(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2024-03-05
(54)【発明の名称】炭化ケイ素ベースの半導体構造体及び中間複合構造体を製造する方法
(51)【国際特許分類】
H01L 21/02 20060101AFI20240227BHJP
C30B 29/36 20060101ALI20240227BHJP
C30B 25/18 20060101ALI20240227BHJP
【FI】
H01L21/02 B
C30B29/36 A
C30B25/18
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023545283
(86)(22)【出願日】2022-03-03
(85)【翻訳文提出日】2023-09-25
(86)【国際出願番号】 FR2022050380
(87)【国際公開番号】W WO2022189733
(87)【国際公開日】2022-09-15
(32)【優先日】2021-03-09
(33)【優先権主張国・地域又は機関】FR
(81)【指定国・地域】
(71)【出願人】
【識別番号】598054968
【氏名又は名称】ソイテック
【氏名又は名称原語表記】Soitec
【住所又は居所原語表記】Parc Technologique des fontaines chemin Des Franques 38190 Bernin, France
(74)【代理人】
【識別番号】100107456
【氏名又は名称】池田 成人
(74)【代理人】
【識別番号】100162352
【氏名又は名称】酒巻 順一郎
(74)【代理人】
【識別番号】100123995
【氏名又は名称】野田 雅一
(72)【発明者】
【氏名】ビアード, ヒューゴ
(72)【発明者】
【氏名】ゴーダン, グウェルタズ
【テーマコード(参考)】
4G077
【Fターム(参考)】
4G077AA03
4G077BE08
4G077ED06
4G077FF10
4G077FG20
4G077HA06
4G077HA12
4G077TK11
(57)【要約】
本発明は、半導体構造体を製造する方法であって、a)炭化ケイ素の熱膨張係数に近い熱膨張係数を有する材料の仮基板を設けるステップと、b)この仮基板の前面に、グラファイトの中間層を形成するステップと、c)この中間層に、厚さが10ミクロン~200ミクロンの範囲にある、多結晶炭化ケイ素の支持層を堆積させるステップと、d)直接に又は追加層を介して、単結晶炭化ケイ素の有用層を支持層に転写して、複合構造体を形成するステップであって、当該転写が、分子付着接合を実施するステップと、e)この有用層に活性層を形成するステップと、f)活性層、有用層、及び支持層を含む半導体構造体を形成すると共に、仮基板を形成するための、中間層の境界面における又は中間層における除去ステップとを含む方法に関する。本発明はさらに、この方法の中間ステップにおいて得られる複合構造体に関する。
【選択図】
図2d
【特許請求の範囲】
【請求項1】
半導体構造体(100)を製造する方法であって、
a)熱膨張係数が3.5×10
-6/℃~5×10
-6/℃の範囲にある材料から作られる仮基板(1)を設けるステップと、
b)前記仮基板(1)の前面(1a)に、グラファイトから作られる中間層(12)を形成するステップと、
c)前記中間層(12)に、厚さが10ミクロン~200ミクロンの範囲にある、多結晶炭化ケイ素から作られる支持層(2)を堆積させるステップと、
d)直接に又は追加層を介して、単結晶炭化ケイ素から作られる有用層(3)を前記支持層(2)に転写して、複合構造体(10)を形成するステップであって、前記転写が、分子付着接合を実施する、ステップと、
e)前記有用層(3)に活性層(4)を形成するステップと、
f)一方では、前記活性層(4)、前記有用層(3)、及び前記支持層(2)を含む前記半導体構造体(100)を得て、他方では、前記仮基板(1)を得るための、前記中間層(12)の境界面における、又は前記中間層(12)における除去ステップと、
を含む、方法。
【請求項2】
前記中間層(12)の厚さが、1ミクロン~100ミクロンの範囲にある、請求項1に記載の製造方法。
【請求項3】
前記中間層(12)の前記グラファイトの平均粒度が、1ミクロン~50ミクロンの範囲にある、請求項1又は2に記載の製造方法。
【請求項4】
前記中間層(12)の前記グラファイトの多孔率が、6%~17%の範囲にある、請求項1~3のいずれか一項に記載の製造方法。
【請求項5】
前記中間層(12)の前記グラファイトの熱膨張係数が、4×10
-6/℃~5×10
-6/℃の範囲にある、請求項1~4のいずれか一項に記載の製造方法。
【請求項6】
ステップb)において、前記中間層(12)が、前記仮基板(1)の周辺縁部(1c)にも形成され、及び/又は、
第2の中間層(12’)が、前記仮基板(1)の後面(1b)に形成される、請求項1~5のいずれか一項に記載の製造方法。
【請求項7】
ステップc)において、前記支持層(2)がさらに、前記仮基板(1)の前記周辺縁部(1c)に存在する中間層(12)上に、及び/又は前記仮基板(1)の前記周辺縁部(1c)上に直接堆積される、請求項1~6のいずれか一項に記載の製造方法。
【請求項8】
前記転写ステップd)が、
単結晶炭化ケイ素から作られるドナー基板(30)に軽量種を注入して、前記ドナー基板(30)の前面(30a)とともに、前記有用層(3)を画定する埋め込み脆弱面(31)を形成することと、
