IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ケーエルエー−テンカー コーポレイションの特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2024-03-07
(54)【発明の名称】短波赤外線波長を使用する光学計量
(51)【国際特許分類】
   G01B 11/00 20060101AFI20240229BHJP
【FI】
G01B11/00 H
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023546246
(86)(22)【出願日】2022-02-25
(85)【翻訳文提出日】2023-08-31
(86)【国際出願番号】 US2022017787
(87)【国際公開番号】W WO2022192003
(87)【国際公開日】2022-09-15
(31)【優先権主張番号】63/159,451
(32)【優先日】2021-03-11
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】17/243,912
(32)【優先日】2021-04-29
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】500049141
【氏名又は名称】ケーエルエー コーポレイション
(74)【代理人】
【識別番号】110001210
【氏名又は名称】弁理士法人YKI国際特許事務所
(72)【発明者】
【氏名】マナッセン アムノン
(72)【発明者】
【氏名】サリブ アイザック
(72)【発明者】
【氏名】ヨハナン ラビブ
(72)【発明者】
【氏名】シャフィロブ ディアナ
(72)【発明者】
【氏名】ハジャジ エイタン
(72)【発明者】
【氏名】レビンスキー ブラディミール
(72)【発明者】
【氏名】アブラモブ アビ
(72)【発明者】
【氏名】シェンチス ミカエル
(72)【発明者】
【氏名】ヒルデシェイム アリエル
(72)【発明者】
【氏名】グラウア ヨアブ
(72)【発明者】
【氏名】アイゼンバッハ シュロモ
(72)【発明者】
【氏名】ラバート エタイ
(72)【発明者】
【氏名】ニル イフタチ
【テーマコード(参考)】
2F065
【Fターム(参考)】
2F065AA01
2F065AA21
2F065BB17
2F065CC31
2F065FF04
2F065GG04
2F065GG21
2F065JJ05
2F065JJ19
2F065JJ26
2F065LL21
(57)【要約】
本発明による光学計量ツールは、短波赤外線スペクトル帯域(SWIR)内およびSWIRスペクトル帯域外の両方に波長を有する照明を生成するための1つ以上の照明源と、照明をサンプルに向けるように設計された照明光学系とを備えることができる。SWIRスペクトル帯域内の少なくともいくつかの波長を含む第1の波長範囲に基づいてサンプルを撮像するように設計された第1の検出器と、-SWIRスペクトル帯域外の少なくともいくつかの波長を含む第2の波長範囲に基づいてサンプルを撮像するように設計された第2の検出器を含む第2の撮像チャネルと、-制御装置とを備える第1の撮像チャネル。制御装置は、第1の検出器からサンプルの第1の画像を受信し、第2の検出器からサンプルの第2の画像を受信し、第1および第2の画像に基づいてサンプルの光学計量測定値を生成することができる。
【特許請求の範囲】
【請求項1】
光学計量ツールであって、
1つ以上の照明源であって、前記1つ以上の照明源のうちの少なくとも1つは、短波赤外(SWIR)スペクトル範囲内の照明を生成するように構成され、前記1つ以上の照明源のうちの少なくとも1つは、SWIRスペクトル範囲外の照明を生成するように構成される、照明源と、
前記1つ以上の照明源からの照明をサンプルに向けるように構成された1つ以上の照明光学系と、
