項14】
前記光学計測デバイスの焦点位置を変更するためのアクチュエータを更に備え、前記アクチュエータは、前記少なくとも1つのプロセッサによって決定された前記焦点位置に基づいて前記光学計測デバイスの前記焦点位置を変更する、請求項1に記載の集束システム。
【請求項15】
光学計測デバイスの焦点位置を決定する方法であって、
試料からの反射光の第1の部分を測定検出器に向け、前記反射光の第2の部分を焦点検出器に向けることと、
前記焦点検出器を用いて前記反射光の画像を検出することであって、前記反射光の前記画像が、前記試料の上面から反射された光の第1の画像及び前記上面の下にある1つ以上の層から反射された光の第2の画像のうちの少なくとも1つ、又はそれらの組み合わせを含む、ことと、
前記第1の画像及び前記第2の画像のうちの少なくとも1つを識別する前記反射光の特性に基づいて、前記反射光の前記第2の部分の一部を選択して、前記光学計測デバイスの前記焦点位置を決定することと、
前記焦点検出器上の前記画像の位置と、前記反射光の前記第2の部分の前記選択された部分とを使用して、前記光学計測デバイスの前記焦点位置を決定することと、を含む、方法。
【請求項16】
前記試料に斜めに入射する前記光を偏光させることを更に含み、
前記反射光の前記部分を選択することは、前記試料の前記上面又は前記試料の前記上面の下にある前記1つ以上の層のうちの1つ以上から反射された光に敏感である偏光状態を選択することを含む、請求項15に記載の方法。
【請求項17】
前記反射光の前記部分を選択することは、前記試料の前記上面又は前記試料の前記上面の下にある前記1つ以上の層のうちの1つ以上から反射された光に敏感である光の波長を選択することを含む、請求項15に記載の方法。
【請求項18】
前記決定された焦点位置に基づいて前記光学計測デバイスの焦点位置を変更することを更に含む、請求項15に記載の方法。
【請求項19】
光学計測デバイスの焦点位置を決定するための集束システムであって、前記集束システムは、
反射光の光路に配置されたビームスプリッタであって、前記反射光の部分を測定検出器に向け、前記反射光の残りの部分を焦点検出器に向けるように構成されたビームスプリッタと、
前記反射光の前記残りの部分を受け取るように配置された前記焦点検出器であって、検出器アレイ上で反射光の画像を受け取り、前記反射光の前記画像が、前記試料の上面から反射された光の第1の画像、及び前記上面の下にある1つ以上の層から反射された光の第2の画像のうちの少なくとも1つ、又はそれらの組み合わせを含む、前記焦点検出器と、
前記光学計測デバイスの焦点位置を決定するために、前記第1の画像及び前記第2の画像のうちの少なくとも1つを識別する前記反射光の特性に基づいて、前記反射光の前記残りの部分の一部分を選択するための手段と、
前記反射光の前記画像と、前記反射光の前記選択された前記残りの部分とに基づいて、前記光学計測デバイスの前記焦点位置を決定するための手段と、を含む、集束システム。
【請求項20】
前記反射光の前記部分を選択するための前記手段が、前記試料の前記上面又は前記試料の前記上面の下にある前記1つ以上の層のうちの1つ以上から反射された光に敏感な前記反射光の特性を選択する、請求項19に記載の集束システム。
【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の相互参照)
本出願は、全体が参照により本明細書に組み込まれる、2020年12月02日に出願された「FOCUS SYSTEM FOR OPTICAL METROLOGY DEVICE」と題した米国特許仮出願第17/110,210号に対する優先権を主張するものである。
【0002】
(発明の分野)
本発明は、光学計測に関し、特に光学計測デバイスの集束に関する。
【背景技術】
【0003】
半導体及び他の同様の産業では、加工中に基板を非接触で評価するために光学計測装置が使用されることが多い。光学計測では、被試験試料に対して、例えば、単一の波長又は複数の波長の光を照射する。試料と相互作用した後、生じた光を検出、分析して、試料の所望の特性を決定する。
【0004】
いくつかの光学計測デバイスは、試料に斜めに入射し、検出される前に試料から反射又は散乱する光を使用する。斜めの入射角を使用する光学計測デバイスの一例は、偏光解析器である。偏光解析器は、試料の特性を測定するために、試料の表面から反射された光の偏光状態の変化を検出する光学計測デバイスである。反射率計などの他のタイプの光学計測デバイスも、斜めの入射角の光を使用することができる。
【0005】
偏光解析器及び反射率計のような傾斜光学測定デバイスは、試料上に適切に集束されなければならない。いくつかのシステムは、独立した集束システム、すなわち、光学計測デバイスに取り付けられているが、試料に対する集束システム、したがって光学計測デバイスの位置を決定するために独立した光路を使用するシステムを使用する。しかしながら、このような集束システムは非常に正確な位置合わせを必要とし、これは高価で困難である。一体化された集束システムは、アパーチャを有するミラーを使用することがあり、ミラーは、試料から反射された光の外側光線を焦点検出器に反射し、一方、反射光の内側光線は、アパーチャを透過し、光学計測デバイスの検出器によって受け取られる。しかしながら、このようなデバイスは迷光による不正確さの影響を受けやすい。
【発明の概要】
【0006】
光学計測デバイスからの光は、集束システムを用いて試料上の測定スポットに集束される。集束システムは、測定スポットから反射された光の画像を使用して、試料の所望の位置における最良の焦点位置を決定する。集束システムは、焦点位置を決定するために試料から反射される光の特性を選択するように構成され得る。選択された特性は、例えば、光の偏光状態又は波長であってもよい。例えば、いくつかの試料の上面から反射された光は、下にある層によって反射された光とは異なる偏光状態を有し得る。同様に、試料の上面から反射された光は、下にある層によって反射された光とは異なる波長特性を有し得る。例えば、上面は、紫外線(UV)及び可視波長の両方の光を反射してもよく、一方、底面は、可視波長の光のみを反射してもよい。したがって、集束システムは、反射光の選択された特性、例えば偏光状態又は波長に基づいて、試料の上面からの反射と下にある層からの反射とを区別し、選択された特性を使用して測定スポットを所望のレベルに集束させるように構成することができる。
【0007】
一実装形態では、光学計測デバイスの焦点位置を決定するための集束システムは、反射光の光路に配置されたビームスプリッタを含むことができる。ビームスプリッタは、反射光の部分を測定検出器に向け、反射光の残りの部分を焦点検出器に向けるように構成される。集束システムは、ビームスプリッタからの反射光の残りの部分を受け取るように配置された焦点検出器を更に含むことができる。焦点検出器は、検出器アレイ上で反射光の画像を受け取り、反射光の画像は、試料の上面から反射された光の第1の画像及び上面の下にある1つ以上の層から反射された光の第2の画像のうちの少なくとも1つ、又はそれらの組み合わせを含み、画像の位置と、第1の画像及び第2の画像のうちの少なくとも1つを識別する反射光の特性とに基づいて信号を生成する。例えば、反射光の特性は、光の偏光状態又は波長(例えば、UV又は可視NIR)であってもよい。少なくとも1つのプロセッサが、焦点検出器から信号を受信し、信号に基づいて光学計測デバイスの焦点位置を決定するように結合される。