直接に又は追加層を介して、分子付着接合により、前記ドナー基板(30)の前記前面(30a)を前記支持層(2)に組み立てることと、
前記埋め込み脆弱面(31)に沿って分離して、前記有用層(3)を前記支持層(2)に転写することと、
を含む、請求項1~7のいずれか一項に記載の製造方法。
【請求項9】
ステップe)が、ドープされた単結晶炭化ケイ素から作られる、少なくとも1つの追加層を、前記有用層(3)にエピタキシャル成長させることを含み、前記追加層が、前記活性層(4)の全部又は一部を形成する、請求項1~8のいずれか一項に記載の製造方法。
【請求項10】
ステップe)が、前記活性層(4)内のドーパントを活性化させることを目的として、1,600℃以上の温度で熱処理することを含む、請求項9に記載の製造方法。
【請求項11】
前記活性層(4)上及び/又は前記活性層(4)内に、電子構成部品(40)の全部又は一部を製造するステップe’)を含み、ステップe’)が、ステップe)とステップf)の間に配置される、請求項1~10のいずれか一項に記載の製造方法。
【請求項12】
前記除去ステップf)に先立って、前記活性層(4)の自由面、又は前記電子構成部品(40)が存在する場合には、前記活性層(4)の前記自由面、又は前記電子構成部品(40)の全部若しくは一部の前記自由面に、取外し可能なハンドルが組み立てられる、請求項1~11のいずれか一項に記載の製造方法。
【請求項13】
ステップf)に関わる前記除去は、機械的応力を印加した後、前記中間層(12)の境界面において、若しくは前記中間層(12)において亀裂を伝搬させることによって生じ、及び/又は、
ステップf)に関わる前記除去は、前記中間層(12)の全部若しくは一部の横方向の化学エッチングを含み、及び/又は、
ステップf)に関わる前記除去は、前記中間層(12)の前記グラファイトへの熱損傷を含み、及び/又は、
ステップf)に関わる前記除去は、ダイヤモンドワイヤソーを使用して、前記中間層(12)の前記グラファイトを切断することによって生じる、請求項1~12のいずれか一項に記載の製造方法。
【請求項14】
ステップc)が、前記仮基板(1)の前記後面(1b)に存在する前記第2の中間層(12’)に、多結晶炭化ケイ素から作られる第2の支持層(2’)を堆積させることを含み、前記第2の支持層(2’)の厚さが10ミクロン~200ミクロンの範囲にあり、
ステップd)が、直接又は追加層を介して、単結晶炭化ケイ素から作られる第2の有用層(3’)を前記第2の支持層(2’)に転写することを含み、前記転写が分子付着接合を実施し、
ステップe)が、前記第2の有用層(3’)に第2の活性層を形成することを含み、
ステップf)が、前記第2の中間層(12’)の境界面において、又は前記第2の中間層(12’)において除去して、前記第2の活性層、前記第2の有用層(3’)、及び前記第2の支持層(2’)を含む別の半導体構造体(100)を得ることを含む、請求項6に記載の製造方法。
【請求項15】
炭化ケイ素の熱膨張係数に近い熱膨張係数を有する材料から作られる仮基板(1)と、
少なくとも前記仮基板(1)の前面に配置された、グラファイトから作られる中間層(12)と、
前記中間層(12)に配置された、厚さが10ミクロン~200ミクロンの範囲にある、多結晶炭化ケイ素から作られる支持層(2)と、
前記支持層(2)に配置された、単結晶炭化ケイ素から作られる有用層(3)と、
を含む、複合構造体(10)。
【請求項16】
前記仮基板(1)が、単結晶炭化ケイ素又は多結晶炭化ケイ素から作られ、前記有用層(3)の厚さが、100nm~1500nmの範囲にある、請求項15に記載の複合構造体(10)。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、超小型電子構成部品用の半導体材料の分野に関する。特に、本発明は、電子構成部品を含むか、又は電子構成部品を収容することを目的とする、高品質の単結晶炭化ケイ素から作られる活性層を含む半導体構造体を製造する方法に関し、前記活性層は、多結晶炭化ケイ素から作られる支持層に配置される。本発明はさらに、前記方法において得られる中間複合構造体に関する。
【背景技術】
【0002】
炭化ケイ素(SiC)半導体材料は、エネルギー処理能力を高めることができるので、近年、この炭化ケイ素への関心が著しく高まってきている。特に電気自動車など、電子技術の成長領域での要望を満たすよう、革新的なパワーデバイスを製造するのに、ますます広くSiCが使用されている。
【0003】
単結晶炭化ケイ素を基にしたパワーデバイス及び統合電力供給システムは、その従来のケイ素同等物よりもはるかに高い電力密度を、相対的に小さい活性領域寸法で管理することができる。SiCでのパワーデバイスの寸法をさらに制限するためには、横方向の構成部品ではなく、縦方向の構成部品を製造することが有利である。このためには、構成部品の組立体の前面に配置された電極と、後面に配置された電極との間の垂直電気伝導が、前記組立体によって許容されなければならない。
【0004】
しかしながら、マイクロエレクトロニクス産業向けの単結晶SiCから作られるバルク基板は、依然として高価であり、大きいサイズのものを調達するのが困難である。さらに、バルク基板上で製造される場合、電子構成部品の組立体は、垂直方向の電気抵抗率を低減するため、及び/又は空間及び小型化の仕様を満たすために、基板の後面を通常は約100ミクロンほどに薄くする必要がある場合が多い。
【0005】
