(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2024-01-09
(54)【発明の名称】結晶引き上げ装置のシリコン融液とリフレクタとの間の距離を決定するための非接触システムおよび方法
(51)【国際特許分類】
C30B 29/06 20060101AFI20231226BHJP
C30B 15/26 20060101ALI20231226BHJP
【FI】
C30B29/06 502C
C30B15/26
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023530292
(86)(22)【出願日】2021-11-18
(85)【翻訳文提出日】2023-07-14
(86)【国際出願番号】 US2021059840
(87)【国際公開番号】W WO2022109100
(87)【国際公開日】2022-05-27
(32)【優先日】2020-11-19
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】518112516
【氏名又は名称】グローバルウェーハズ カンパニー リミテッド
【氏名又は名称原語表記】GlobalWafers Co.,Ltd.
(74)【代理人】
【識別番号】100145403
【氏名又は名称】山尾 憲人
(74)【代理人】
【識別番号】100184343
【氏名又は名称】川崎 茂雄
(72)【発明者】
【氏名】マイヤー,ベンジャミン マイケル
(72)【発明者】
【氏名】ルーター,ウィリアム リン
(72)【発明者】
【氏名】リュー,ジェウ
【テーマコード(参考)】
4G077
【Fターム(参考)】
4G077AA02
4G077BA04
4G077CF10
4G077EG19
4G077EH10
4G077HA12
4G077PF02
4G077PF04
4G077PF09
4G077PF13
(57)【要約】
測定システムは、中央通路および開口を画定するリフレクタと、測定アセンブリと、コントローラとを備える。測定アセンブリは、開口を通して見えるヘッドを有するランピンと、リフレクタの開口を通して画像を撮影するカメラと、開口を通してランピンのヘッドにコヒーレント光を送り、シリコン融液の表面上にランピンの反射を生じさせるレーザとを備える。コントローラは、コヒーレント光をレーザからランピンへ向けるようにレーザを制御し、コヒーレント光がランピンに向けられている間に、リフレクタの開口を通して画像を撮影するようにカメラを制御し、撮影画像でのランピンの反射の位置に基づいて、シリコン融液の表面とリフレクタの底面との間の距離を決定するようにプログラムされている。
【特許請求の範囲】
【請求項1】
結晶がシリコン融液から引き上げられている間に、るつぼ内の前記シリコン融液とリフレクタとの間の距離を決定するための結晶引き上げ装置におけるリアルタイム測定システムであって、
前記測定システムは、
前記結晶が引き上げられる中央通路と、開口とを画定するリフレクタと、
測定アセンブリと
を備え、
前記測定アセンブリは、
前記開口を通して見えるヘッドを有するランピンと、
前記リフレクタの前記開口を通して画像を撮影するカメラと、各撮影画像は前記結晶引き上げ装置の前記シリコン融液の表面を含み、
前記開口を通して前記ランピンの前記ヘッドにコヒーレント光を選択的に送り、前記シリコン融液の前記表面上に前記ランピンの反射を生じさせるレーザと、
前記カメラと前記レーザとに接続されたコントローラと
を備え、
前記コントローラは、
コヒーレント光を前記レーザから前記ランピンへ向けるように前記レーザを制御し、
前記コヒーレント光が前記ランピンに向けられている間に、前記リフレクタの前記開口を通して画像を撮影するように前記カメラを制御し、前記撮影画像が、前記ランピンの前記反射が見える前記シリコン融液の前記表面の少なくとも一部を含み、
前記撮影画像での前記ランピンの前記反射の位置に基づいて、前記シリコン融液の前記表面と前記リフレクタの底面との間の距離を決定する
ようにプログラムされている、測定システム。
【請求項2】
前記ランピンは、前記リフレクタに取り付けられている、請求項1に記載の測定システム。
【請求項3】
前記ランピンは、前記ランピンの前記ヘッドと反対側の端部を含み、前記ランピンの前記反射は、前記ランピンの前記端部の反射であり、前記ランピンの前記端部は、前記開口を通して前記カメラから見えない、請求項1または2に記載の測定システム。
【請求項4】
前記ランピンは、石英ランピンを備える、請求項1から3のいずれか1項に記載の測定システム。
【請求項5】
前記ランピンの端部は、結晶が前記シリコン融液から引き上げられているときに、前記ランピンが前記シリコン融液の前記表面に触れないようなサイズおよび位置である、請求項1から4のいずれか1項に記載の測定システム。
【請求項6】
前記リフレクタに取り付けられたアンカーピンを更に備え、
前記アンカーピンは、ヘッドと前記ヘッドと反対側の端部とを含み、
前記アンカーピンは、前記リフレクタの底面を通過して延びるサイズである、請求項1から5のいずれか1項に記載の測定システム。
【請求項7】
前記コントローラは、前記アンカーピンが前記シリコン融液に触れることなく前記アンカーピンを使用して前記測定システムを較正するようにプログラムされており、
前記較正は、前記結晶が前記シリコン融液から引き上げられている間に、前記シリコン融液の前記表面と前記リフレクタの前記底面との間の距離を決定する前に、実行される、請求項6に記載の測定システム。
【請求項8】
前記コントローラは、
コヒーレント光を前記レーザから前記アンカーピンの前記ヘッドへ向けるように前記レーザを制御し、
前記コヒーレント光が前記アンカーピンに向けられている間に、前記リフレクタアセンブリの前記開口を通して画像を撮影するように前記カメラを制御し、前記撮影画像が、前記アンカーピンの少なくとも一部と、前記アンカーピンの前記端部の反射が見える前記シリコン融液の前記表面の少なくとも一部とを含み、
前記撮影画像での前記アンカーピンの前記端部の前記反射の位置と、前記アンカーピンの既知の寸法と、前記アンカーピンが前記リフレクタの前記底面を越えて延びる量とに少なくとも部分的に基づいて、前記シリコン融液の前記表面と前記リフレクタの底面との間の距離を決定する
ことにより前記測定システムを較正するようにプログラムされている、請求項7に記載の測定システム。
【請求項9】
前記コントローラは、
前記シリコン融液の前記表面が前記リフレクタの前記底面から第1距離にあり、前記コヒーレント光が前記アンカーピンの前記ヘッドに向けられている間に、前記リフレクタアセンブリの前記開口を通して第1画像を撮影するように前記カメラを制御し、前記シリコン融液の前記表面が前記リフレクタの前記底面から第2距離にあり、前記コヒーレント光が前記アンカーピンの前記ヘッドに向けられている間に、前記リフレクタアセンブリの前記開口を通して第2画像を撮影するように前記カメラを制御することにより、前記システムの較正の間に前記カメラを制御して画像を撮影し、
前記第1画像と前記第2画像とに少なくとも部分的に基づいて、前記システムの較正の間に、前記シリコン融液の前記表面と前記リフレクタの前記底面との間の前記距離を決定する
ようにプログラムされている、請求項8に記載の測定システム。
【請求項10】
前記コントローラは、前記るつぼを動かして、前記シリコン融液の前記表面と前記リフレクタの前記底面との間の距離が既知の量変化するように、るつぼリフトを制御するようにプログラムされている、請求項9に記載の測定システム。
【請求項11】
前記コントローラは、
前記シリコン融液の前記表面が前記リフレクタの前記底面から前記第2距離にあるとき、前記コヒーレント光を前記レーザから前記ランピンに向けるように前記レーザを制御し、
前記コヒーレント光が前記ランピンに向けられている間に、前記リフレクタアセンブリの前記開口を通してラン較正画像を撮影するように、前記カメラを制御し、前記ラン較正画像は、前記ランピンの前記端部の前記反射が見える前記シリコン融液の前記表面の少なくとも一部を含み、
前記ラン較正画像での前記ランピンの前記端部の前記反射の位置を、前記第2画像での前記アンカーピンの前記端部の反射の位置に修正する
ことにより、前記測定システムを較正するようにプログラムされている、請求項9または10に記載の測定システム。
【請求項12】
シリコン融液を保持するためのるつぼと、
請求項1から11のいずれか1項に記載の前記測定システムと
を含む、シリコンインゴットを製造するためのシステム。
【請求項13】