【0008】
一実装形態では、光学計測デバイスの焦点位置を決定する方法は、試料からの反射光の第1の部分を測定検出器に向けて誘導することと、反射光の第2の部分を焦点検出器に向けて誘導することとを含むことができる。反射光の画像は、焦点検出器を用いて検出され、反射光の画像は、試料の上面から反射された光の第1の画像、及び上面の下にある1つ以上の層から反射された光の第2の画像のうちの少なくとも1つ、又はそれらの組み合わせを含む。反射光の部分は、第1の画像及び第2の画像のうちの少なくとも1つを識別する反射光の特性に基づいて選択され、光学計測デバイスの焦点位置を決定する。例えば、反射光の特性は、光の偏光状態又は波長(例えば、UV又は可視NIR)であってもよい。光学計測デバイスの焦点位置は、焦点検出器上の画像の位置と反射光の選択された部分とを用いて決定される。
【0009】
一実装形態では、光学計測デバイスの焦点位置を決定するための集束システムは、反射光の光路に配置されたビームスプリッタを含むことができる。ビームスプリッタは、反射光の部分を測定検出器に向け、反射光の残りの部分を焦点検出器に向けるように構成されてもよい。焦点検出器は、反射光の残りの部分を受光するように配置されてもよい。焦点検出器は、検出器アレイ上で反射光の画像を受け取り、反射光の画像は、試料の上面から反射された光の第1の画像、及び上面の下にある1つ以上の層から反射された光の第2の画像のうちの少なくとも1つ、又はそれらの組み合わせを含む。光学計測デバイスは、光学計測デバイスの焦点位置を決定するために、第1の画像及び第2の画像のうちの少なくとも1つを識別する反射光の特性に基づいて反射光の部分を選択するための手段を更に含むことができる。例えば、反射光の特性は、光の偏光状態又は波長(例えば、UV又は可視NIR)であってもよい。光学計測デバイスは、反射光の画像及び反射光の選択された部分に基づいて光学計測デバイスの焦点位置を決定するための手段を更に含むことができる。
【図面の簡単な説明】
【0010】
図1】集束システムを有する斜角光学計測デバイスを示す。
図2】焦点検出器のセンサアレイと、光学計測デバイスの焦点位置を決定するために使用されるセンサアレイ上の光のスポットとの上面図を示す。
図3】焦点検出器のセンサアレイ上に複数の反射を生成するフィルムスタックを含む試料を示す。
図4】集束システムにおける焦点検出器として使用され得る偏光検出器を示す。
図5】複数の反射を生成するフィルムスタックと、反射光の偏光に基づいて試料からの異なる反射に敏感であるピクセルを含む偏光検出器とを含む試料を示す。
図6】フィルムスタックから反射された光の波長感度を示すグラフである。
図7】1つ以上の波長フィルタを含む集束システムを有する光学計測デバイスの部分を示す。
図8】1つ以上の波長フィルタを含む集束システムを有する光学計測デバイスの部分を示す。
図9】複数の反射を生成するフィルムスタックと、反射光の波長に基づいて試料からの異なる反射に敏感である検出器とを含む試料を示す。
図10】光学計測デバイスの集束する方法を示すフローチャートである。
【発明を実施するための形態】
【0011】
斜角反射率計及び偏光解析器を含む斜角光学計測デバイスは、試料に入射する光の適切な集束を必要とする。試料(例えば、半導体ウエハ)の複数の領域が光学計測デバイスによって測定され得るので、光学計測デバイスは、各測定位置に適切に集束されなければならない。このような光学計測デバイスの焦点位置を変更するためには、光学系と試料との距離を調整する必要があり得るが、これには時間がかかる。したがって、焦点位置を正確に決定するだけでなく、焦点位置を迅速に決定することが望ましい。
【0012】
傾斜光学計測デバイスのための正確なリアルタイム焦点システムは、試料上の測定スポットの画像を使用して、デバイスの最良焦点位置を決定することができる。例えば、試料から反射された光は、光の部分が測定のために計測デバイスの検出器によって受け取られ、反射光の別の部分が集束システムに向けられるように分割されてもよい。集束システムは、試料上の測定スポットの画像を受け取り、その画像を使用して、光学計測デバイスの焦点位置を決定し調整することができる。試料から反射された測定スポットの使用は、焦点位置の正確かつ迅速な決定を提供する。
【0013】
しかしながら、いくつかの試料は、入射光の多重反射を発生させる。例えば、いくつかの試料は、試料の上面から1つの反射を生成し、上面の下にある1つ以上の層から別の反射を生成する。複数の反射を生成する試料の一例は、光学計測デバイスによって使用される光の波長に対して半透明である多くの積層された層又は1つ以上の厚い層を有するデバイスである。例えば、垂直NAND型フラッシュメモリなどの3Dメモリ技術は、メモリセルの複数の層の積み重ねに依存している。傾斜計測デバイスがそのようなデバイスを測定するとき、集束システムは、測定スポットの複数の画像を受け取ることがあり、1つは上面からであり、1つは下にある層からであり、正確な焦点位置決定を困難にすることがある。所望の焦点が試料の上面にある場合、試料の底部からの反射光によって生成された結像測定スポットは、焦点位置決定において不正確さ又は不確実性を生じ得る。
【0014】
集束システムは、反射光の特性に基づいて光学計測デバイスの焦点位置を決定するために使用される光を選択するように構成されてもよい。例えば、集束システムは、偏光又は波長に基づいて光を選択して、光学計測デバイスの焦点位置を決定することができる。更に、集束システムは、試料の上面から反射された光、又は上面の下にある1つ以上の層から反射された光を選択して、光学計測デバイスの焦点位置を決定するために使用することができる。例えば、集束システムは、反射光の特性に基づいて、試料の上面からの反射と下にある層からの反射とを区別するように構成されてもよい。
【0015】
一実装形態では、集束システムは、反射光の偏光状態に基づいて上面と下にある層とを区別することができる。上面から反射された光は、下にある層から反射された光とは異なる偏光状態を有し得る。集束システムは、所望の偏光状態、すなわち、上面又は下にある層から反射された光に対応する偏光状態を有する光を選択する偏光子を含むことができる。例えば、集束システムは、検出器アレイ内の対応するピクセルと位置合わせされたマイクロ偏光子ピクセルのアレイを含む偏光感知検出器を使用して、上面又は下にある層から反射された光に対応する偏光状態を有する光を受光するピクセルからの信号を選択することができる。
【0016】
一実装形態では、集束システムは、反射光の波長に基づいて上面と下にある層とを区別することができる。例えば、紫外線などの第1の範囲の波長を有する光は、表面反射に対してより敏感であり得るが、例えば、可視又は赤外線スペクトル内の第2の範囲の波長を有する光は、下にある層の反射に対してより敏感であり得る。集束システムは、上面又は下にある層から反射された光を選択するために、所望の波長範囲を有する光を選択する1つ以上のフィルタを含むことができる。例えば、集束システムは、検出器アレイの少なくとも一部にフィルタを使用して、上面又は下にある層に対応する波長範囲を有する光を選択することができる。
【0017】