したがって、典型的には、比較的低コストの支持基板上に単結晶SiCから作られる薄層を含み、電子構成部品を形成するのにこの薄層が使用される、複合構造体を製造するためには、薄層を転写する解決策を使用することが有利である。よく知られた薄層転写の解決策は、軽イオン注入とダイレクトボンディングによる組立てとに基づくSmart Cut(商標)法である。このような方法により、たとえば、多結晶SiC(p-SiC)から作られる支持基板に直接接触させて、単結晶SiC(c-SiC)から作られるドナー基板から得られ、垂直方向の電気伝導を可能にする、c-SiCから作られる薄層を含む複合構造体を製造することが可能になる。支持基板は、構成部品の形成と両立できるのに十分な厚さがなければならず、最終的には薄くされて、集積化される準備が整った電子構成部品の組立体を得る。前記支持基板の品質が相対的に低い場合でも、薄型化ステップ及び材料の損失は、依然として、排除されるのが好ましいコスト要因である。
【0006】
米国特許第8436363号の文書も知られており、この文書には、金属支持基板上に配置された、c-SiCから作られる薄層を含む複合構造体を製造する方法が記載されており、この熱膨張係数は、その薄層の熱膨張係数と一致する。この製造方法は、以下のステップ、すなわち、
c-SiCから作られるドナー基板に、埋め込み脆弱面を形成し、前記埋め込み脆弱面とドナー基板の前面との間に薄層を画定するステップと、
たとえばタングステン又はモリブデンから作られる金属層を、ドナー基板の前面に堆積させて、補強材の役割を果たすのに十分に厚い支持基板を形成するステップと、
埋め込み脆弱面に沿って分離して、一方では、金属支持基板とc-SiCから作られる薄層とを含む複合構造体を形成し、他方では、c-SiCから作られるドナー基板の残り部分を形成するステップと
を含む。
【0007】
この手法の欠点は、金属支持基板が、電子構成部品を生産するためのラインに必ずしも適合するとは限らないことである。支持基板はさらに、用途に応じて薄くしなければならない場合がある。
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明は、従来技術の解決策への代替解決策に関し、前述の欠点の全部又は一部を克服することを目的とする。特に、本発明は、多結晶炭化ケイ素から作られる支持層に配置された、高品質の単結晶炭化ケイ素から作られる活性層上及び/又は活性層内に製造される電子構成部品用、有利には垂直構成部品用の半導体構造体を製造する方法に関する。本発明はさらに、前記製造方法の中間ステップにおいて得られる複合構造体に関する。
【課題を解決するための手段】
【0009】
本発明は、半導体構造体を製造する方法であって、
a)熱膨張係数が3.5×10-6/℃~5×10-6/℃の範囲にある材料から作られる仮基板を設けるステップと、
b)この仮基板の前面に、グラファイトから作られる中間層を形成するステップと、
c)この中間層に、厚さが10ミクロン~200ミクロンの範囲にある、多結晶炭化ケイ素から作られる支持層を堆積させるステップと、
d)直接に又は追加層を介して、単結晶炭化ケイ素から作られる有用層を支持層に転写して、複合構造体を形成するステップであって、前記転写が、分子付着接合を実施するステップと、
e)この有用層に活性層を形成するステップと、
f)一方では、活性層、有用層、及び支持層を含む半導体構造体を得て、他方では、仮基板を得るための、中間層の境界面における、又は中間層における除去ステップと
を含む方法に関する。
【0010】
本発明のさらに有利で非限定的な特徴によれば、個別に又は技術的に実現可能な任意の組合せによってまとめると、以下の通りである。
【0011】
中間層の厚さは、1ミクロン~100ミクロンの範囲にある。
【0012】
中間層のグラファイトの平均粒度は、1ミクロン~50ミクロンの範囲にある。
【0013】
中間層のグラファイトの多孔率は、6%~17%の範囲にある。
【0014】
中間層のグラファイトの熱膨張係数は、4×10-6/℃~5×10-6/℃の範囲にある。
【0015】
ステップb)において、中間層が、仮基板の周辺縁部にも形成され、及び/又は、第2の中間層が、仮基板の後面に形成される。
【0016】
ステップc)において、支持層はさらに、仮基板の周辺縁部に存在する中間層上に、及び/又は仮基板の周辺縁部上に直接堆積される。
【0017】
転写ステップd)は、
単結晶炭化ケイ素から作られるドナー基板に軽量種を注入して、ドナー基板の前面とともに有用層を画定する、埋め込み脆弱面を形成することと、
直接に又は追加層を介して、分子付着接合により、ドナー基板の前面を支持層に組み立てることと、
埋め込み脆弱面に沿って分離して、有用層を支持層に転写することと
を含む。
【0018】
800℃~1,200℃の範囲の温度で熱処理している間に、分離が生じる。
【0019】
ステップe)は、ドープされた単結晶炭化ケイ素から作られる、少なくとも1つの追加層を、有用層にエピタキシャル成長させることを含み、前記追加層は、活性層の全部又は一部を形成する。
【0020】
ステップe)は、活性層内のドーパントを活性化させることを目的として、1,600℃以上の温度で熱処理することを含む。
【0021】
この方法は、活性層上及び/又は活性層内に、電子構成部品の全部又は一部を製造するステップe’)を含み、ステップe’)は、ステップe)とステップf)の間に配置される。
【0022】
除去ステップf)に先立って、活性層の自由面、又は電子構成部品が存在する場合には、その活性層の自由面、又は電子構成部品の全部若しくは一部の自由面に、取外し可能なハンドルが組み立てられる。
【0023】