請求項12に記載のシステムを使用して製造されたシリコンインゴットから生成されたウェハ。
【請求項14】
カメラ、レーザ、ランピン、およびコントローラを含む測定システムを用いて、シリコン融液から結晶が引き上げられている間に、るつぼ内の前記シリコン融液と結晶引き上げ装置のリフレクタとの間の距離を決定する方法であって、
前記方法は、
前記レーザから、前記リフレクタに取り付けられ、前記リフレクタの開口を通して見られる前記ランピンにコヒーレント光を向け、
前記コヒーレント光が前記ランピンに向けられている間に、前記カメラを用いて前記リフレクタの前記開口を通して画像を撮影し、撮影画像は、前記ランピンの反射が見られる前記シリコン融液の表面の少なくとも一部を含み、
前記コントローラにより、前記撮影画像での前記ランピンの前記反射の位置に基づいて、前記シリコン融液の表面と前記リフレクタの底面との間の距離を決定する
ことを含む、方法。
【請求項15】
前記測定システムは、前記リフレクタに取り付けられ、ヘッドおよび前記ヘッドと反対側の端部を有するアンカーピンを含み、
前記アンカーピンは、前記リフレクタの底面を越えて延びるサイズであり、
前記方法は、前記結晶が前記シリコン融液から引き上げられている間において前記シリコン融液の前記表面と前記リフレクタの前記底面との間の距離を決定する前に、前記アンカーピンが前記シリコン融液に触れることなく前記アンカーピンを使用して前記測定システムを較正することをさらに含む、請求項14に記載の方法。
【請求項16】
前記測定システムを較正することは、
コヒーレント光を前記レーザから前記アンカーピンの前記ヘッドに向け、
前記コヒーレント光が前記アンカーピンに向けられている間に、前記カメラを使用して前記リフレクタアセンブリの前記開口を通して画像を撮影し、前記撮影画像は、前記アンカーピンの少なくとも一部と、前記アンカーピンの前記端部の反射が見られる前記シリコン融液の前記表面の少なくとも一部を含み、
前記撮影画像での前記アンカーピンの前記端部の前記反射の位置と、前記アンカーピンの既知の寸法と、前記アンカーピンが前記リフレクタの前記底面を越えて延びる量とに少なくとも部分的に基づいて、前記シリコン融液の前記表面と前記リフレクタの底面との間の距離を決定する
ことをさらに含む、請求項15に記載の方法。
【請求項17】
前記コヒーレント光が前記アンカーピンに向けられている間に、前記カメラを使用して前記リフレクタアセンブリの前記開口を通して画像を撮影することは、
前記シリコン融液の前記表面が前記リフレクタの前記底面から第1距離にあり、前記コヒーレント光が前記アンカーピンの前記ヘッドに向けられている間に、前記リフレクタアセンブリの前記開口を通して第1画像を撮影し、
前記シリコン融液の前記表面が前記リフレクタの前記底面から第2距離にあり、前記コヒーレント光が前記アンカーピンの前記ヘッドに向けられている間に、前記リフレクタアセンブリの前記開口を通して第2画像を撮影する
ことを含み、
前記測定システムの較正の間に、前記シリコン融液の前記表面と前記リフレクタの前記底面との間の前記距離を決定することは、前記第1画像と前記第2画像とに少なくとも部分的に基づく、請求項16に記載の方法。
【請求項18】
前記るつぼを動かして、前記シリコン融液の前記表面と前記リフレクタの前記底面との間の距離が既知の量変化するように、るつぼリフトを制御することをさらに含む請求項17に記載の方法。
【請求項19】
シリコン融液を保持するためのるつぼと、
請求項14から請求項18のいずれか1項に記載の方法を実行するように構成された前記測定システムと
を含む、シリコンインゴットを製造するためのシステム。
【請求項20】
請求項19に記載の前記システムを用いて製造されたシリコンインゴットから生成されたウェハ。
【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の相互参照)
本出願は、2020年11月19日に出願された米国仮特許出願第63/198870号に基づく優先権を主張する。なお、優先権の基礎とした出願の全ての開示が、全体として参照により本出願に組み込まれる。
【0002】
本開示は、概して、シリコンインゴットの製造に関し、より詳細には、結晶引き上げ装置でのシリコン融液とリフレクタとの間の距離を決定するための非接触方法およびシステムに関する。
【背景技術】
【0003】
結晶引き上げ装置には、シリコン融液の上方にリフレクタが設置されているものがある。結晶引き上げ装置の動作中、リフレクタの底面とシリコン融液の表面との間の距離(「HR」として参照する)を知ることは有益である。
【0004】
HR測定の要件は1mm未満で、精度は0.1~0.2mmの範囲が望ましい。HRの測定には、真空または低圧の条件下での非常に高温の引き上げ装置内の特徴の観察および追跡が含まれるため、既知の方法での測定は困難である。このような条件下では、一般に引き上げ装置内部で測定に使用できるセンサや材料が制限される。熱膨張は一般的に、積極的に冷却されない部品を動かすため、引き上げまたは動作開始前に行われた測定は、引き上げ装置が動作温度に引き上げられた後では使用できないか、または役に立たないことがある。したがって、測定されたまたは既知の冷間距離に依存する既知の方法(カメラ画像など)には誤差が生じる。
【0005】
既知の方法には、カメラを使ってHRを決定する方法がある。このような方法は、通常、理論的なジオメトリから入力される値に依存する。実際のジオメトリと理論的なジオメトリの間の差により、誤差が生じることがある。これらの方法には、引き上げ装置が持つべき理論的な距離と角度に合わせて作られた別個の治具上でカメラを較正することが含まれることがある。この場合も、較正治具自体の実際のジオメトリと理論的なジオメトリとの間に差により、さらなる誤差が生じることがある。さらに、このような方法は、HRを決定するために、カメラ画像中の融液の反射における黒鉛成分のジオメトリの特徴に依存することが多い。これらの画像の輝度強度は動作中に大きく変化することがあるため、一貫した信号を得ることが難しく、動作中にHRのばらつきが生じることがある。
【0006】
既知の方法は、ソフトウェアに起因する問題をも有することがある。例えば、HR測定は、結晶の直径のばらつきに部分的に基づいていることがあり、HRに0.5mmものばらつきが生じることがある。測定されたHRにおけるこのばらつきは、結晶の中心をどのように求めるか、またリフレクタの位置を確定するために使用されるリフレクタの中心との関係に起因する。また、リフレクタの半径方向の位置の変化は垂直方向の変化に変換されることがあり、これはHRに直接影響する。また、カメラ測定は、通常、凹凸レンズに反射した高温るつぼ壁の前縁を検出することに依存する。このエッジの位置は、高さを決定するための融液高度の測定で使用される。したがって、高さは、結晶成長引き上げ速度の関数として変化する凹凸レンズの形状と、るつぼ回転の関数である融液表面の表面曲率の両方に依存する。前縁に起因する変動を計算することは困難である。融液曲率の変動は容易に計算でき、全高差で7mmも変化することがある。
【0007】
HRの決定に用いられる他の方法には、ディップスティック法がある。この方法では、リフレクタの底部から既知の距離延びた石英ピンが融液に浸される。ピンの底部とリフレクタの底部との間の距離が、リフレクタが引き上げ装置に取り付けられる前に測定されるため、ピンが融液に接触したときに、その時点のHRが判明する。これは初期測定値を提供するだけであり、異なる融液の高度でHRを決定するには別の方法(カメラトラッキングなど)を使用する必要がある。実際には、石英ピンを融液に接触させると、溶融したシリコンの表面張力により、ピンの外側に沿ってシリコンのウィッキングが発生することがあるため、この方法の実施することは困難である。これにより、ピンがいつ融液表面に接触したかを正確に決定することは困難である(むしろ、シリコンがピンと接触するのに十分なほど、融液表面に近づいている)。また、ピンが融液に直接接触するため、動作中にピンの長さを維持することにも問題が生じる。これは、ピンの底部とリフレクタの底部との間の距離が不明になるため、動作中に再較正が望ましい場合に問題となる。
【0008】
この背景技術のセクションは、以下に説明および/またはクレームされる本開示の様々な態様に関連し得る技術の様々な態様を読者に紹介することを意図している。本議論は、本開示の様々な態様をより理解するための背景技術情報を読者に提供する上で有用であると考えられる。したがって、これらの記述は、この観点で読まれるべきであり、先行技術を認めるものではないことを理解されたい。