図1は、集束システム150を有する光学計測デバイス100を示す。図示されるように、光学計測デバイス100は光源102を含み、これは単色又は多色であってもよく、したがって狭帯域又は広帯域光111を生成してもよい。対物レンズ106は、ステージ108上に保持され位置決めされた試料101の表面上に光111を集束させる。光111は、斜めの入射角で試料101に入射する。光111は、反射光113として試料101と相互作用し、そこから反射し、対物レンズ106に適合し得る別の対物レンズ110によって受け取られる。対物レンズ110からの反射光113は、別のレンズ系114によって集束され、検出器116によって受光され得る。検出器116は、1つ以上の波長で反射光113の強度を検出してもよく、試料101の1つ以上の特性を決定するために使用されてもよい。
【0018】
いくつかの実装形態では、光学計測デバイス100は、非偏光又は偏光を使用することができる反射率計であってもよい。したがって、例えば、光学計測デバイス100は偏光子104を含むことができる。いくつかの実装形態では、光学計測デバイス100は、偏光解析器であってもよく、偏光状態生成器103(PSG)及び偏光状態分析器115を含んでもよい。偏光状態生成器は、試料に入射する光において、静的であっても変化してもよい既知の偏光状態を生成するために使用される。偏光状態生成器103は、偏光子104を含み、回転補償器105を含んでもよい。偏光状態分析器は、光が試料と相互作用した後の光の偏光状態を分析するために使用される。偏光状態分析器115は、一般に分析器112と呼ばれる別の偏光子112を含む。いくつかの実装形態では、補償器105’は、偏光状態分析器115内の試料101の後に位置してもよく、偏光状態生成器103内の補償器105は、除去されてもよい。他の実装形態では、補償器105及び105’の両方が使用され得る。必要に応じて、補償器105は静止していてもよく、偏光子104及び分析器112の一方又は両方が回転してもよく、あるいは補償器105ならびに偏光子104及び分析器112が回転してもよい。光学計測デバイス100が偏光解析器である実装形態では、入射光111は、偏光状態生成器103により既知の偏光状態を有する。試料101は、光の偏光状態を変化させ、試料101によって反射された結果として生じる光は、偏光状態分析器115によって、例えば、反射光113を分析器112(及び試料101の後に位置する場合、補償器105’)を通過させることによって分析される。検出器116は、反射光113の強度を検出し、これは、偏光解析パラメータを決定するために、偏光子104、分析器112、及び補償器105の既知の位置とともに使用され得る。Ψ及びΔこれから、試料101の様々なパラメータが決定されてもよく、これは当技術分野で周知である。
【0019】
試料101を適切に測定するために、光学計測デバイス100は、試料101に対して最良の焦点位置に配置される。したがって、光学計測デバイス100は、光学計測デバイス100によって使用されるのと同じ光線を結像する一体型オート焦点システム150を含む。集束システム150は、ビームスプリッタ152と、集束のための焦点検出器158とを含む。集束システム150は、ビームスプリッタ152からの光を焦点検出器158に向けるための追加の光学要素を含むことができる。例えば、図示のように、集束システム150は、折り畳みミラー153及び155と、レンズシステム154及び156とを含むことができる。集束システム150のビームスプリッタ152は、反射光113の部分、例えば、全光強度の4%~10%を集束システム150内の焦点検出器158に向け、例えば、反射し、反射光113の残りの部分、例えば、全光強度の90%以上を測定検出器116に向け、例えば、透過する。「ピックオフ」ビームスプリッタと呼ばれることもあるビームスプリッタ152の使用は、ミラー内のアパーチャを使用するシステムに見られるような反射ビームの一部のみ、例えば外部光線とは対照的に、反射光113ビームの断面全体が集束システム150によってサンプリングされるので有利である。反射光113のビーム全体をサンプリングすることによって、集束システム150は、反射光113の一部のみをサンプリングすることによって引き起こされる系統エラーの影響を受けない。いくつかの実装形態では、ビームスプリッタ152を使用して、光学計測デバイスの焦点位置を決定するために使用される光の特性を選択することができる。例えば、ビームスプリッタ152は、集束システム150で使用される偏光状態又は波長を選択することができる。
【0020】
図1に示すように、偏光状態分析器115が存在する場合、集束システム150のためのビームスプリッタ152は、偏光状態分析器115の前の光路内にある。ビームスプリッタ152を分析器112の前に配置することによって、焦点検出器158で受け取られる光の強度は、偏光光学系の回転によって変調されない。したがって、ビームスプリッタ152は、反射光が分析器112によって変調される前に、反射光113の部分を検出器158に向ける。したがって、集束システム150の焦点面アレイ、すなわち検出器158上に結像される反射光113は、変調された強度を有さない。
【0021】
偏光子104又は補償器105などの偏光状態生成器103内の偏光光学要素の回転は、回転光学系が回転するにつれて、集束システム150の検出器158上に結像されるスポット内に揺れを依然として生成する可能性がある。必要に応じて、分析器112を回転させ、偏光子104及び補償器105を静止状態に保持してもよく、これにより、検出器158によって結像されるスポットの、回転光学系によって生成される揺れが回避される。更に、所望であれば、ビームスプリッタ152は、補償器105’の前のビーム経路内に位置決めされてもよく、一方、分析器112及び補償器105’の一方又は両方は回転し、偏光子104は静止して保持され、これは、やはり、回転光学系によって生成される検出器158によって結像されるスポット内の揺れを回避する。
【0022】
ビームスプリッタ152は、ペリクルビームスプリッタであってもよく、これは、収束ビームにおける光路長又は収差に著しく影響を与えない、例えば0.002 mmの薄さを有してもよい。光路長及び収差への影響は、図1に示すように、コリメートされたビームでは更に小さくなる。ペリクルビームスプリッタの使用は、色収差を更に最小化し、結像ゴーストを防止することができる。
【0023】
図2は、焦点検出器158のセンサ204及びレンズ系156によって生成された光のスポット202の上面図を示す。センサ204は、例えば、2次元センサアレイであってもよい。矢印206によって示されるように移動し得るセンサ204上のスポット202の位置は、光学計測デバイス100の焦点位置の指標として使用される。スポット202は、センサ204のサイズの1%~50%、例えば、10%以下であってもよく、これは、有用なオート焦点範囲を増加させる。レンズシステム156のレンズは、最良焦点位置からの偏差を拡大するように配置され、それによって、より高い測定精度を提供する。例えば、図2の矢印206によって示されるように、センサ204上のスポット202の場所の移動は、最良焦点位置からの偏差の拡大された指示を提供する。センサ204上のスポットのサイズは、試料101が焦点範囲を通して走査されるにつれてわずかに変化し得るが、これは、スポット位置計算が非感受性であるように構成され得る、比較的小さい影響である。最良焦点位置からの偏差に関してレンズシステム154によって生成される倍率は、2倍~5倍以上、例えば10倍であってもよい。しかしながら、スポットサイズの縮小は焦点精度を低下させ、したがって、より小さいスポットはスポット位置計算をより不正確にするが、より高いスポット強度を提供するので、自動焦点範囲と精度との間のトレードオフが行われる。したがって、必要に応じて、より正確なスポット位置計算を提供するために使用することができる大きなスポット、例えばセンサ204のサイズを生成することができる。