ステップf)に関わる除去は、機械的応力を印加した後、中間層の境界面において、又は中間層において亀裂を伝搬させることによって生じる。
【0024】
ステップf)に関わる除去は、中間層の全部又は一部の横方向の化学エッチングを含む。
【0025】
ステップf)に関わる除去は、中間層のグラファイトへの熱損傷を含む。
【0026】
ステップf)に関わる除去は、ダイヤモンドワイヤソーを使用して、中間層のグラファイトを切断することによって生じる。
【0027】
この方法は、ステップf)から作り出される仮基板を再利用するステップを含む。
【0028】
ステップc)は、仮基板の後面に存在する第2の中間層に、多結晶炭化ケイ素から作られる第2の支持層を堆積させることを含み、第2の支持層の厚さは10ミクロン~200ミクロンの範囲にある。
【0029】
ステップd)は、直接又は追加層を介して、単結晶炭化ケイ素から作られる第2の有用層を第2の支持層に転写することを含み、前記転写は、分子付着接合を実施する。
【0030】
ステップe)は、第2の有用層に第2の活性層を形成することを含む。
【0031】
ステップf)は、第2の中間層の境界面において、又は第2の中間層において除去して、第2の活性層、第2の有用層、及び第2の支持層を含む別の半導体構造体を得ることを含む。
【0032】
本発明はさらに、
炭化ケイ素の熱膨張係数に近い熱膨張係数を有する材料から作られる仮基板と、
少なくとも仮基板の前面に配置された、グラファイトから作られる中間層と、
中間層に配置された、厚さが10ミクロン~200ミクロンの範囲にある、多結晶炭化ケイ素から作られる支持層と、
支持層に配置された、単結晶炭化ケイ素から作られる有用層と
を含む複合構造体に関する。
【0033】
本発明のさらに有利で非限定的な特徴によれば、個別に又は技術的に実現可能な任意の組合せでまとめると、以下の通りである。
【0034】
仮基板は、単結晶炭化ケイ素又は多結晶炭化ケイ素から作られる。
【0035】
有用層の厚さは、100nm~1,500nmの範囲にある。
【0036】
本発明のさらなる特徴及び利点は、添付図を参照して、本発明の以下の詳細な説明から明らかになろう。
【図面の簡単な説明】
【0037】
【
図1】本発明による製造方法によって製造される、電子構成部品の組立体を示す図である。
【
図2a】本発明による製造方法の各ステップを示す図である。
【
図2b】本発明による製造方法の各ステップを示す図である。
【
図2c】本発明による製造方法の各ステップを示す図である。
【
図2d】本発明による製造方法の各ステップを示す図である。
【
図2e】本発明による製造方法の各ステップを示す図である。
【
図2e-1】本発明による製造方法の各ステップを示す図である。
【
図2f】本発明による製造方法の各ステップを示す図である。
【
図3a】本発明による製造方法の特定の実施形態の各ステップを示す図である。
【
図3b】本発明による製造方法の特定の実施形態の各ステップを示す図である。
【
図3c】本発明による製造方法の特定の実施形態の各ステップを示す図である。
【
図3d】本発明による製造方法の特定の実施形態の各ステップを示す図である。
【
図4a】本発明による製造方法の転写ステップd)を示す図である。
【
図4b】本発明による製造方法の転写ステップd)を示す図である。
【
図4c】本発明による製造方法の転写ステップd)を示す図である。
【発明を実施するための形態】
【0038】
各図においては、同じタイプの要素には、同じ参照符号を使用することができる。各図は概略図であり、読みやすくするため、原寸に比例してはいない。特に、z軸線に沿った各層の厚さは、x軸線及びy軸線に沿った横寸法に対して原寸に比例してはおらず、互いに対する各層の相対的な厚さは、各図において必ずしも考慮されてはいない。
【0039】
本発明は、半導体構造体100(
図1)を製造する方法に関する。半導体構造体100は、少なくとも、複数の超小型電子構成部品を収容することを目的とした層4、3、2のスタックを意味するものと理解され、これはさらに、支持層2によってウエハの形で保持された活性層4上及び/又は活性層4内での集合的製造からもたらされ、パッケージ化される前に、単一化ステップを受ける準備のできた、前記電子構成部品40を有する層4、3、2のスタックを意味するものと理解される。
【0040】
この製造方法は、前記構成部品40の機械的支持体を形成する支持層2を介した垂直電気伝導を必要とする、垂直超小型電子構成部品に適用可能であることが有利である。
【0041】
この製造方法は、第1に、熱膨張係数が,炭化ケイ素(SiC)の熱膨張係数に近く、すなわち3.5×10
-6/℃~5×10
-6/℃(周囲温度と1,000℃の間)の範囲にある材料から作られ、前面1a、後面1b,及び周辺縁部1c(
図2a)を有する仮基板1を設けるステップa)を含む。したがって、仮基板1は、結晶品質の低い多結晶又は単結晶のSiCから作られ、この仮基板1の役割は、本質的に機械的なものであることが好ましい。
【0042】
定められた熱膨張係数の制約条件に適合する他の材料を使用することができる。これらの材料はさらに、非常に高い温度、すなわち、この方法で実行される後続の熱処理を考慮に入れると、ほぼ1,850℃までの温度に適合する必要がある。
【0043】
次いで、この製造方法は、グラファイトから作られる中間層12を形成するステップb)を含む。この中間層12は、たとえば、樹脂のプラズマ蒸着、イオン噴射、カソードアーク蒸着、レーザグラファイト蒸発、炭化、及び/又は熱分解などによって製造することができる。
【0044】