【発明の概要】
【0009】
本開示の一態様は、結晶がシリコン融液から引き上げられている間に、るつぼ内のシリコン融液とリフレクタとの間の距離を決定するための結晶引き上げ装置におけるリアルタイム測定システムである。測定システムは、結晶が引き上げられる中央通路と、開口とを画定するリフレクタと、測定アセンブリと、コントローラとを備える。測定アセンブリは、開口を通して見えるヘッドを有するランピンと、リフレクタの開口を通して画像を撮影するカメラと、開口を通してランピンのヘッドにコヒーレント光を選択的に送り、シリコン融液の表面上にランピンの反射を生じさせるレーザとを備える。カメラで撮影された各画像は結晶引き上げ装置のシリコン融液の表面を含む。コントローラは、カメラとレーザとに接続されている。コントローラは、コヒーレント光をレーザからランピンへ向けるようにレーザを制御し、コヒーレント光がランピンに向けられている間に、リフレクタの開口を通して画像を撮影するようにカメラを制御し、撮影画像が、ランピンの反射が見えるシリコン融液の表面の少なくとも一部を含み、撮影画像でのランピンの反射の位置に基づいて、シリコン融液の表面とリフレクタの底面との間の距離を決定するようにプログラムされている。
【0010】
本開示の他の態様は、カメラ、レーザ、ランピン、およびコントローラを含む測定システムを用いて、シリコン融液から結晶が引き上げられている間に、るつぼ内のシリコン融液と結晶引き上げ装置のリフレクタとの間の距離を決定する方法である。本方法は、レーザから、リフレクタに取り付けられ、リフレクタの開口を通して見られるランピンにコヒーレント光を向け、コヒーレント光がランピンに向けられている間に、カメラを用いてリフレクタの開口を通して画像を撮影し、撮影画像は、ランピンの反射が見られるシリコン融液の表面の少なくとも一部を含み、コントローラにより、撮影画像でのランピンの反射の位置に基づいて、シリコン融液の表面とリフレクタの底面との間の距離を決定することを含む。
【0011】
上述した態様に関連して記載された特徴には、様々な改良が存在する。同様に、更なる特徴が、上述した態様に組み込まれてもよい。これらの改良および追加の特徴は、個別に存在してもよく、任意の組み合わせで存在してもよい。例えば、図示された実施形態のいずれかに関連して後述される様々な特徴は、上述した態様に、単独または任意の組み合わせで、組み込まれてもよい。
【図面の簡単な説明】
【0012】
【
図1】
図1は、シリコン融液から単結晶シリコンインゴットを引き上げるために用いられるインゴット引き上げ装置の断面図である。
【
図2】
図2は、インゴット引き上げ装置の断面図である。
【
図3】
図3は、チョクラルスキー法で成長された単結晶シリコンインゴットの部分的な正面図である。
【
図4】
図4は、
図1のインゴット引き上げ装置のコントロールシステムで使用するコンピューティングデバイスのブロック図である。
【
図5】
図5は、
図1のインゴット引き上げ装置で使用する測定アセンブリの図である。
【
図6】
図6は、
図5の測定アセンブリのカメラアセンブリの図である。
【
図7】
図7は、
図5の測定アセンブリのレーザアセンブリの図である。
【
図8】
図8は、
図7のA-A線に沿ったレーザアセンブリの断面図である。
【
図9】
図9は、
図5の測定システムと使用されるリフレクタの図である。
【
図11】
図11は、
図9のリフレクタに取り付けられる測定システムのランピンおよびアンカーピンの拡大図である。
【
図16】
図5の測定システムを用いたHR値の決定に使用されるジオメトリと値の図である。
【
図17】
図17は、アンカリング後にカメラを較正するときの
図6のカメラの視野の一例である。
【
図18】
図18は、
図17の視野から融液が下降した後に較正するときのカメラの視野の一例である。
【
図19】
図19は、
図18の視野から融液が下降した後に較正するときのカメラの視野の一例である。
【
図20】
図20は、測定システムのアンカーピンまたはランピンとして使用する他の例のピンの図である。
【
図21】
図21は、測定システムのアンカーピンまたはランピンとして使用する他の例のピンの図である。
【
図22】
図22は、単一の球体ヘッドを有する単一のピンを使用する実施形態における、リフレクタの開口内からのピンの図である。
【
図24】
図24は、リフレクタ開口の壁から延びた単一の球状ヘッドを有する単一のピンを衣装する実施形態におけるリフレクタ開口内からのピンの図である。
【
図26】
図26は、動作の開始におけるカメラによって撮影された照らされたピンとピンの反射の画像の一例である。
【
図27】
図27は、動作中にカメラにより撮影された照らされたピンとピンの反射の画像の一例である。
【0013】
様々な図面における類似の参照符号は、類似の要素を示す。
【発明を実施するための形態】
【0014】
図1-3を参照して、単結晶シリコンインゴットを成長させるためのインゴット引き上げ装置(ingot puller apparatus)(または、より単純には「インゴット引き上げ装置(ingot puller)」または「結晶引き上げ装置(crystal puller)」)を説明する。
図1は、シリコン融液から単結晶シリコンインゴットを引き上げるために使用され、概して「100」で示されるインゴット引き上げ装置の断面図である。
図2は、インゴット引き上げ装置100の断面図であり、
図3は、例えばインゴット引き上げ装置100において、チョクラルスキー法で成長された単結晶シリコンインゴットの部分的な正面図である。
【0015】
インゴット引き上げ装置100は、シリコン融液104からシリコンインゴット113を引き上げるための成長チャンバ152を画定する結晶引き上げハウジング108を含む。コントロールシステム172(「コントローラ」としても参照する)は、インゴット引き上げ装置100およびインゴット引き上げ装置100のコンポーネントの動作を制御する。インゴット引き上げ装置100は、成長チャンバ152内に配置され、シリコン融液104を保持するためのるつぼ102を含む。るつぼ102は、サセプタ106に支持されている。
【0016】
るつぼ102はフロア129と、フロア129から上方に延びた側壁131とを含む。側壁131は、概ね垂直である。フロア129は、側壁131の下方で延びた、るつぼ102の湾曲部を含む。融液表面111(すなわち、融液-インゴット界面)を有するシリコン融液104がるつぼ106内にある。サセプタ106は、シャフト105により支持されている。サセプタ106、るつぼ102、シャフト105、およびインゴット113は、共通の長手方向軸Aまたは「引き上げ軸」Aを有する。
【0017】
インゴット113を成長させ、融液104から引き上げるための引き上げ機構114が、インゴット引き上げ装置100内に配置されている。引き上げ機構114は、引き上げケーブル118と、引き上げケーブル118の一端に連結されたシードホルダまたはチャック120と、シードホルダまたはチャック120に連結され、結晶成長を開始するためのシード結晶122とを含む。引き上げケーブル118の一端は、プーリ(図示せず)もしくはドラム(図示せず)、または任意の他の適切な種類の昇降機構(例えば、シャフト)に接続されており、他端は、シード結晶122を保持するチャック120に接続されている。動作中、シード結晶122は、融液104と接触するように下降する。引き上げ機構114は、シード結晶122を上昇させるように動作する。これにより、単結晶インゴット113が融液104から引き上げられる。
【0018】
加熱中および結晶引き上げ中、るつぼ駆動ユニット107(例えば、モータ)は、るつぼ102およびサセプタ106を回転させる。昇降機構112は、成長プロセス中に、るつぼ102を引き上げ軸Aに沿って上昇および下降させる。インゴットの成長とともに、シリコン融液104は消費され、るつぼ102内の融液の高さは減少する。るつぼ102とサセプタ106とは、融液表面111をインゴット引き上げ装置100に対して同じ位置またはその近傍に維持するように上昇されてもよい。
【0019】
結晶駆動ユニット(図示せず)は、引き上げケーブル118およびインゴット113を、るつぼ駆動ユニット107がるつぼ102を回転させる方向とは反対の方向に、回転させてもよい(例えば、逆回転)。単方向回転を用いる実施形態では、結晶駆動ユニットは、引き上げケーブル118を、るつぼ駆動ユニット107がるつぼ102を回転させる方向と同じ方向に、回転させてもよい。また、結晶駆動ユニットは、成長プロセス中に所望に応じて、融液表面111に対してインゴット113を上昇または下降させる。