第1の波長範囲を有する照明に基づいて前記サンプルを撮像するように構成され、第1の検出器を含む第1の撮像チャネルであって、前記第1の波長範囲は、前記1つ以上の照明源からの前記SWIRスペクトル範囲内の少なくともいくつかの波長を含む、第1の撮像チャネルと、
前記第1の波長範囲とは異なる第2の波長範囲を有する照明に基づいて前記サンプルを撮像するように構成され、第2の検出器を含み、前記第2の波長範囲は、前記1つ以上の照明源からの前記SWIRスペクトル範囲外の少なくともいくつかの波長を含む、第2の撮像チャネルと、
前記第1の検出器および前記第2の検出器に通信可能に結合されたコントローラであって、1つ以上のプロセッサにプログラム命令を実行するように構成された1つ以上のプロセッサを含むコントローラと、
を含み、
前記コントローラは、前記プログラム命令を実行することで、
前記第1の検出器からサンプルの1つ以上の第1の画像を受け取り、
前記第2の検出器からサンプルの1つ以上の第2の画像を受け取り、
前記1つ以上の第1の画像および前記1つ以上の第2の画像に基づいて、サンプルの1つ以上の光学計量測定値を生成する、
光学計量ツール。
【請求項2】
請求項1に記載の光学計量ツールであって、
第2の波長範囲は、可視波長または紫外波長のうちの少なくとも1つを含む、
光学計量ツール。
【請求項3】
請求項1に記載の光学計量ツールであって、
前記光学計量測定は、オーバーレイ計量測定または光学限界寸法計量測定のうちの少なくとも1つを含む、
光学計量ツール。
【請求項4】
請求項1に記載の光学計量ツールであって、
前記1つ以上の光学計量測定のうちの少なくとも1つは、前記1つ以上の第1の画像のうちの少なくとも1つと、前記1つ以上の第2の画像のうちの少なくとも1つとに基づく複合光学計量測定を含む、
光学計量ツール。
【請求項5】
請求項4に記載の光学計量ツールであって、
前記1つ以上の第1の画像のうちの少なくとも1つ、および前記1つ以上の第2の画像のうちの少なくとも1つは、合成光学計量測定値を生成する前に合成画像に合成される、
光学計量ツール。
【請求項6】
請求項1に記載の光学計量ツールであって、
前記1つ以上の光学計量測定は、前記1つ以上の第1の画像に基づく1つ以上の第1の光学計量測定と、前記1つ以上の第2の画像に基づく1つ以上の第2の光学計量測定と、
を含む、
光学計量ツール。
【請求項7】
請求項1に記載の光学計量ツールであって、
前記第1の検出器からの1つ以上の第1の画像は、サンプルの第1の層上の特徴の視野平面画像を含み、第2の検出器からの1つ以上の第2の画像は、サンプルの第2の層上の特徴の視野平面の画像を含む、
光学計量ツール。
【請求項8】
請求項7に記載の光学計量ツールであって、
前記1つ以上の第1の画像または前記1つ以上の第2の画像のうちの少なくとも1つは、計量ターゲットの画像を含む、
光学計量ツール。
【請求項9】
請求項8に記載の光学計量ツールであって、
前記計量ターゲットは、撮像光学ターゲットを含む、
光学計量ツール。
【請求項10】
請求項9に記載の光学計量ツールであって、
前記撮像光学ターゲットは、先進撮像計量(advanced imaging metrology(AIM))ターゲットである、
光学計量ツール。
【請求項11】
請求項7に記載の光学計量ツールであって、
前記サンプルの第1の層は、前記サンプルの第2の層の下にある、
光学計量ツール。
【請求項12】
請求項11に記載の光学計量ツールであって、
前記第2の層は、第2の波長範囲の少なくともいくつかの波長を吸収し、第1の波長範囲の少なくともいくつかの波長を透過する、
光学計量ツール。
【請求項13】
請求項11に記載の光学計量ツールであって、
前記サンプルの第1の層は、前記第1の層上のデバイス特徴と共通する1つ以上の材料から形成されるプロセス層を含む、
光学計量ツール。
【請求項14】
請求項13に記載の光学計量ツールであって、
前記サンプルの第2の層はレジスト層を含む、
光学計量ツール。
【請求項15】
請求項13に記載の光学計量ツールであって、
前記サンプルの第2の層は、前記第2の層上のデバイス特徴と共通する1つ以上の材料から形成される追加のプロセス層を含む、