以下に支持層2と呼ばれる、多結晶炭化ケイ素(p-SiC)から作られる層を堆積させるための優れた種を供給するように、以下に説明するグラファイトのいくつかの物理的特性が選択されることが有利であり、この方法のステップc)を参照して、このことを説明する。特に、多結晶構造体を有するグラファイトは、1ミクロン~50ミクロンの範囲にある粒度、特に平均粒度を有し、すなわち、面1a、1bの平面において、支持層2について予想される平均粒度と同じオーダーに入る。
【0045】
平均粒度は、特に、100nm以上の粒度の算術平均に対応することに留意されたい。これらの粒度は、たとえば、走査顕微鏡法(SEM)、X線回折(特に、X線回折信号の半値全幅から)、又は電子後方散乱回折(EBSD)によって測定することができる。
【0046】
支持層2の粒が小さくなりすぎることはないので、この支持層2の熱伝導性がこのように確保され、さらに、支持層2が堆積するときに粒度が大きくなる場合でも、グラファイトの粒度の範囲が規定されているので、依然として制御された粒度範囲内に収まり、これにより、堆積した支持層2の自由表面での粗さが制限される。
【0047】
グラファイトの多孔率は6%~17%の範囲にあり、これは、支持層2の表面粗さを、堆積した後に制御できるようにする限られた範囲である。通常、表面粗さは、1ミクロンRMS未満、又はさらに10nm RMS未満に制限されて、支持層2が堆積した後のいかなる平滑化処理をも軽減することができる。
【0048】
中間層12の熱膨張係数は、炭化ケイ素の熱膨張係数と一致するように、4×10-6/℃~5×10-6/℃(周囲温度と1,000℃の間)の範囲にあって、高温を伴う処理(続いて、この方法において説明する)をおこなっている間の機械的応力を制限する。
【0049】
中間層12を備えた仮基板1は、雰囲気が制御されているとき、すなわち酸素がないとき、1,450℃までの範囲の温度に適合する。実際には、空気に曝されると、中間層12のグラファイトは、低い温度範囲、典型的には400℃~600℃において燃焼し始める。グラファイトから作られる中間層12は、これを完全にカプセル化する保護層によって保護されているので、1,450℃を超える非常に高い温度にさえ適合する。
【0050】
この方法の特定の一実施形態によれば、ステップb)はさらに、仮基板1の周辺縁部1cに中間層12を形成することを含む(
図3b)。ステップb)はさらに、周辺縁部1c上の中間層12の有無にかかわらず、仮基板1(
図3a、
図3b)の後面1bでの、グラファイトから作られる第2の中間層12’を含むことができる。
【0051】
この方法の概要をさらに参照すると、多結晶炭化ケイ素(p-SiC)から作られる支持層2を、中間層12に堆積させるステップc)が続いて実行される(
図2c)。特に、支持層2は、中間層12に直接堆積され、すなわち、互いに接触している層2と層12の間には追加層が挿入されない。支持層2はさらに、仮基板1の周辺縁部1cに堆積されて、この方法の後続のステップのために中間層12をカプセル化して保護することが有利である。
【0052】
この堆積は、およそ1,100℃~1,400℃程度の温度で、知られている任意の技法を使用して、特に、化学蒸着(CVD)によって実行することができる。たとえば、大気圧CVD(APCVD)又は低圧CVD(LPCVD)などの熱CVD技法を挙げることができ、前駆物質は、メチルシラン、ジメチルジクロロシラン、又はさらにはジクロロシラン+i-ブタンから選択することができる。たとえば、前駆物質としての四塩化ケイ素及びメタンとともに、プラズマ促進CVD(PECVD)技法を使用することもでき、プラズマを生成する放電を発生させるのに使用される発生源の周波数は、およそ3.3MHz程度であり、より一般には、10KHz~100GHzの範囲にあることが好ましい。
【0053】
堆積に先立って、仮基板1の自由面1a、1bに潜在的に存在する微粒子、金属、又は有機物の汚染物質の全部又は一部を除去するために、中間層12が設けられる仮基板1に、従来の洗浄シーケンスを加えることができる。
【0054】
p-SiCから作られる支持層2の厚さは、10ミクロン~200ミクロンの範囲にある。この厚さは、半導体構造体100において予想される厚さの仕様に応じて選択される。この構造体100においては、支持層2は、機械的基板の役割を想定することになり、潜在的に、垂直方向の電気伝導を確実にしなければならないことになる。前述の電気伝導特性(低抵抗率)を保証するには、支持層2が、要求に応じてnタイプドープ又はpタイプドープされることが有利である。
【0055】
これまでに述べた特定の実施形態により、
図3cに示すように、ステップc)の堆積はさらに、第2の支持層2’を形成するために、第2の中間層12’に実行することができ、及び/又は仮基板1の周辺縁部1cに実行することができる。仮基板1の後面1bに堆積した第2の支持層2’の役割は、前記基板1の2つの面1a、1bに、この方法の以下のステップを実行できるようにすることである。
【0056】
一般に、支持層2(及び、場合によっては第2の支持層2’)が堆積した後、表面処理が実行されて、次の薄層転写ステップを目的として、支持層2の表面粗さ及び/又は構造体の縁部の質を改善する。
【0057】
およそ0.5nm RMS、好ましくは0.3nm RMS未満の、p-SiCの表面粗さ(たとえば、20ミクロン×20ミクロンの走査での原子間力顕微鏡法(AFM)を使用する粗さ測定)を実現するために、従来の化学エッチング(湿式若しくは乾式)、並びに/又は機械粉砕及び/若しくは化学機械研磨の技法を実施することができる。それにもかかわらず、中間層12のグラファイトの前述の特徴により、加えられる表面処理を制限することが可能になる。