【0020】
インゴット引き上げ装置100は、アルゴンなどの不活性ガスを成長チャンバ152に導入または成長チャンバ152から引き出すための不活性ガスシステムを含んでもよい。インゴット引き上げ装置100は、ドーパントを融液104に導入するためのドーパント供給システム(図示せず)を含んでもよい。
【0021】
チョクラルスキー単結晶成長プロセスによれば、多量の多結晶シリコン、すなわちポリシリコンがるつぼ102に装入される(例えば、250kg以上の装入物)。多結晶シリコンの供給源としては、例えば、流動床反応器でのシランまたはハロシランの熱分解によって製造された粒状多結晶シリコン、またはシーメンス反応器で製造された多結晶シリコンを含む、様々なものを使用することができる。装入物を形成するために多結晶シリコンがるつぼに加えられると、装入物はシリコンの融点(例えば、1412℃)以上の温度に加熱されて、溶融される。いくつかの実施形態では、装入物(すなわち、得られる融液)は、少なくとも約1425℃、少なくとも約1450℃、または少なくとも約1500℃の温度に加熱される。インゴット引き上げ装置100は、インゴット引き上げ装置100内の熱を保持するための底部断熱材110および側部断熱材124を含む。説明される実施形態では、インゴット引き上げ装置100は、るつぼのフロア129の下方に配置された底部ヒータ126を含む。るつぼ102は、るつぼ102に装入された多結晶体を溶融するために、底部ヒータ126に比較的近接するように移動させられてもよい。
【0022】
インゴットを形成するために、シード結晶122は、融液104の表面111と接触させられる。引き上げ機構114は、融液104からシード結晶122を引き上げるように動作される。インゴット113は、クラウン部142を含み、クラウン部142では、インゴットがシード結晶122から外側に移行しつつテーパし、目標直径に達する。インゴット113は、引き上げ速度を上げることで成長する結晶の一定直径の部分145または筒状の「本体」を含む。インゴット113の本体145は、比較的一定の直径を有する。インゴット113は、本体145の後にインゴットが径方向にテーパするテールコーンまたはエンドコーン(図示せず)を含む。直径が十分に小さくなったとき、インゴット113は、融液104から分離される。インゴット113は、クラウン部142およびインゴット113の末端を通過して伸びる中心長手方向軸Aを有している。
【0023】
インゴット引き上げ装置100は、側部ヒータ135と、結晶成長中に融液104の温度を維持するためにるつぼ102を取り囲むサセプタ106とを備える。側部ヒータ135は、るつぼ102が引き上げ軸Aに上下に移動するときに、るつぼの側壁131の径方向外側に配置されている。側部ヒータ135および底部ヒータ126は、側部ヒータ135および底部ヒータ126が本明細書で説明したように動作可能な任意の種類のヒータであってもよい。いくつかの実施形態では、ヒータ135,126は、抵抗ヒータである。側部ヒータ135および底部ヒータ126は、融液104の温度が引き上げプロセスの全体を通して制御されるように、コントロールシステム172により制御されてもよい。
【0024】
インゴット引き上げ装置100は、成長チャンバ152内かつインゴッド成長中にインゴット113を取り囲む融液104の上方に配置されたリフレクタ151(または「熱シールド」)を含む。リフレクタ151は、結晶成長中にるつぼ102内に部分的に配置されてもよい。熱シールド151は、インゴットが引き上げ機構114により引き上げられるときにインゴット113を受け入れる中央通路160を画定している。
【0025】
リフレクタ151は、一般的に、熱シールド自体の下方かつ融液104の上方に熱を保持するように適合された熱シールドである。これに関して、本技術分野で知られている任意のリフレクタの設計および材料を制限なく使用してもよい。リフレクタ151は、底部138(
図2に示す)を有しており、リフレクタ151の底部138は、インゴット成長中に融液の表面から距離HR離れている。
【0026】
インゴット引き上げ装置は、インゴット成長中にリフレクタ151の底部138と融液の表面との間の距離を決定するため(すなわちHRを決定するため)、測定システムの一部として使用される測定アセンブリ170を含む。
【0027】
本開示の実施形態にしたがって、一般的にチョクラルスキー法にしたがって製造された単結晶シリコンインゴット113を
図3に示す。インゴット113は、ネック116と、外側に広がったフレア部142(同義語で「クラウン」または「コーン」)と、ショルダー119と、一定直径の本体145とを含む。ネック116は、融液に接触し、インゴット113を形成するために引き抜かれたシード結晶122に取り付けられている。本体145は、ネック116から吊り下げられている。ネック116は、インゴット113のコーン部142が形成され始めると、終端する。
【0028】
インゴット113の一定直径の部分145は、周縁150と、周縁150に平行な中心軸Aと、中心軸から周縁145に延びた半径Rを有する。中心軸Aは、コーン部142およびネック116を通過する。インゴットの本体145の直径は、様々な直径であってもよく、いくつかの実施形態では、直径は、約150mm、約200mm、約300mm、約300mmより大きい直径、約450mm、または約450mmより大きい直径であってもよい。
【0029】
単結晶シリコンインゴット113は、一般に、任意の抵抗率を有してもよい。単結晶シリコンインゴット113は、ドープされていてもドープされていなくてもよい。
【0030】
図4は、コントロールシステム172の一部として使用され得るコンピューティングデバイス400の一例である。コンピューティングデバイス400は、プロセッサ402と、メモリ404と、メディア出力コンポーネント406と、入力デバイス408と、通信インターフェース410とを含む。他の実施形態は、異なるコンポーネント、追加のコンポーネントを含み、および/または
図4に示される全てのコンポーネントを含まない。
【0031】
プロセッサ402は、命令を実行するように構成されている。いくつかの実施形態では、実行可能な命令がメモリ404に格納されている。プロセッサ402は、1または複数の処理ユニット(例えば、マルチコア構成)を含んでもよい。本明細書で使用されるプロセッサという用語は、中央処理ユニット、マイクロプロセッサ、マイクロコントローラ、縮小命令セット回路(RISC)、特定用途向け集積回路(ASIC)、プログラマブルロジック回路(PLC)、および本明細書で説明した機能を実行可能な他の任意の回路またはプロセッサを指す。上記は、例示に過ぎず、したがって「プロセッサ」という用語の定義および/または意味を限定することを意図する意味ではない。
【0032】
メモリ404は、本明細書に記載の技術を実行するための、非一時的なコンピュータ読み取り可能な命令を格納する。そのような命令は、プロセッサ402により実行されるとき、プロセッサ402に本明細書で記載された方法の少なくとも一部を実行させる。いくつかの実施形態では、メモリ404は、メディア出力コンポーネントを介してユーザにユーザインターフェースを提供し、入力デバイス408から入力を受信して処理するためのコンピュータ読み取り可能な命令を格納する。メモリ404は、ダイナミックRAM(DRAM)またはスタティックRAM(SRAM)などのランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM)、消去可能プログラマブルリードオンリーメモリ(EPROM)、電気的消去可能プログラマブルリードオンリーメモリ(EEPROM)、および不揮発性RAM(NVRAM)を含んでもよいが、これらに限定されるものではない。プロセッサ402とは別個のものとして図示されているが、いくつかの実施形態では、メモリ404は、マイクロコントローラまたはマイクロプロセッサなどにおいて、プロセッサ402と組み合わされるが、別個に言及されてもよい。上記のメモリの種類は、例示に過ぎず、したがってコンピュータプログラムの格納に使用可能なメモリの種類を限定するものではない。
【0033】