【0024】
図1に示すように、集束システム150用の検出器158は、例えばフレームグラバボード160を介してコンピュータ170に結合される。補償器105、偏光子104、又は分析器112などの回転光学系、及びステージ108はまた、フレームグラバボード160に直接、又は例えばドライバ168によって示されるコントローラ/ドライバを介して接続されてもよい。必要に応じて、光学計測デバイス100の検出器116は、同じコンピュータ170又は異なるコンピュータに結合されてもよい。コンピュータ170は、メモリ174を備えた1つ以上のプロセッサ172、ならびに例えばディスプレイ178及び入力デバイス180を含むユーザインターフェースを含む。フレームグラバボード160は、焦点エラーを決定するように構成された1つ以上のプロセッサ162(フィールドプログラマブルゲートアレイ(FPGA)であってもよい)を含み、焦点エラーは、例えば、フレームグラバボード160から焦点エラーデータを受信し、それに応じてステージ108内のアクチュエータ109を制御するステージサーボコントローラ108 contを介して、ステージ108の焦点位置を制御するために使用される。したがって、一実施形態では、フレームグラバボード160は、検出器158からの焦点エラーを直接処理し、コンピュータ170からの入力なしにステージサーボコントローラ108 contに焦点調整を提供する。もちろん、所望であれば、コンピュータ170は、焦点エラーの処理及びステージサーボコントローラ108 contへの命令の一部又は全部に使用されてもよい。フレームグラバボード160上のプロセッサ162等のプロセッサは、1つ以上の別個の処理ユニットを含んでもよく、例えば、プロセッサ162は、画像処理のための第1のプロセッサと、焦点エラー決定のための別個のプロセッサとを含んでもよいことを理解されたい。更に、1つ以上のプロセッサが、フレームグラバボード160以外の他の位置に配置されてもよい。例えば、プロセッサ162(又はプロセッサ162を含むプロセッサユニットのうちの1つ以上)は、検出器158又は他の場所に配置されてもよい。
【0025】
プロセッサ172が、例えば、コンピュータプログラムの命令を実行するマイクロプロセッサである場合、この詳細な説明において説明された1つ以上の行為を自動的に実装するためのデータ構造及びソフトウェアコードは、本開示に照らして当業者によって実装され、例えば、コンピュータシステムによって使用するためのコード及び/又はデータを記憶することができる任意のデバイス又は媒体であり得るコンピュータ可読記憶媒体、例えばメモリ174、媒体182に記憶され得る。コンピュータ可読記憶媒体174/182は、ディスクドライブ、磁気テープ、コンパクトディスク、及びDVD(デジタル用途ディスク又はデジタルビデオディスク)などの磁気及び光記憶デバイスであってもよいが、これらに限定されない。通信ポート184はまた、プロセッサ172をプログラムして本明細書で説明する機能のうちの任意の1つ以上を実行するために使用される命令を受信するために使用されてもよく、インターネット又は他のコンピュータネットワークなどの任意のタイプの通信接続を代表してもよい。更に、本明細書で説明する機能は、特定用途向け集積回路(ASIC)又はプログラマブルロジックデバイス(PLD)の回路内で全体的又は部分的に具体化されてもよく、機能は、本明細書で説明されたように動作するASIC又はPLDを作成するために使用され得るコンピュータ理解可能な記述言語で具体化されてもよい。例えば、上述したように、フィールドプログラマブルゲートアレイ(FPGA)が使用されてもよい。FPGAは、検出器158内にあってもよいし、コンピュータ170の内部又は外部のフレームグラバボード160上にあってもよい。プロセッサ172がFPGAである場合、コンピュータ可読記憶媒体174/182は、プロセッサ172内に所望の構成を埋め込むためのプログラミングファイルを提供することができ、これは、不揮発性FPGAに対して1回実行されてもよく、又はそうでなければ電源投入時に実行されてもよい。オート集束のために必要な計算を実行するためのメインシステムCPUの使用を回避することによって、CPUは減速されない。また、専用のプロセッサを用いることで画像処理速度を向上させることができる。したがって、ステージサーボコントローラ108 contは、フレームグラバボード160に直接結合されてもよく、フレームグラバボード160は、シリアル周辺通信インターフェース(SPI)チャネルを介してステージサーボコントローラ108 contに信号を直接提供してもよい。
【0026】
計測デバイス100のような斜角光学計測デバイスを集束させることは、試料101が入射光から複数の反射を生成する場合、困難であり得る。例えば、反射光113は、試料101の上面及び上面の下にある1つ以上の層の両方からの反射を含み得る。集束システム150が試料101から複数の反射を受ける場合、どの反射が所望の焦点位置、すなわち試料101の上面からのものであるかを決定することが困難であり、焦点位置が不正確になる可能性がある。
【0027】
図3は、例として、光学計測デバイス100内の焦点検出器のセンサアレイ上に複数の反射を生成することができるフィルムスタックを含む試料300を示す。試料300は、例えば、二酸化ケイ素及びタングステンの層の多数の、例えば256の対302のスタックを含むことができる。階層スタックは、酸化物304、ポリシリコン306、金属308(例えば、タングステン)、及びシリコン(図示せず)上にあり得る酸化物310のスタック上にあってもよい。試料300内の膜スタックから反射される光は、試料300の上面301から、及び試料300の底部から、例えば金属層308から反射され得る。上面と金属層308との間の層、例えば層302からの反射は弱く、集束システムでは見えない(又は望ましくない)場合がある。したがって、図3は、試料300から反射され得る光を示す検出器画像320を更に示す。図示されるように、1つのスポット322は、試料300の上面301から反射されてもよく、一方、別のスポット324は、試料300の上面301の下にある層、例えば金属層308から反射されてもよい。検出器画像320内に複数のスポット322及び324が存在すると、これらのスポットは部分的に重なり合うか又は分離されている可能性があり、試料300の焦点位置を決定する際に複雑さ及び不正確さが生じる可能性がある。例えば、所望の焦点位置からのスポット、例えばスポット322の実際の位置の代わりに、スポット322及び324の位置の平均を使用して焦点位置を決定することができる。
【0028】