【0058】
次いで、本発明による製造方法は、単結晶炭化ケイ素(c-SiC)から作られる有用層3を、支持層2に直接、又は追加層を介して転写して、複合構造体10(
図2d)を形成するステップd)を含む。この転写は、分子付着接合を実施し、その結果、接合境界面5を形成する。有用層3の側部、及び/又は支持層2の側部に追加層が形成されて、前記接合を促進することができる。
【0059】
有利なことに、またSmart Cut(商標)法に関連して知られているように、転写ステップd)は、
単結晶炭化ケイ素から作られるドナー基板30に軽量種を注入して、ドナー基板30の前面30aとともに、有用層3を画定する、埋め込み脆弱面31を形成する(
図4a)ことと、
直接に又は追加層を介して、分子付着接合により、接合境界面5に沿って、ドナー基板30の前面30aを支持層2に組み立てる(
図4b)ことと、
埋め込み脆弱面31に沿って分離して、有用層3を支持層2に転写する(
図4c)ことと
を含む。
【0060】
軽量種は、水素、ヘリウム、又はこれら2種の共注入であることが好ましく、対象となる有用層3の厚さと一致する、決定された深さでドナー基板30に注入される(
図4a)。これらの軽量種は、各図での(x、y)平面に平行な、ドナー基板30の自由表面30aに平行な薄層として分散された微小空洞を、決定された深さ辺りに形成することになる。説明を簡潔にするために、この薄層は、埋め込み脆弱面31と呼ばれる。
【0061】
軽量種の注入エネルギーは、決定された深さに達するように選択される。たとえば、水素イオンは、10keV~250keVの範囲にあるエネルギーレベルで、5E16/cm2~1E17/cm2の範囲にある照射線量レベルにおいて注入されて、厚さがおよそ100nm~1,500nm程度の有用層3を画定することになる。イオン注入ステップに先立って、ドナー基板30の前面30aに保護層を堆積させることができることに留意されたい。この保護層は、たとえば、酸化ケイ素又は窒化ケイ素などの材料から構成することができる。この保護層を、次のステップにおいて保持することができ、又は除去することもできる。
【0062】
ドナー基板30は、支持層2に、そのそれぞれの前面/自由面において組み立てられ、接合境界面5に沿って、接合されたスタックを形成する(
図4b)。それ自体よく知られているように、分子付着接合は、組み立てられた各面間で原子レベルでの接合が確立されるので、接着剤を必要としない。分子付着接合にはいくつかのタイプが存在し、特に、温度、圧力、雰囲気条件、又は表面を接触させる前の処理に関して違いが生じる。組み立てられる表面のプラズマ活性化を事前に実行するかしないかにかかわらず周囲温度で接合すること、原子拡散接合(ADB)、表面活性化接合(SAB)などを挙げることができる。
【0063】
組立てステップは、組み立てられる面を接触させる前に、従来の洗浄、表面活性化、又は接合境界面5の質(低い欠陥密度、良好な接着品質)を促進する可能性が高い他の表面処理シーケンスを含むことができる。
【0064】
すでに述べたように、ドナー基板30の前面30a及び/又は支持層2の自由面は、たとえば、垂直電気伝導を促進するための、(タングステンなどの)金属層若しくはドープされた(ケイ素などの)半導体層、又は垂直電気伝導を必要としない用途用の(酸化ケイ素、窒化ケイ素などの)絶縁層などの追加層を任意選択で含むことができる。追加層は、特に、組み立てられる面に存在する、残留している粗さ又は表面欠陥を消去することによって、分子付着接合を促進する可能性が高い。この追加層には、接合するのに好都合な1nm RMS未満、又はさらに0.5nm RMS未満の粗さを実現するために、平坦化処理又は平滑化処理を施すことができる。
【0065】
埋め込み脆弱面31に沿った分離は、通常、800℃~1200℃の範囲にある温度で熱処理を加えることによって生じる(
図4c)。このような熱処理により、埋め込み脆弱面31に空洞及び微小亀裂が生じ、ガス状の形で存在する軽量種によってこれらが加圧されてから、前記脆弱な面31に沿って破壊が伝搬する。別法として、又は共同して、接合された組立体、特に埋め込み脆弱面31に機械的応力を印加して、分離につながる破壊の機械的伝搬を伝えるか又は助長することができる。この分離が完了すると、一方では、仮基板1、グラファイトから作られる中間層12、p-SiCから作られる支持層2、及びc-SiCから作られる転写された有用層3を含む複合構造体10が得られ、他方では、ドナー基板の残り30’が得られる。有用層3の厚さは、典型的には100nm~1,500nmの間にある。有用層3のドーピングのレベルとタイプは、ドナー基板30の各特性の選択によって規定されるか、又は半導体層をドーピングするための既知の技法によって、続いて調整することができる。
【0066】
有用層3の自由表面は、通常、分離した後では粗く、たとえば、その粗さは、5nm~100nm RMS(AFM、20ミクロン×20ミクロンでの走査)の範囲にある。洗浄ステップ及び/又は平滑化ステップを加えて、良好な表面仕上げ(典型的には、20ミクロン×20ミクロンのAFM走査での、数オングストロームRMS未満の粗さ)を復元することができる。
【0067】
或いは、有用層3の自由表面は、この方法の以下のステップが、この粗さを許容するときには、分離されたときに粗いままとすることができる。
【0068】