メディア出力コンポーネント406は、ユーザ(例えば、システムのオペレータ)に情報を表示するように構成されている。メディア出力コンポーネント406は、ユーザに情報を伝達することが可能な任意のコンポーネントである。いくつかの実施形態では、メディア出力コンポーネント406は、ビデオアダプタおよび/またはオーディオアダプタなどの出力アダプタを含む。出力アダプタは、プロセッサ402に動作可能に接続され、ディスプレイデバイス(例えば、液晶ディスプレイ(LCD)、発光ダイオード(LED)ディスプレイ、有機発光ダイオード(OLED)ディスプレイ、陰極線管(CRT)、「電子インク」ディスプレイ、1または複数の発光ダイオード(LEDs))またはオーディオ出力デバイス(例えば、スピーカーまたはヘッドホン)などの出力デバイスに動作可能に接続可能である。
【0034】
コンピューティングデバイス400は、ユーザからの入力を受信するための入力デバイス408を含むか、または入力デバイス408に接続されている。入力デバイス408は、コンピューティングデバイス400が、視覚、音声、タッチ、ボタン押下、スタイラスタップなどを含む、アナログおよび/またはデジタルのコマンド、命令、または他の入力をユーザから受信することを可能にする任意のデバイスである。入力デバイス408は、例えば、可変抵抗器、入力ダイヤル、キーボード/キーパッド、ポインティングデバイス、マウス、スタイラス、タッチセンシティブパネル(例えば、タッチパッドまたはタッチスクリーン)、ジャイロスコープ、加速度計、位置検出器、音声入力デバイス、またはこれらの任意の組み合わせを含んでもよい。タッチスクリーンなどの単一のコンポーネントが、メディア出力コンポーネント406の出力デバイスおよび入力デバイス408の両方として機能してもよい。
【0035】
通信インターフェースは、コンピューティングデバイス400がリモートセンサ、リモートデータベース、リモートコンピューティングデバイスなどのリモートデバイスまたはシステムと通信することを可能にし、1以上のリモートデバイスまたはシステムと相互作用するための1以上の通信インターフェースを含んでもよい。通信インターフェースは、コンピューティングデバイス400がリモートデバイスおよびシステムと直接またはネットワークを介して通信することを可能にする有線通信インターフェースであっても無線通信インターフェースであってもよい。無線通信インターフェースは、無線周波数(RF)トランシーバ、ブルートゥース(登録商標)アダプタ、Wi-Fiトランシーバ、ジグビー(登録商標)トランシーバ、近距離無線通信(NFC)トランシーバ、赤外線(IR)トランシーバ、および/または任意の他のデバイスおよび無線通信用の通信プロトコルを含んでもよい(ブルートゥース(登録商標)は、ワシントン州カークランドのBluetooth Special Interest Groupの登録商標であり、ジグビー(登録商標)は、カリフォルニア州サン・ラモンのZigBee Allianceの登録商標である)。有線通信インターフェースは、USB、RS232、SPI、アナログ、および独自のI/Oプロトコルを含むがこれらに限定されない、直接通信のための任意の適切な有線通信プロトコルを使用してもよい。いくつかの実施形態では、有線通信インターフェースは、コンピューティングデバイス400が、インターネット、ローカルエリアネットワーク(LAN)、ワイドエリアネットワーク(WAN)、メッシュネットワーク、および/またはネットワークを介してリモートデバイスおよびシステムと通信するための任意の他のネットワークなどのネットワークと結合することを可能にする有線ネットワークアダプタを含む。
【0036】
本明細書で論じるコンピュータシステムは、本明細書の他の箇所で論じる機能を含む、追加の機能、より少ない機能、または代替的な機能を含んでもよい。本明細書で論じるコンピュータシステムは、非一時的なコンピュータ読み取り可能なメディアまたは媒体に格納されたコンピュータ実行可能な命令を含んでもよく、当該命令を介して実行されてもよい。
【0037】
測定アセンブリ170およびコントローラ172は、測定システムを構成する。測定アセンブリ170は、リフレクタ151の底部138とシリコン融液104の表面111との間の距離を決定するためにコントローラ172により使用される。一般的に、レーザが石英ピンに集光され、融液表面111上で反射したレーザドットを見るカメラと、曲線フィッティングアルゴリズムとを使用してHRアンカー値が決定される。次に、レーザは、異なる石英ピンに移動し、融液中の反射したレーザドット画像の中心のピクセル位置とHRとの関係を構築するために初期較正が行われる。動作中の残りの期間、HRを決定するために、レーザドットは常にカメラで追跡される。
【0038】
測定システムは、カメラ、レーザ、1または2のピンを使用し、HRを測定するために融液と接触することに依存しない。カメラとレーザの両方は、ウィンドウに覆われたリフレクタに設けられた単一の切り欠きにおいて動作する。例示的な実施形態では、ピンは、棒材から生成された石英ピンである。他の実施形態では、ピンは、炭化シリコン(SiC)、窒化シリコン(SiN)、炭化タングステン、炭化タンタル、または窒化ホウ素などの任意の高温耐火物から作られてもよい。一般的に、ピに選択される任意の材料は、全ての関心のある結晶成長段階において、融液表面上に強く明確な反射を生じさせる必要がある。例示的な実施形態では、石英の棒材は、3mmの棒材である。代替的には、任意の他の直径を有する棒材が使用されてもよい。長く光が移動するピンが必要なとき、ピンは棒から形成されたヘッドを有する。この場合、レーザ光がピンの尾部から見られる必要があるが、レーザ光がピンのヘッドに照射されるとき、レーザがピンのヘッドに照射されたときにレーザからの光がピンの底部に確実に届くようにするため、球体が溶接されたピンではなく、連続的な1本のピンである。単一球体ピンを使用する実施形態では、球体は、余分な光が球体から漏れないように、リフレクタに取り付けられる部分に溶接される別個の部分であってもよい。他の単一の球体ピンの実施形態では、製造を容易にするために、ピンの残りの部分と同じ材料から球体を形成してもよい。リフレクタに設けられる切り欠きは、カメラとレーザが取り付けられているポートと同じポートの側縁から石英ピンを見ることができるように、複合角度である。十分に断熱されていないリフレクタを有する「オープン」ホットゾーンを使用するいくつかの既知のオイルゲージレーザシステムとは異なり、本システムは、リフレクタ151が融液104の上方の可能な限り大きな領域を断熱材で覆う「クローズド」ホットゾーンで使用される。オープンホットゾーンシステムは、融液中のレーザにより照射されたピンのうちの1つ底部の反射を見るために、石英ピンとしての結晶の反対側に設けられたポートから、結晶の最大直径の外側を見る。例示的な実施形態では、レーザが照射されるポートと同じポートからレーザドットの反射を見ることを可能にしつつ、切り欠きの角度が急であるにもかかわらず、高いHR分解能を維持するクローズドホットゾーンを可能にする。他の実施形態では、複数のポートを使用してもよい(例えばカメラとレーザが異なるポートに設けられる)。
【0039】
例示的な実施形態では、石英集光ピンのヘッドにレーザが照射される。まず、レーザは、より長い「アンカー」ピンに照射される。ピンの観測される高さと、融液上でのレーザドットの反射位置とは、カメラ画像から得られる。これは、HRの現在値を取得するために使用される。これによりアンカー値が生成される。この方法が機能するために、石英ピンが融液に浸されていないことに留意されたい。次に、レーザは、より短い石英「ラン」ピンに照射される。ランピンとアンカーピンの較正は、レーザドットの反射画像を使用して様々なHR値を移動することで行われる。次に、ランピンは、再装入を含む動作中に使用され、引き上げ装置の温度が実質的に変化しない限り(例えば、室温に戻った後に再度加熱される場合など)、再較正は必要ない。
【0040】
明るいレーザを使用することで、較正および動作中の両方において融液上の一貫した信号を提供できる。一般に市販されている様々な定格出力の緑色波長レーザ(520nmから532nmの波長)は、通常、あらゆる条件下で十分に明るい。これにより、シリコン融液からの光の反射および出射に起因して光の強度が変化することがあるホットゾーンにおいて特徴を視覚的に観察することに依存するいくつかの既知のカメラシステムが有する問題を回避することができる。光の強度の変化により影が生じ、ホットゾーンの物体が1ピクセルまたは2ピクセル動いて見えることがある。これは、誤った移動(すなわちHRの変化)を引き起こすことがある。レーザの一貫した強度により、安定したHR値が得られる。HRが結晶成長の制御の入力として直接的に使用されるため、安定したHR値が望ましい。
【0041】
図5は、結晶引き上げハウジング108の外側に配置された測定アセンブリ170の一部の図である。測定アセンブリ170は、カメラアセンブリ500と、レーザアセンブリ502と、ランピンおよびアンカーピン(