試料300の膜スタックは、上面301及び下にある層308から反射される光の特性に対して異なる影響を生じ得る。したがって、集束システム150は、反射光の特性に基づいて、試料の上面からの反射と、下にある層からの反射とを区別するように構成され得る。例えば、試料300の膜スタックは、上面301及び下にある層308から反射される光の異なる偏光を生成することができる。したがって、集束システム150は、反射光の偏光状態に基づいて上面と下にある層とを区別することができる。例えば、一実装形態では、焦点検出器158は、反射光の偏光状態に基づいて、試料の上面からの反射と下にある層からの反射とを区別することができる。別の例では、試料300の膜スタックの上面301及び下にある層308は、異なる波長の光を反射し得る。したがって、焦点検出器158は、反射光の波長に基づいて、試料の上面301からの反射と下にある層308からの反射とを区別することができる。
【0029】
図4は、光学計測デバイス100の焦点位置を決定するために使用される試料から反射された光の部分を選択するために、集束システム150において焦点検出器158として使用され得る偏光検出器400の一例を示す。偏光検出器400が焦点検出器158として使用される場合、光学計測デバイス100は、試料101に入射する光111を偏光するために、例えば偏光反射率計モード又は偏光解析モードの偏光子104(図1に示す)を含む。更に、偏光検出器400を使用して上面301及び下にある層308から反射された光を区別するために偏光効果が使用されるので、集束システム150内のビームスプリッタ152は、存在する場合、分析器112又は補償器105’の前の光路内に配置される。
【0030】
偏光検出器400は、例えば、Imperx,Inc.JAI,Inc.、FLIR Inc.、及び4D Technologyによって製造される検出器において使用されるような、SonyからのIMX250MZRセンサを使用し得る、撮像偏光計カメラであってもよい。偏光検出器400は、2次元センサ410と位置合わせされたマイクロ偏光子アレイ402を含む。マイクロ偏光子アレイ402は、多数の、例えば4つの偏光配向を有するワイヤグリッド偏光子404のアレイである。マイクロ偏光子アレイ402内の各偏光子404は、2次元センサ410内のピクセル412と位置合わせされる。加えて、偏光検出器400は、マイクロレンズアレイ420を含み得、各レンズ422は、別個の偏光子404及びピクセル412と位置合わせされる。
【0031】
偏光検出器400は、マクロピクセルのアレイとして定義することができ、各マクロピクセルは、検出器ピクセル412と位置合わせされた異なる偏光状態を有するワイヤグリッド偏光子404を有するいくつかのピクセルを含む。例えば、図4に示されるように、マクロピクセル406は、4つの異なる偏光状態、例えば0°、45°、-45°、及び90°を有するピクセルの2×2アレイとして定義され得る。偏光検出器400は、複数のマクロピクセルにわたってスポット322及び324(図3に示される)を撮像するために、いくつかのマクロピクセル、例えば、227×227マクロピクセルアレイを含んでもよく、各マクロピクセルは、4つの異なる偏光状態を検出する。
【0032】
図5は、試料300及び偏光検出器400の上面図を示し、試料300からの異なる反射に敏感なピクセルを含む複数のマクロピクセルを示す。マクロピクセル506によって示されるように、試料300の上面301から反射された光は、1つの偏光配向を有し、ピクセル508によって検出され、一方、下にある層308から反射された光は、異なる偏光配向を有し、ピクセル510によって検出される。したがって、所望の表面からの反射に敏感な各マクロピクセル内のピクセルからの信号を使用することによって、望ましくない層からの反射を無視することができ、焦点位置を正確に決定することができる。例えば、光学計測デバイス100が試料300の上面301に集束されると仮定すると、各マクロピクセル内のピクセル508からの信号のみが焦点位置を決定するために使用される。
【0033】
いくつかの実装形態では、光学計測デバイス100は、試料300から反射された光の偏光配向を変更する偏光子104又は補償器105などの回転偏光要素を含むことができる。したがって、試料上の表面からの反射光の偏光状態に敏感なマクロピクセル506内のピクセルは、回転偏光要素が回転するにつれて変化する。したがって、偏光検出器400は、回転又は回転偏光要素と同期して、所望の表面からの反射を検出するために使用される各マクロピクセル内のピクセルを変更する。
【0034】
いくつかの実装形態では、試料300の上面301及び上面301の下の層は、異なる波長の光を反射することができる。例えば、図6は、フィルムスタックから反射された光に対する波長感度を示すグラフ600である。図6は、光学計測デバイス100などの光学計測デバイスによって測定された、試料300と同様の膜スタックから反射されたTE偏光の波長に対する正規化強度を示す。グラフ600は2つの曲線を示し、一方の曲線602は100層対を有する膜スタックを表し、他方の曲線604は200層対を有する膜スタックを表す。グラフ600に見られるように、曲線602及び604は両方とも、約210nm~240nmの紫外線波長範囲内に大きな滑らかなピーク606を有する。紫外線より長い波長、例えば、400nmより大きい可視波長は、高周波数振動を示す。紫外波長範囲内のピーク606は、紫外光に対して不透明である試料の上面301からの反射によるものであり、一方、可視波長範囲は、上面301ならびに上面301の下の表面からの反射によるものである。
【0035】
したがって、光源102が広帯域光を生成する実装形態では、集束システム150は、反射光の波長に基づいて上面と下にある層とを区別することができる。いくつかの実装形態では、集束システム150は、反射光の波長に基づいて、試料の上面301からの反射と下にある層308からの反射とを区別することができる焦点検出器158を含むことができる。いくつかの実装形態では、1つ以上のフィルタを追加的又は代替的に使用して、所望の波長範囲を有する光を選択し、反射光の波長に基づいて焦点検出器158によって試料の上面301から反射された光と下にある層308から反射された光とを区別することができる。
【0036】
図7は、光学計測デバイス100の部分を示し、特に、例えば、光学計測デバイス100の試料101の後の検出器アーム700の一実施形態を示す。光学計測デバイス100の照明アーム(試料の前)は、例えば、光源102、対物レンズ106、及び任意選択の偏光状態生成器103を含む、図1に示すものと同じであってもよいことを理解されたい。図7に示されるように、集束システム150は、存在する場合、偏光状態分析器115の後に随意に位置付けられてもよい。
【0037】
集束システム150は、UV感知焦点検出器158を含むことができる。例えば、焦点検出器は、少なくともUV範囲内の波長に対して高い感度を有する紫外線カメラであってもよく、いくつかの実装形態では、可視及び赤外線範囲に及ぶ。例えば、UV CMOSカメラなどの裏面照射型CMOSカメラを使用することができる。UV感知焦点検出器158は、反射光を受け取り、紫外光を検出することができる。加えて、集束システム150内の光学構成要素、例えば、折り畳みミラー153及び155、ならびにレンズシステム154及び156は、UV性能のために選択されてもよい。例えば、折り畳みミラー153及び155は、UV強化アルミニウム被覆溶融シリカミラーであってもよく、レンズ系154及び156は、溶融シリカレンズ、又は関心のあるUV波長で適切な応答を提供する別の適切なタイプのレンズであってもよい。
【0038】