仮基板1の後面1bに配置された第2の中間層12’及び第2の支持層2’を実装する特定の実施形態においては、ステップd)はさらに、第2の接合境界面5’を介して、c-SiCから作られる第2の有用層3’を、第2の支持層2’に転写することを含むことができる(
図3d)。
【0069】
次いで、本発明による製造方法は、有用層3に活性層4を形成するステップe)を含む(
図2e)。
【0070】
この活性層4は、ドープされた単結晶炭化ケイ素から作られる追加層を、有用層3にエピタキシャル成長させることによって製造されることが有利である。このエピタキシャル成長は、従来の温度範囲、すなわち1,500℃~1,900℃の間で生じ、対象となる電子構成部品に応じて、厚さがおよそ1ミクロン~数十ミクロン程度の追加層を形成する。
【0071】
複合構造体10においては、前述の非常に高い温度の処理によってグラファイトが損傷を受けるのを防止するために、グラファイトから作られる中間層12の各縁部に保護層が存在することが求められる。前述の通り、この保護層は、たとえば、(たとえば、支持層2と同時に堆積される)多結晶炭化ケイ素から作られる層、又はアモルファス層で構成することができる。
【0072】
本発明による製造方法は、活性層4上及び/又は活性層4内に、電子構成部品40の全部又は一部を製造するステップe’)をさらに含むことができる(
図2e-1)。電子構成部品40は、たとえば、トランジスタ、又は他の高電圧構成部品及び/若しくは高周波構成部品で構成することができる。
【0073】
活性層4上及び/又は活性層4内にこれらを製造するために、洗浄、堆積、リソグラフィ、注入、エッチング、平坦化、及び熱処理といった従来のステップが実行される。特に、前述の熱処理の中には、活性層4(又は、有用層3)に局所的に注入されたドーパントを活性化することを目的とするものがあり、通常は1,600℃以上の温度で実行される。
【0074】
仮基板1の後面に第2の支持層2’を実装する特定の実施形態において、ステップe)はさらに、第2の有用層3’に第2の活性層を形成することを含むことができ、ステップe’)は、前記第2の活性層上及び/又は前記第2の活性層中に、全て又は一部の第2の電子構成部品を作製することを含むことができることに留意されたい。
【0075】
最終的に、本発明による製造方法は、ステップe’が実行された場合、一方では、活性層4、有用層3、及び支持層2を含む半導体構造体100を形成し、他方では、仮基板1(
図2f(i))及び潜在的には電子構成部品40(
図2f(ii))を形成するために、中間層12の境界面において、及び/又は中間層12において除去するステップf)を含む。
【0076】
このステップにおいては、中間層12において(特定の実施形態では、場合によっては第2の中間層12’において)除去するための、いくつかの代替実施形態を実施することができる。
【0077】
第1の代替実施形態によれば、ステップf)は、中間層12、及び/又は中間層12と支持層2の境界面において、及び/又は中間層12と仮基板1の間においても、亀裂を伝搬させることによって機械的に除去することを含む。この亀裂は、機械的応力を印加した後、中間層12の平面にほぼ平行に伝搬する。たとえば、中間層12の反対側に面取りツールを挿入することにより、脆弱な境界面において開口部が開始して伝搬し、グラファイトは、z軸線に沿った凝集エネルギーが相対的に低いので、半導体構造体100と仮基板1の間で完全な分離が存在するまで、中間層12又は境界面において亀裂が生じることになることが好ましい。仮基板1の縁部1cに存在する保護層は、グラファイトでの亀裂の開始を促進するために、たとえば、ドライエッチング又はウェットエッチングによって除去されることが有利である。
【0078】
第2の代替実施形態によれば、ステップf)は、横方向の化学エッチングによる、半導体構造体100と仮基板1の間での化学的除去を含む。グラファイトへのアクセスを可能にするために、複合構造体10での仮基板1の周辺縁部1c(特に、中間層12の縁部)に配置された保護層(p-SiC)を、化学的又は機械的に除去しなければならない。次いで、中間層12の横方向の化学エッチングは、硝酸及び/又は硫酸を基にした溶液、たとえば濃硫酸及び重クロム酸カリウムの溶液、又は硫酸、硝酸、及び塩素酸カリウムの溶液を実施することができる。(水酸化カリウム(KOH)又は水酸化ナトリウム(NaOH)のタイプの)アルカリ溶液を実施する化学エッチングも利用することができる。
【0079】
もちろん、活性層4の自由面及び縁部、並びに電子構成部品40が存在する場合にはその電子構成部品を保護すること、並びに/又はエッチング液との接触時間を制限することに細心の注意を払って、この化学的除去の間にこれらを損傷しないようにすることになる。
【0080】
第3の代替実施形態によれば、ステップf)は、中間層12を形成するグラファイトの熱損傷による機械的除去を含む。ここで再び、少なくとも仮基板1の縁部に存在する保護層を除去して、中間層12へのアクセスを認める必要がある。
【0081】
熱損傷による除去は、酸素が存在する場合には、600℃~1,000℃の範囲の温度で生じる場合があり、次いで、中間層12のグラファイトが燃焼して粉々に崩れ、したがって、仮基板1から半導体構造体100が分離する。
【0082】
もちろん、ステップe’において電子構成部品40が製造された場合、この除去の代替実施形態は、加えられた温度に前記構成部品40が適合する場合にのみ適用することができる。
【0083】
第4の代替実施形態によれば、ステップf)は、ワイヤソーによって中間層12のグラファイトを切断することによって実行される。特に、このワイヤは、ダイヤモンド粒子を含む。