図5に図示せず)とを含む。ランピンおよびアンカーピンは、リフレクタ151上などの結晶引き上げハウジング108の内側に取り付けられている。測定システムは、測定アセンブリ170とコントローラ172(
図5に図示せず)とを含む。カメラアセンブリとレーザアセンブリとは、カメラアセンブリ500とレーザアセンブリ502が融液104を見ることができるように、結晶引き上げハウジング108を貫通する開口504(「ポート」として参照することがある)の上に配置されている。開口504は、ウィンドウ506により覆われている。
【0042】
カメラアセンブリ500は、
図6に分離して図示されている。カメラ画像中のレーザドットの反射の動きに関してHRの高い解像度を提供するために、長焦点レンズ600が高解像度(大きなピクセル数)カメラ602とともに使用されている。一例の実施形態では、レンズ600の焦点距離は、100mmであり、カメラ602の解像度は2560×1920ピクセルである。焦点距離は、測定されるHRの望ましい範囲で決定される。HR範囲が非常に広い場合、融液中のレーザの反射が常にカメラ画像中に収まるように、短い焦点距離が必要とされる。狭い範囲でのHR測定が望まれる場合、短い焦点距離を使用することで、mm/pixelsの解像度が高くなり、より高い精度が得られる。結晶引き上げ装置の設計は、ポートの正確な位置決めが必ずしも安価で単純ではないため、カメラ602が取り付けられるポートの位置は、一般的に、これらの新しい部品を設計する間に、正確に知ることはできない。したがって、頂焦点レンズ600と組み合わされるこれらの未知のものにより、通常予想可能ではなく機械から機械に繰り返し可能ではないカメラの視野をもたらす。したがって、カメラ602は、レーザピンのヘッドと、レーザドットの反射のHR移動の全範囲を包含するために、カメラ画像の精密な動きを可能にするためにギヤ付き三脚ヘッド604に取り付けられる。ギヤ付き三脚ヘッド604は、ギヤ付きヘッドにより提供される角度回転(パン、チルト、ピッチ)の中心位置をさらに微調整することを可能にするように、2軸移動テーブル606に取り付けられている。薄く巻かれた金属シートのシリンダ608が、カメラレンズ600の端部に取り付けられており、ウィンドウ506(
図5)上に載せられた(何にも取り付けられていない)別のシリンダと緩く相互作用している。これらの2つの巻かれたシートは、ウィンドウ506のカバーを提供し、影がカメラ画像に影響を及ぼすことを防止する。通常、カメラ602はウィンドウの十分近くにあるため、そのようなカバーは必要ないが、カメラ602は三脚マウント604上にあるため、カメラ602がウィンドウ506に衝突することなくカメラ602を十分に調整することができるようにするには、カメラ602はウィンドウから十分離れている必要がある。
【0043】
図7は、分離されたレーザアセンブリ502の図である。レーザ700は、レーザが正確に移動できるように、2軸移動テーブル702に取り付けられている。レーザ自体は、ビームがピンのヘッドに当たるようにレーザ700を正確に調整できるように、マイクロメータ調整装置を有する2軸ジンバル704に取り付けられている。ドットは、ロール(チルト)方向に向きを有しないため、レーザの角度運動には、ピッチとパン(ヨー)のみが必要である。一例の実施形態では、レーザ700は、5ミリワット、520nm波長、発散角0.3未満、ビーム径3mmのダイオードレーザである。融液が一般的に赤味を帯びた色であるため、緑色のレーザは、他の色よりも、ドットと融液との間のコントラストをより視認できるものにする。他の実施形態では、任意の他の適切な色のレーザを使用してもよい。
【0044】
開口904を覆うウィンドウ506(
図5に示す)は、融液から出る熱の一部を引き上げ装置に反射させて、ウィンドウの外側のコンポーネントを保護するためのコーティングウィンドウである。コーティングは、赤外線エネルギを可能な限り反射し、可視光のほとんどを反射するように設計された複数の原子層厚みのコーティングである。コーティングは、例えば、金誘電体、酸化クロム、または任意の他の適切なコーティングであってもよい。レーザ700は、コーティングを通して照射しなければならない場合、石英ピン上に明るい信号を生成できないことがある。そのため、レーザがウィンドウ904に当たる付近の領域でコーティングが除去される。しかし、コーティングを除去するとウィンドウ904から大量の熱が出るため、レーザ700を熱シールドで保護する必要がある。
【0045】
図8は、レーザ700の熱保護を示す
図7の線A-Aに沿った断面図である。レーザが通る小さな穴704を有するセラミックシールド702がレーザを直接包んでいる。プラスチック体706がセラミックシールド702の周囲に巻き付いており、セラミックシールド702を下方の金属表面708から離して保持し、レーザ700がジンバルするための低摩擦ベアリング表面を形成する。レーザ700の下にある薄い板710は、金属体708が、取り付けられているコンポーネントを損傷するほど熱くなるのを防ぐための放射シールドである。
【0046】
図9は、リフレクタ151の図である。開口904(「ノッチ」または「切り欠き」と参照されることもある)はリフレクタ151を貫通して延びており、カメラアセンブリ500およびレーザアセンブリ502(
図9に図示せず)がリフレクタ151を通して融液104を見ることができるようになっている。他の実施形態では、開口904は中央通路160と交差しない。例示の実施形態では、開口904は、開口904が底面138から離れて延びるにつれて、中央通路160から離れるように角度が付けられている。
【0047】
ピン900は、切り欠き904内の画像の中央付近に僅かに見える。
図10は、ピン900をより明瞭に示す、切り欠き904の真下の図である。ピン900は、リフレクタ151の縁に穴や突起があると応力集中点が生じ、動作中にクラックが生じる可能性があるため、応力防止のためにリフレクタ151から延びる別個の部品1000(「マウント」、「ホルダ」、「シェルフ」、または「ブラケット」としても参照される)に取り付けられている。他の実施形態では、ピン900は、別個の部品1000ではなく、リフレクタ151に設けられた穴に直接載置されている。
図11はピン900の拡大図である。ピン900は、アンカーピン1100とランピン1102を含む。
【0048】
例示の実施形態では、アンカーピン1100とランピン1102は、(部品1000を介して)リフレクタ151に取り付けられている。他の実施形態では、ランピン1102は、ランピンのヘッドがレーザによって照らされ、融液中のレーザの反射が所望のHR範囲全体にわたって見えるようにする他の任意の表面に取り付けられている。この場合、ランピン1102がホットゾーンの残りの部分の熱膨張の間、またはターンからターンへと位置が移動しないように、積極的に冷却された表面を使用することが望ましい。そのような表面の例は冷却ジャケット(ウォータージャケット)である。しかし、これは融液の絶対的な高度を定めるだけであり、HRを定めるものではないことに注意されたい。リフレクタの絶対高度は依然として他の手段で決定されなければならず、HRは2つの高度の差から計算され得る。リフレクタの絶対高度は、前述のアンカー法を用いてHRを求め、その結果を融液の絶対高度と組み合わせることで決定される。リフレクタの絶対高度は、HRと融液の絶対高度との差である。
【0049】
測定システムを使用ため、アンカーピン1100を用いてアンカリングステップを実行し、システムを較正する。アンカリングステップが実行された後、ランピン1102は、結晶引き上げ中にHRを決定するために使用される。
【0050】
アンカリングのステップは、動作開始時に1回だけ実行すればよい。最初のステップは、リフレクタ151を引き上げ装置100に取り付ける前に実行される。
図12および
図13に示すように、アンカーピンの高さ(PH)、アンカーピンのヘッドの直径(PD)、アンカーピンがリフレクタの底部から突き出ている距離(H)の3項目が測定される。
【0051】
リフレクタ151(リフレクターアセンブリ900を含む)が引き上げ装置100に取り付けられた後、レーザ700がオンにされ、アンカーピン1100のヘッドを照らし、カメラ602が画像をキャプチャする。