いくつかの実装形態では、焦点検出器158の前に1つ以上のフィルタを配置することができ、これは、紫外光を可視光から区別するのを助けることができる。例えば、図7に更に示すように、集束システム150は、焦点検出器158の前にフィルタ159を更に含むことができる。フィルタ159は、試料上の所望の表面によって反射された波長に対応する波長を通過させ、他の波長を遮断することができる。例えば、試料300の上面301が集束のための所望の表面である場合、フィルタ159は、紫外線波長を通過させ、より長い波長、例えば、可視及び赤外線波長を遮断し得る。いくつかの実装形態では、検出器158及びスポット322ならびにスポット324の一部分の差し込み平面図で示すように、フィルタ159は、紫外線のみを通過させる紫外線部分159UVと、紫外線よりも長い波長、例えば可視光線及び赤外線のみを通過させる可視部分159VISとを含むことができる。検出器158は、例えば、異なる波長を受光するのに適し、フィルタ159の対応する紫外線部分159UV及び可視部分159VISと位置合わせされた2つの異なるセクション又はタイプの検出器要素を有することができる。したがって、焦点検出器158は、試料300の上面301から反射されたスポット322であって、(部分159UVに示されている)紫外波長と、(部分159VISに示されている)可視及び赤外波長との両方を含み、別々の領域で受光してもよく、また、試料300の下にある層308から反射された、(部分159VISに示されている)紫外よりも大きい波長、例えば、可視又は赤外波長のみを有するスポット324の部分で受光してもよい。
【0039】
図8は、図7と同様であり、光学計測デバイス100の部分を示し、特に、光学計測デバイス100の、例えば試料101の後の検出器アーム800の別の実施形態を示す。光学計測デバイス100の照明アーム(試料の前)は、例えば、光源102、対物レンズ106、及び任意選択の偏光状態生成器103を含む、図1に示すものと同じであってもよいことを理解されたい。図8に示されるように、集束システム150は、存在する場合、偏光状態分析器115の後に随意に位置付けられてもよい。
【0040】
図8に示すように、集束システム150は、焦点検出器158の直前以外の他の場所にフィルタ157を含んでもよい。例えば、図8に示すように、フィルタ157は、ミラー155上に配置されてもよい。他の実装形態では、フィルタ157は、ビームスプリッタ152上に配置されてもよく、又はビームスプリッタ152であってもよい。フィルタ157は、試料上の所望の表面によって反射された波長に対応する波長を通過させ、他の波長を遮断することができる。例えば、試料300の上面301が集束のための所望の表面である場合、フィルタ157は、紫外線波長を通過させ、より長い波長、例えば、可視及び赤外線波長を遮断し得る。いくつかの実装形態では、検出器158及びスポット322及びスポット324の部分の差し込み平面図で示されるように、フィルタ157は、検出器158の部分157UV上で受け取られる紫外光のみを通過させる紫外部分と、検出器158の部分157VIS上で受け取られる紫外よりも大きい波長、例えば可視及び赤外のみを通過させる可視部分とを含むことができる。検出器158は、例えば、異なる波長を受光するのに適し、対応する紫外線部分157UV及び可視部分157VISと位置合わせされた2つの異なるタイプの検出器要素を有することができる。別の実装形態では、ミラー155は、試料300の上面301からの反射が所望の焦点位置であるときに紫外光のみを検出器158上に反射し、試料300の下にある層308からの反射が所望の焦点位置であるときに紫外光よりも大きい波長、例えば可視光又は赤外光のみを検出器158上に反射するように、調整可能であってもよい(二重矢印155回転によって示されるように)。したがって、焦点検出器158は、紫外線波長部分(157UVに示されている)と、可視光線波長及び赤外線波長(部分157VISに示されている)との両方を含む、サンプル300の上面301から反射されたスポット322と、試料300の下にある層308から反射された、紫外線よりも大きい波長、例えば可視光線又は赤外線波長のみを有するスポット324の一部(部分157VISに示されている)とを、別々の領域で同時に又は別々に受光することができる。
【0041】
図9は、試料300と、集束検出器900の上面図とを示し、集束検出器は、図7に示すように、検出器158の直前にフィルタ159、又は図8に示されるようにミラー155上などの集束システム150の光路内の他の場所にフィルタ157を有する検出器158であってもよい。図示のように、検出器158は、紫外光を受光するUV部分902と、可視光又は赤外光などのより長い波長を受光するVIS-NIR部分904とを含む。試料300の上面301から反射された光は、紫外光及び可視光又は赤外光を含み、したがって、UV部分902及びVIS-NIR部分904によってスポット322として受け取られ、試料300の下にある層308から反射された光は、紫外光を含まず、可視光又は赤外光などの長波長のみを含み、したがって、VIS-NIR部分904のみによってスポット324の部分として受け取られる。したがって、UV部分902及び/又はVIS-NIR部分904内のピクセルからの信号を使用することによって、試料の所望の表面からの反射を検出することができる一方で、望ましくない層からの反射は無視又は除去され、焦点位置を正確に決定することができる。例えば、光学計測デバイス100が試料300の上面301に集束されると仮定すると、UV部分902からの信号のみが焦点位置を決定するために使用される。一方、光学計測デバイス100が試料300の下にある層308に集束されると仮定すると、上面と下にある層の両方からの反射を含む、VIS-NIR部分904からの信号を使用することができ、UV部分902からの信号を使用して、試料の上面によって生成されるスポット322を識別及び除外することができる。
【0042】
図10は、本明細書に記載の実施形態による、図1に示される光学計測デバイス100などの光学計測デバイスの集束する方法を示すフローチャート1000である。いくつかの実装形態では、光学計測デバイスは、試料に斜めに入射する光を光路に沿って向けてもよい。光は、狭帯域、例えば、単一波長、又は広帯域であってもよい。いくつかの実装形態では、試料に斜めに入射する光は、例えば偏光状態生成器103によって斜めに偏光されてもよく、偏光子104を含んでもよく、補償器105を更に含んでもよく、そのうちの1つ以上は回転要素であってもよい。試料に斜めに入射する光を光路に沿って向ける手段は、例えば、光源102によって生成された光111を試料に斜めに入射するように向ける、図1に示される対物レンズ106であってもよい。
【0043】
ブロック1002において、試料からの反射光の第1の部分は測定検出器に向けられ、反射光の第2の部分は焦点検出器に向けられる。試料からの反射光は、存在する場合、偏光状態分析器の前又は後に、焦点検出器に向かって向けられてもよい。例として、偏光状態分析器は、存在する場合、分析器を含んでもよく、補償器を更に含んでもよく、そのうちの1つ以上は、回転要素であってもよい。試料からの反射光の第1の部分を測定検出器に向け、反射光の第2の部分を集束検出器に向けるための手段は、例えば、反射光113の部分を測定検出器116に向け、反射光113の別の部分を焦点検出器158に向ける、図1に示すビームスプリッタ152であってもよい。