【0084】
前述の代替実施形態は、技術的に実行可能な任意の方式によって、任意選択で組み合わせることができることに留意されたい。
【0085】
実施される代替実施形態に関係なく、仮基板1の除去では、支持層2の後面2b及び/又は仮基板1の前面に、中間層12の残留物12rが残る場合がある。これらの残留物は、機械粉砕、化学機械研磨、化学エッチング、及び/又は熱損傷によって除去することができる。
【0086】
残留物12rの除去に続いて、必要な場合、支持層2の後面2bの粗さを低減するために、化学機械研磨又は化学エッチングの技法も実施することができる。
【0087】
仮基板1の後面1bの側に第2の活性層が存在する、前述の特定の実施形態においては、仮基板1を除去するステップf)によって、第2の活性層、第2の有用層3’、及び第2の支持層2’を含む第2の半導体構造体を形成することもできるようになる。
【0088】
仮基板1の除去中及び除去後に、半導体構造体100を処理しなければならず、この処理作業中にこの半導体構造体を機械的に保持するのに、その合計厚さが不十分である場合、取外し可能なハンドルを使用することを考えることができ、前記ハンドルは、たとえば、活性層4又は構成部品40に配置され、そこに一時的に固定されて、単一化ステップまでこの処理を実行する。
【0089】
本発明による製造方法が完了すると得られる半導体構造体100は、電子構成部品40で完成することが有利な活性層4を含み、この用途向きの厚さで支持層2に配置される。著しい材料ロスを伴う機械的な薄型化は必要とされない。支持層2は、(比較的高い温度で堆積するので)良質のp-SiCから作られるが、単結晶又は多結晶のSiCのバルク基板と比較すると低コストであり、構成部品40を単一化する前に大幅に薄型化しなければならなかったはずである。除去した後の仮基板1は、再利用するために回収され、このことも経済的な利点である。
【0090】
グラファイトから作られる中間層12は、活性層4(及び、好ましくは構成部品の全部又は一部)が形成された後に、複合構造体10を容易に除去できるようにし、活性層4を製造するのに利用される非常に高い温度の熱処理中に、複合構造体10の機械的安定性を確実にする。
【0091】
グラファイトから作られる中間層12の物理的特徴(平均粒度、多孔率、熱膨張係数)を選択することにより、支持層2の形成が確実になり、頑強で高品質の複合構造体10を得ることができるようになり、信頼性が高く高性能な半導体構造体100を得ることができるようになる。構成部品40の性能は、特に、複合構造体10によって、活性層4を形成するための非常に高い温度での処理が可能になるという事実から生じる。
【0092】
本発明はさらに、製造方法を参照して先に述べられ、前記方法において得られる中間構造体に対応する、複合構造体10に関する(
図2d、3d)。
【0093】
複合構造体10は、
炭化ケイ素の熱膨張係数に近い熱膨張係数を有する材料から作られる仮基板1と、
少なくとも仮基板1の前面1aに配置された、グラファイトから作られる中間層12と、
中間層12に配置された、厚さが10ミクロン~200ミクロンの範囲にある、多結晶炭化ケイ素から作られる支持層2と、
この支持層2に配置された、単結晶炭化ケイ素から作られる有用層3と
を含む。
【0094】
中間層12のグラファイトは、粒度が1ミクロン~50ミクロンの範囲にあり、多孔率が6%~17%の範囲にあり、及び/又は熱膨張係数が4×10-6/℃~5×10-6/℃の範囲にあることが好ましい。これらの特徴に関連する利点は、これまでに述べてきた。
【0095】
有用層3の厚さは、100nm~1,500nmの範囲にあることが好ましい。中間層12の厚さは、1ミクロン~100ミクロンの範囲、又は10ミクロン~100ミクロンの範囲にあり、仮基板1の厚さは、300ミクロン~800ミクロンの範囲にある。
【0096】
垂直超小型電子構成部品の用途において、支持層2は、良好な導電率、すなわち0.015オームcm~0.03オームcm、高い熱伝導率、すなわち200W/mK以上、及び有用層3と同様の熱膨張係数、すなわち周囲温度では通常3.8×10-6/℃~4.2×10-6/℃を有することが有利である。
【0097】
中間層12及び/又は仮基板1は、熱伝導率が5W/mK~500W/mKの範囲にあって、製造方法の非常に高い温度での熱処理ステップ中に、仮基板1に均一な温度を実現できることが有利である。特に、これにより、堆積層の均一性、並びに製造される層及び構成部品の物理的特徴の再現性が改善される。
【0098】
最終的に、本発明による製造方法を参照して説明してきたように、複合構造体10は「両面」とすることができ、すなわち、
仮基板1の後面1bに配置された、グラファイトから作られる第2の中間層12’と、
この第2の中間層12に配置された、厚さが10ミクロン~200ミクロンの範囲にある、多結晶炭化ケイ素から作られる第2の支持層2’と、
この第2の支持層2’に配置された、単結晶炭化ケイ素から作られる第2の有用層3’と
を含むことができる(
図3d)。
【0099】
このような複合構造体10により、第1の有用層3及び第2の有用層3’に2つの活性層40を形成することができ、本発明による製造方法が完了すると、単一の仮基板1から2つの半導体構造体100を得ることができる。
【0100】
もちろん、本発明は、記載された各実施形態及び各例に限定されるものではなく、特許請求の範囲によって定義される本発明の範囲から逸脱することなく、これらに代替実施形態を加えることができる。
【国際調査報告】