図14は、カメラ602が見ることのできる視野の一例である。レーザがアンカーピン1100に照射されているため、ピンの底部の反射1400は、レーザ700のレーザ光の色を有する円として融液104上に見える。コントローラ172は、AおよびBとしてマークされた距離に沿ったピクセル数を決定する。Aは、アンカーピン1100のヘッドの中心からピンの底部(底部は、遠近法により生じた楕円の中心である)までのピクセル数である。いくつかの実施形態では、コントローラ172は、中心を直接求めるのではなく、接線の端の位置を特定し、以前に測定されたピンのヘッドの直径(PD)を使用して、ヘッドの中心を求める。ピンの下端の中心は、ピンの直径の既知の値(既知の直径を有する棒状材料から作られているため、測定されたか、または測定されていない)を使用して求められる。Bは、アンカーピン1100のヘッドの中心からメルト融液上の反射1400の中心までのピクセル数である。
【0052】
次に、反射ドット1400がカメラ602の視野から外れないようにしながら、(るつぼリフトからのフィードバックから既知の)既知の記録された距離だけ、るつぼリフト112を用いて融液104の高度が下げられる。融液が下げられる距離は、ZEとして記載される。この移動は、
図15に示すように、レーザドット反射1400を下方に移動させる。距離Cは、アンカーピン1100の中心からドット1400の位置の中心までのピクセル数である。
【0053】
図16は、HR値を決定するために使用される、前述した形状と値を示す。HRを求めるには、
図16とともに以下の式が使用される:
D=B-A (1)
E=C-B (2)
比率A=RA=A/PH (3)
比率E=RE=E/ZE (4)
Xの値は、
図16のX軸に沿った距離を表す。各Xは、その添え字が付された線分の中点である:
XA=A/2 (5)
XD=A+D/2 (6)
XE=B+E/2 (7)
ピクセル距離に対する比率の曲線フィットは次のように計算される:
傾き=m=(RE-RA)/(XE-XA) (8)
インターセプト=k=RA-m*XA (9)
RDは、線形フィットを用いて解かれる:
RD=m*XD+k (10)
ZDは、次式で求められる:
ZD=D/RD (11)
最後に、HRは、次式で求められる。
HR=H+ZE+ZD (12)
【0054】
いくつかの実施形態では、より多くの高度変化を追加し、ピクセルの動きを記録することにより、式(8)および式(9)を使用した線形フィットではなく、より高次の曲線フィットが使用される。新たな垂直距離の変化(Z値)と、既に示した比率と同様に計算された新たな比率が、曲線フィットに使用される点に追加される。
【0055】
いくつかの他の実施形態では、ZEと記載された既知の記録された距離だけ融液の高度を下げることが省略される。このような実施形態では、ZDを求めるために、A、PH、B、およびPH+ZDの間の単純な比率が使用される(したがって、融液は高度ZDにあり、HR=[PH+ZD]-PH+Hであるため、HRが求められる)。しかし、この単純な比率はカメラの遠近法を無視しているため、ピンの主軸に対するカメラの中心視野軸の角度によっては、1ミリメートル以上の誤差が生じる可能性があり、角度の値が小さいほど誤差が大きくなる。上述の完全なアンカリング(つまりZEを含む)により、カメラの遠近法を考慮した補間を可能にすることができる。
【0056】
HRが決定されたため、カメラ602は、動作中にHRを求めるために較正されてもよい。最初に、るつぼリフトをHRアンカーの端部から動かすことなく、ランピン1102のヘッドにレーザが照射される。その結果得られる反射ドット1400の位置は、前もって求められたHRアンカー値に相関するピクセル位置を表す。
図17は、このステップからのカメラ画像の一例である。次に、融液104の高度が、るつぼリフト112を介して既知の記録された距離だけ下げられる。
図18のカメラ画像例に示すように、反射1400のピクセル位置が変化し、記録される。反射1400の位置は、
図18の例示的なカメラ画像に示されているように変化し、記録される。記録されたピクセル位置と、(融液104の高さの記録された変化から)HRの既知の変化とを使用して、ピクセル位置の関数としてのHRの曲線フィットが作成される。HRとピクセル位置の関係には正弦項が含まれる。したがって、線形フィットの結果生じる1ミリメートル範囲の誤差を避けるために、最小2次曲線フィットが使用される。
【0057】
上記のステップを実行した後、カメラ画像上のレーザドット反射1400の中心を決定し、上記で生成された関係を使用してHRを求めることで、動作中の任意の時間でHRを決定することができる。
【0058】
他のいくつかの実施形態では、ホット較正を実行する代わりに、コールド引き上げ装置100の第1表面ミラーを使用してレーザ反射1400を観察することができる。これにより、動作に先立って対応するHR値を決定することができる。しかし、カメラ画像上のレーザドット1400のピクセル位置のオフセットを調整するために、リフレクタ151の熱膨張を推定するために計算を行う必要がある。このコールド較正法は、正確な温度と材料特性が正確に分かっていない可能性があるため、不必要な誤差をもたらす可能性がある。
【0059】
いくつかの実施形態では、動作中に移動するリフレクタ151を含む。この結果、カメラ画像上のレーザドットの移動コンポーネントが追加され、較正が必要なポイントが追加される。
【0060】
例示の実施形態では、アンカーピン1100を融液104に浸すことなくHRを決定するために、アンカーピン1100の全高がアンカリング中に見える必要があるため、ランピン1102とアンカーピン1100に別々のピンを使用している。しかし、動作中にピンの全高を見ることは望ましくない。別々のピンを使用することにより、レーザドット反射が円形に近い場合、カメラが動作中に融液中のレーザドット反射の中心をより容易に決定することができる。このため、ランピン1102はアンカーピン1100よりも大幅に短く、ランピン1102の底部の反射1400が主に融液1104中で見えるように略同一平面である。ピンが長い場合にはピンの破損が起こりやすく、ピンを短くすることで、ピンが破損した場合の測定能力の喪失に対する保護を提供する。アンカーピン1100が較正後に破損しても、HRの決定にはランピン1102が使用されるため、HRを決定する能力には影響しない。他の実施形態には、アンカーピンとランピンの両方として使用される単一のピンが含まれる。
【0061】
一般的に入手可能なレーザの寿命は、100%のデューティーサイクル(常時点灯)で動作させた場合、数ヶ月から1年強まで様々である。HRは数秒毎に一度以上知る必要がないため、測定システムは数秒ごとに必要なだけレーザ700をオンにするだけで、レーザ700の寿命を延ばすことができる。1秒のオンタイムと9秒のオフタイムで、1年の100%デューティサイクルのレーザを10年持たせることができる。レーザ700は、引き上げ装置100が熱くないときにオフにしてもよく、これによりさらに長寿命となる。異なる実施形態では、レーザを常時オンにしておいてもよく、この場合単に交換頻度が増加する。
【0062】
図20および
図21は、ランピン1102、アンカーピン1100、または単一ピンのセットアップにおけるラン/アンカーピンの組み合わせとして使用し得る2つの代替的なピン2000,2100の側面図である。ピン2000は、平らな上部2004を有する球状のヘッド2002を有する。例示的な実施形態では、ヘッド2002は、約4.5mmの直径を有する。ピン2000の本体部分2006は概ね円筒形である。設置時にピン2000がリフレクタ151の底部を越えて延び始める高さ2008付近で、ピン2000は、より小さな球状の端部2010に向かってテーパしている。例示的な実施形態では、球状の端部2010は、約3.0mmの直径を有する。いくつかの実施形態では、ピン2000のテーパ部分、球状の端部2010の上部、および本体部分2006の下部は、透明であり、ピン2000の残りの部分は不透明である。
図21のピン2100は、ピン200と実質的に同じであるが、球状のヘッド2102を有する。例示的な実施形態では、ヘッド2102は、約4.5mmの直径を有する。ピン2100の本体部2106は、概ね円筒形である。設置時にピン2100がリフレクタ151の底部を越えて延び始める高さ2108付近で、ピン2100は、より小さな球状の端部2110に向かってテーパしている。例示的な実施形態では、球状の端部2110は、約3.0mmの直径を有する。いくつかの実施形態では、ピン2100のテーパ部分、球状の端部2110の上部、および本体部分2106の下部は透明であり、ピン2100の残りの部分は不透明である。
【0063】