【0044】
ブロック1004において、反射光の画像は、焦点検出器を用いて検出され、反射光の画像は、試料の上面から反射された光の第1の画像及び上面の下にある1つ以上の層から反射された光の第2の画像のうちの少なくとも1つ、又はそれらの組み合わせを含む。例えば、反射光は、焦点検出器上に画像を形成するように集束されてもよく、焦点検出器上の画像の位置は、光学計測デバイスの焦点位置の指標を提供する。複数の画像を形成することができ、第1の画像は試料の上面からの反射光によって生成され、第2の画像は上面の下にある1つ以上の層によって生成される。試料の上面から反射された光の第1の画像及び上面の下にある1つ以上の層から反射された光の第2の画像のうちの少なくとも1つ、又はそれらの組み合わせを含む反射光の画像を焦点検出器で検出するための手段は、例えば、反射光によって生成された1つ以上の画像を受け取る焦点検出器158とすることができる。
【0045】
ブロック1006において、反射光の部分は、第1の画像及び第2の画像のうちの少なくとも1つを識別する反射光の特性に基づいて選択され、光学計測デバイスの焦点位置を決定する。例えば、光が試料に斜めに入射する一実装形態では、反射光の部分を選択することは、試料の上面又は試料の上面の下にある1つ以上の層のうちの1つ以上から反射された光に敏感な偏光状態を選択又は使用することを含むことができる。別の実装形態では、反射光の部分を選択することは、試料の上面又は試料の上面の下にある1つ以上の層のうちの1つ以上から反射された光に敏感な光の波長を選択又は使用することを含むことができる。例えば、上面は、紫外(UV)波長及び可視から赤外波長の両方の光を反射してもよく、底面は、可視から赤外波長の光のみを反射してもよい。したがって、紫外波長は、光学計測デバイスを上面に集束させるように選択されてもよく、紫外光と可視光及び/又は赤外光との組み合わせが、光学計測デバイスを下にある表面に集束させるために使用されてもよく、紫外波長は、上面から反射された光を排除するために使用される。第1の画像及び第2の画像のうちの少なくとも1つを識別する反射光の特性に基づいて反射光の部分を選択して光学計測デバイスの焦点位置を決定する手段は、例えば、図4に示す偏光検出器400などの1つ以上の偏光要素、又はフィルタ157もしくは159などの1つ以上の波長フィルタリング要素、及び紫外線波長、可視波長、赤外線波長、又はこれらの組み合わせなどの波長を検出することができる検出器158であってもよい。
【0046】
ブロック108において、光学計測デバイスの焦点位置は、焦点検出器上の画像の位置と反射光の選択された部分とを用いて決定される。反射光の選択された部分は、例えば、偏光状態又は波長であってもよい。いくつかの実装形態では、光学計測デバイスの焦点位置は、決定された焦点位置に基づいて変更されてもよい。焦点検出器上の画像の位置及び反射光の選択された部分を使用して光学計測デバイスの焦点位置を決定するための手段は、例えば、図1に示されるメモリ174及び/又は媒体182において実行可能コード又はソフトウェア命令を実装する専用ハードウェアを有する1つ以上のプロセッサ162及び/又は172を含み得る。決定された焦点位置に基づいて光学計測デバイスの焦点位置を変更する手段は、例えば、図1に示されるステージサーボコントローラ108 cont及びアクチュエータ109であってもよい。
【0047】
本明細書全体にわたる「一例」、「例」、「特定の例」、又は「例示的な実装形態」への言及は、特徴及び/又は例に関して説明される特定の特徴、構造、又は特性が、特許請求される主題の少なくとも1つの特徴及び/又は例に含まれ得ることを意味する。したがって、「一例では」、「ある例」、「特定の例では」もしくは「特定の実装形態では」という句、又は本明細書を通して様々な場所における他の同様の句の出現は、必ずしもすべてが同じ特徴、例、及び/又は限定を指すとは限らない。更に、特定の特徴、構造、又は特性は、1つ以上の例及び/又は特徴において組み合わされ得る。
【0048】
本明細書に含まれる詳細な説明のいくつかの部分は、特定の装置又は専用コンピューティングデバイスもしくはプラットフォームのメモリ内に記憶されたバイナリデジタル信号に対する動作のアルゴリズム又は記号表現に関して提示される。この特定の明細書の文脈では、特定の装置などの用語は、プログラムソフトウェアからの命令に従って特定の動作を実行するようにプログラムされた汎用コンピュータを含む。アルゴリズム的記述又は記号表現は、信号処理又は関連技術における当業者によって、彼らの仕事の内容を他の当業者に伝えるために使用される技法の例である。アルゴリズムは、ここでは、及び一般的には、所望の結果をもたらす自己矛盾のない一連の動作又は同様の信号処理であると考えられる。この文脈において、動作又は処理は、物理量の物理的操作を含む。典型的には、必須ではないが、そのような量は、記憶され、転送され、組み合わされ、比較され、又は他の方法で操作されることが可能な電気信号又は磁気信号の形態をとり得る。そのような信号をビット、データ、値、要素、記号、文字、用語、数、数字などと呼ぶことが、主に一般的な用法という理由で、時に便利であることが証明されている。しかしながら、これら又は同様の用語のすべては、適切な物理量に関連付けられるべきであり、単に便利なラベルであることを理解されたい。特に明記しない限り、本明細書の説明から明らかなように、本明細書全体を通して、「処理」、「コンピューティング」、「計算」、「決定」などの用語を利用する説明は、専用コンピュータ、専用コンピューティング装置、又は類似の専用電子コンピューティングデバイスなどの特定の装置の動作又はプロセスを指すことを理解されたい。したがって、本明細書の文脈において、専用コンピュータ又は同様の専用電子コンピューティングデバイスは、専用コンピュータ又は同様の専用電子コンピューティングデバイスのメモリ、レジスタ、又は他の情報記憶デバイス、送信デバイス、又は表示デバイス内の物理的な電子量又は磁気量として典型的に表される信号を操作又は変換することができる。
【0049】
前述の詳細な説明では、特許請求される主題の完全な理解を提供するために、多数の特定の詳細が記載されている。しかしながら、特許請求される主題は、これらの具体的な詳細なしに実施され得ることが当業者によって理解されるであろう。他の例では、特許請求される主題を不明瞭にしないように、当業者によって知られているであろう方法及び装置は詳細に説明されていない。
【0050】
本明細書で使用される「及び」、「又は」、及び「及び/又は」という用語は、そのような用語が使用される文脈に少なくとも部分的に依存することも予想される様々な意味を含み得る。典型的には、「又は」は、A、B、又はC等のリストを関連付けるために使用される場合、本明細書では包括的な意味で使用されるA、B、及びC、ならびに本明細書では排他的な意味で使用されるA、B、又はCを意味することが意図される。加えて、本明細書で使用される「1つ以上」という用語は、単数形の任意の特徴、構造、もしくは特性を説明するために使用されてもよく、特徴、構造、特性の複数又はその他の組み合わせを説明するために使用されてもよい。ただし、これは説明のための例にすぎず、特許請求される主題はこの例に限定されないことに留意されたい。
【0051】
例示的な特徴であると現在考えられるものが例示及び説明されたが、特許請求される主題から逸脱することなく、様々な他の修正が行われ得、均等物が代用され得ることが、当業者によって理解されるであろう。加えて、本明細書で説明される中心概念から逸脱することなく、特許請求される主題の教示に特定の状況を適合させるために、多くの修正が行われ得る。
【0052】
本発明は、説明目的のために特定の実施形態に関連して例示されているが、本発明はこれに限定されない。本発明の範囲から逸脱することなく、様々な適合及び修正を行ってもよい。したがって、添付の特許請求の範囲の趣旨及び範囲は、前述の説明に限定されるべきではない。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
【手続補正書】
【提出日】2023-08-01
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
光学計測デバイスの焦点位置を決定するための集束システムであって、前記集束システムは、
反射光の光路に配置されたビームスプリッタであって、前記反射光の部分を測定検出器に向け、前記反射光の残りの部分を焦点検出器に向けるように構成されたビームスプリッタと、
前記ビームスプリッタからの前記反射光の前記残りの部分を受け取るように配置される前記焦点検出器であって、前記焦点検出器は、前記反射光の画像を検出器アレイ上で受け取り、前記反射光の前記画像は、試料の上面から反射された光の第1の画像及び前記上面の下にある1つ以上の層から反射された光の第2の画像のうちの少なくとも1つ、又はそれらの組み合わせを含み、前記画像の位置と、前記第1の画像及び前記第2の画像のうちの少なくとも1つを識別する前記反射光の特性とに基づいて信号を生成する、前記焦点検出器と、
前記焦点検出器から前記信号を受信し、前記信号に基づいて前記光学計測デバイスの前記焦点位置を決定するように結合された少なくとも1つのプロセッサと、を含む、集束システム。
【請求項2】
前記少なくとも1つのプロセッサは、前記光学計測デバイスの前記焦点位置を決定するために、前記検出器アレイ上の前記反射光の前記画像の前記位置を見つけるように構成される、請求項1に記載の集束システム。
【請求項3】
前記検出器アレイ上の前記試料からの反射光の前記画像は、前記試料の前記上面から反射された光の前記第1の画像と、前記上面の下にある前記1つ以上の層から反射された光の前記第2の画像との両方を含み、前記反射光の前記特性は、前記第1の画像と前記第2の画像とを区別する、請求項1に記載の集束システム。
【請求項4】
前記反射光の前記特性は偏光であり、前記焦点検出器は、複数のマクロピクセルを備える偏光検出器であり、各マクロピクセルは、前記検出器アレイの対応するピクセルと位置合わせされたマイクロ偏光子のマイクロ偏光子アレイを備え、マクロピクセル内の各マイクロ偏光子は、離散偏光配向を有し、前記少なくとも1つのプロセッサは、前記試料の前記上面又は前記試料の前記上面の下にある層のうちの1つ以上から反射された光に敏感な偏光状態に基づいて、前記焦点検出器からの前記信号を選択するように構成される、請求項1に記載の集束システム。
【請求項5】
前記試料に斜めに入射する前記光を偏光させる回転偏光子を更に含み、
前記少なくとも1つのプロセッサは、前記回転偏光子によって生成された前記光の偏光の変化に応答して、前記焦点検出器からの前記信号を選択するように構成される、請求項4に記載の集束システム。
【請求項6】
前記光学計測デバイスは、偏光状態発生器及び偏光状態分析器を備える偏光解析器であり、前記ビームスプリッタは、前記反射光の前記光路において前記偏光状態分析器の前に配置される、請求項1に記載の集束システム。
【請求項7】
前記反射光の特性は、波長範囲であり、前記焦点検出器は、前記試料の前記上面から反射される紫外光を検出する前記検出器アレイを備える、請求項1に記載の集束システム。
【請求項8】
前記ビームスプリッタと前記検出器アレイとの間に配置され、第1の範囲の波長を有する前記反射光の前記残りの部分が前記検出器アレイ内の第1のセットのピクセルに入射して前記反射光の前記画像を形成することを可能にするように構成されたフィルタを更に備え、前記第1の範囲の波長を有する光が前記試料の前記上面に対して敏感である、請求項7に記載の集束システム。
【請求項9】
第2の範囲の波長を有する光が、前記試料の前記上面の下にある前記1つ以上の層から反射され、前記第2の範囲の波長を有する前記反射光の前記残りの部分が、前記検出器アレイ内の第2のセットのピクセルに入射し、前記少なくとも1つのプロセッサが、少なくとも、前記第2の範囲の波長を有する前記反射光を受け取る前記検出器アレイ内の前記第2のセットのピクセルからの前記信号に基づいて、前記試料の前記上面の下にある前記1つ以上の層に対する前記光学計測デバイスの前記焦点位置を決定するように更に構成される、請求項8に記載の集束システム。
【請求項10】
前記検出器アレイ上の前記試料からの反射光の前記画像が、前記試料の前記上面から反射された前記第1の範囲の波長を有する前記光の第1の画像と、前記上面の下にある前記1つ以上の層から反射された第2の範囲の波長を有する光の第2の画像とを含み、前記少なくとも1つのプロセッサが、前記第1の範囲の波長を有する光の前記第1の画像及び前記第2の範囲の波長を有する光の前記第2の画像のうちの少なくとも1つの前記位置を見つけて、前記光学計測デバイスの前記焦点位置を決定するように構成される、請求項8に記載の集束システム。
【請求項11】
前記光学計測デバイスの焦点位置を変更するためのアクチュエータを更に備え、前記アクチュエータは、前記少なくとも1つのプロセッサによって決定された前記焦点位置に基づいて前記光学計測デバイスの前記焦点位置を変更する、請求項1に記載の集束システム。
【請求項12】
光学計測デバイスの焦点位置を決定する方法であって、
試料からの反射光の第1の部分を測定検出器に向け、前記反射光の第2の部分を焦点検出器に向けることと、
前記焦点検出器を用いて前記反射光の画像を検出することであって、前記反射光の前記画像が、前記試料の上面から反射された光の第1の画像及び前記上面の下にある1つ以上の層から反射された光の第2の画像のうちの少なくとも1つ、又はそれらの組み合わせを含む、ことと、
前記第1の画像及び前記第2の画像のうちの少なくとも1つを識別する前記反射光の特性に基づいて、前記反射光の前記第2の部分の一部を選択して、前記光学計測デバイスの前記焦点位置を決定することと、
前記焦点検出器上の前記画像の位置と、前記反射光の前記第2の部分の前記選択された部分とを使用して、前記光学計測デバイスの前記焦点位置を決定することと、を含む、方法。
【請求項13】
前記試料に斜めに入射する前記光を偏光させることを更に含み、
前記反射光の前記部分を選択することは、前記試料の前記上面又は前記試料の前記上面の下にある前記1つ以上の層のうちの1つ以上から反射された光に敏感である偏光状態を選択することを含む、請求項12に記載の方法。
【請求項14】
前記反射光の前記部分を選択することは、前記試料の前記上面又は前記試料の前記上面の下にある前記1つ以上の層のうちの1つ以上から反射された光に敏感である光の波長を選択することを含む、請求項12に記載の方法。
【請求項15】
前記決定された焦点位置に基づいて前記光学計測デバイスの焦点位置を変更することを更に含む、請求項12に記載の方法。
【国際調査報告】