別の実施形態では、1つの球体(ヘッド)のみの単一ピンを使用する。単一球体ピンは、レーザが球体を照らす状態で使用される。球体の上部はレーザとカメラから見え、球体の底部の融液での反射がカメラで見える。単一の球体は、ピンを支えるために使用される長いピンの端にあってもよく、最小限の他の部品を有する小さな球体であってもよい。レーザはピンの上面を照らす。較正とHRの決定に使用される他の実施形態で説明した融液での反射は、球体の底部の反射である。HRを較正または決定するための他の実施形態で説明した方法に実質的な変更はない。最後の4つの図は、単一球体ピンの例を示している。
【0064】
図22および
図23は、ピン2200が球状のヘッド2202を含む、上記単一ピンの実施形態の図である。ピン2200の残りの部分2204は、ピン2200をリフレクタ151に取り付けるためのものであり、レーザ光を向けるためには使用されない。
図22は、リフレクタ151の開口904内からピン2200と概ね水平に見た図であり、ピン2200の部分2204は開口904内のリフレクタ151の壁に取り付けられている。
図23は、開口904の下方にあるピン2200の見た図(例えば、カメラ602で見た図)であり、上部(例えば、
図23で見える部分)にレーザ光が照射されている。
【0065】
図24および
図25は、ピン2400の有用な部分が球状のヘッド2402のみである、上記単一ピンの別の実施形態の図である。
図24は、リフレクタ151の開口904内から、開口904内のリフレクタ151の壁から延びたピン2400と概ね水平に見た図である。
図25は、開口904の下方にあるピン2400の図である(例えば、カメラ602で見た図)。この実施形態では、球状のヘッド2402の上部(例えば、
図25に見られる部分)は、他の実施形態で説明したように、レーザからの強い緑色の単色光を受け、石英の球体の下部(例えば、
図25に見られる部分と反対側の部分)は、融液表面(
図25には図示せず)に明確な球体の反射を生成するために光を散乱させるようにつや消しまたは半透明である。半透明の部分は、表面コーティングまたはピンの表面のエッチングを用いて作られる。ピンの半透明で光を散乱させる部分を製造する任意の適切なコーティングまたは他の方法が使用されてもよい。他の実施形態では、ピンの異なる部分または追加の部分も同様に半透明で光散乱性であってもよい。
【0066】
図22~25の実施形態では、較正プロセスは上述の他の実施形態と同様であるが、単一の球体ヘッドと単一の反射のみを使用する。融液位置が変更されると、球体反射重心の3つの別個の画像位置(「高」、「中」、「低」位置)が捕捉される。各位置でXおよびY画像ピクセル座標が捕捉され、保存される。また、融液を上下に移動させるるつぼリフトシステムの位置も捕捉され、保存される。さらに、球体の位置が捕捉され、同様に球体中心のXおよびY座標が各位置について捕捉され、記憶される。
【0067】
最初のステップで保存された座標とるつぼの位置を使用して、球体反射の重心座標が与えられたときにるつぼの位置を生成する2次フィットのパラメータが計算される。これらのパラメータとともに、画像座標を使用することで、全移動範囲内でるつぼの位置を計算することができる。
【0068】
次に、第2ステップで捕捉した球体ヘッドの重心の座標と、球体ヘッドの中心からリフレクタの底部までの測定値を加えて、フィッティングパラメータを使って融液上面とリフレクタの底部の間の距離を計算できるように、較正を修正する。
【0069】
図17~19に示すように、カメラ602が固定位置にある場合、反射1400は、融液の高さが変化するにしたがって直線状に移動するはずであり、ランピン1102(またはランピンとアンカーピンを組み合わせたもの)は、カメラによって撮影された各画像において同じ位置に留まるはずである。動作中にランピン1102が画像の平面内で移動したり、カメラ602に対して傾いたりすると、反射1400は予想された直線で移動しないことがあり、上述した計算の調整が必要になることがある。このような移動は、例えば、インゴット引き上げ装置100によって経験される振動、成長チャンバ内の熱条件のため成長チャンバ152内のピン、マウント1000、または他のコンポーネントの材料の膨張または収縮などによって引き起こされることがある。
【0070】
図26と
図27は、(上述したようにシステムが較正された後の)動作中にカメラによって撮影された画像の例である。
図26では、照明されたピン2602は、第1ターゲット2604の中心に位置合わせされている。反射1400は、第2のターゲット2606(
図27に見える)の中心に位置合わせされている。線2608は、動作中に融液の高さが変化するにしたがって、反射1400が移動すると予想される追跡線である。追加のターゲット2610は、較正中に定義された追加の登録点である。
【0071】
図27は、
図26よりも後の時間における照らされたピン2602と反射1400を示している。すなわち、インゴット引き上げ装置100は、
図26の画像が撮影された後、しばらく動作している。見てわかるように、ピン2602は元の位置からずれている。また、反射1400も追跡線2608からずれている。
【0072】
ずれを少なくとも部分的に補正するために、第1のターゲット2604の中心から照らされたピン(
図27に示す)の中心までのオフセットベクトルが決定され、同じオフセットベクトルが反射1400に適用される。いくつかの実施形態では、オフセットベクトルは、第1のターゲット2604の中心からピン2602の中心までの画像のX方向およびY方向のピクセルの距離を決定することによって決定される。この補正は、反射に同じオフセットを加えることによって、ピンヘッドの反射をピンヘッドの位置に合わせる。
【0073】
図面に描かれた論理フローは、望ましい結果を得るために、図示された特定の順序または連続した順序を必要とするものではない。さらに、説明したフローに他のステップを設けてもよく、説明したフローからステップを削除してもよく、説明したシステムに他のコンポーネントを追加してもよいし、説明したシステムからコンポーネントを削除してもよい。従って、他の実施形態は以下の特許請求の範囲に含まれる。
【0074】
特に詳細に説明した上記実施形態は、単なる例示または可能な実施形態に過ぎず、他にも多くの組み合わせ、追加、または代替があり得ることが理解されよう。
【0075】
また、コンポーネントの特定の名称、用語の大文字表記、属性、データ構造、またはその他のプログラミングまたは構造的側面は、必須または重要ではなく、本開示またはその特徴を実装する機構は、異なる名称、フォーマット、またはプロトコルを有してもよい。さらに、本システムは、説明されているように、ハードウェアとソフトウェアの組み合わせを介して実装されてもよいし、完全にハードウェア要素で実装されてもよい。また、本明細書で説明する様々なシステムコンポーネント間の機能の特定の分割は、単なる一例であり、必須ではない。単一のシステムコンポーネントによって実行される機能は、代わりに複数のコンポーネントによって実行されてもよく、複数のコンポーネントによって実行される機能は、代わりに単一のコンポーネントによって実行されてもよい。
【0076】
本明細書および特許請求の範囲を通して使用される近似的な表現は、それが関連する基本的な機能に変化をもたらすことなく許容可能に変化し得るあらゆる定量的表現を修正するために適用することができる。したがって、「約」や「実質的に」などの用語によって修正される値は、特定された正確な値に限定されるものではない。少なくともいくつかの例では、近似的な表現は、値を測定するための機器の精度に対応することがある。本明細書および特許請求の範囲全体を通じて、範囲の限定は組み合わせおよび/または入れ替えてもよく、そのような範囲は、文脈または文言がそうでないことを示さない限り、特定され、そこに含まれるすべての部分範囲を含む。
【0077】
本開示の教示における様々な変更、修正、および改変は、その意図する精神および範囲から逸脱することなく、当業者によって企図され得る。本開示は、このような変更および改変を包含することが意図されている。
【0078】
本明細書は、最良の態様を含む本開示を説明するために実施例を用いており、また、任意のデバイスまたはシステムの製造および使用、ならびに組み込まれた任意の方法の実行を含む本開示を当業者が実施できるようにするために実施例を用いている。本開示の特許可能な範囲は、特許請求の範囲によって定義され、当業者に思いつく他の例を含むことができる。そのような他の実施例は、特許請求の範囲の文言と異ならない構造要素を有する場合、または特許請求の範囲の文言と実質的に異ならない同等の構造要素を含む場合、特許請求の範囲に含まれることが意図される。
【国際調査報告】