光学計量ツール。
【請求項16】
請求項7に記載の光学計量ツールであって、
前記サンプルの第1の層は、前記サンプルの第2の層と同じである、
光学計量ツール。
【請求項17】
請求項1に記載の光学計量ツールであって、
前記第1の検出器からの1つ以上の第1の画像は、前記サンプルの第1の層からの光の角度分布の瞳面画像を含み、前記第2の検出器からの1つ以上の第2の画像は、前記サンプルの第2の層からの光の角度分布の瞳面画像を含む、
光学計量ツール。
【請求項18】
請求項17に記載の光学計量ツールであって、
前記1つ以上の第1の画像または前記1つ以上の第2の画像のうちの少なくとも1つは、前記計量ターゲットの画像を含み、前記計量ターゲットは、散乱計量ターゲットを含む、
光学計量ツール。
【請求項19】
請求項1に記載の光学計量ツールであって、
前記第1の検出器はインジウムガリウムヒ素(InGaAs)検出器または水銀カドミウムテルル化物(HgCdTe)検出器のうちの少なくとも1つを含む、
光学計量ツール。
【請求項20】
請求項19に記載の光学計量ツールであって、
前記第2の検出器は、シリコン検出器またはガリウム砒素(GaAs)検出器の少なくとも1つを含む、
光学計量ツール。
【請求項21】
請求項19に記載の光学計量ツールであって、
前記第2の検出器はインジウムガリウムヒ素(InGaAs)検出器または水銀カドミウムテルル化物(HgCdTe)検出器のうちの少なくとも1つを含む、
光学計量ツール。
【請求項22】
請求項1に記載の光学計量ツールであって、
前記第1の波長範囲および前記第2の波長範囲は重複せず、カットオフ波長によって分離され、前記第1の波長範囲は前記カットオフ波長を上回る波長を含み、前記第2の波長範囲は前記カットオフ波長未満の波長を含む、
光学計量ツール。
【請求項23】
請求項22に記載の光学計量ツールであって、
前記カットオフ波長は700nm~1100nmの範囲である、
光学計量ツール。
【請求項24】
請求項22に記載の光学計量ツールであって、
前記カットオフ波長は、前記第1検出器の量子効率と前期第2検出器の量子効率とが等しい波長に相当する、
光学計量ツール。
【請求項25】
請求項1に記載の光学計量ツールであって、
前記1つ以上の照明源は、前記第1の波長範囲の照明を生成するように構成された第1の照明源と、第2の波長範囲の照明を生成するように構成される第2の照明源とを含む、
光学計量ツール。
【請求項26】
請求項1に記載の光学計量ツールであって、
前記1つ以上の照明源は、前記第1および第2の波長範囲の照明を生成するように構成された単一の照明源を含む、
光学計量ツール。
【請求項27】
請求項1に記載の光学計量ツールであって、
前記1つ以上の照明源は、プラズマ源、狭帯域レーザ源、またはスーパーコンティニュームレーザ源のうちの少なくとも1つを含む、
光学計量ツール。
【請求項28】
請求項1に記載の光学計量ツールであって、
前記サンプルからの前記第1の波長範囲の光を前記第1の撮像チャネルに向け、前記サンプルからの前記第2の波長範囲の光を第2の撮像チャネルに向ける、1つ以上のビームスプリッタを含む、
光学計量ツール。
【請求項29】
光学計量ツールであって、
1つ以上の照明源であって、1つ以上の照明源のうちの少なくとも1つは、短波赤外(SWIR)スペクトル範囲内の照明を生成するように構成され、前記1つ以上の照明源のうちの少なくとも1つは、前記SWIRスペクトル範囲外の照明を生成するように構成される、照明源と、
前記1つ以上の照明源からの照明をサンプルに向けるように構成された1つ以上の照明光学系と、
第1の撮像チャネルであって、第1の波長範囲を有する照明に基づいて前記サンプルを撮像するように構成された第1の検出器を含み、前記第1の波長範囲は、前記1つ以上の照明源からの前記SWIRスペクトル範囲内の少なくともいくつかの波長を含み、前記第1の波長範囲とは異なる第2の波長範囲を有する照明に基づいて前記サンプルを撮像するように構成された第2の検出器をさらに含み、前記第2の波長範囲は、前記1つ以上の照明源からの前記SWIRスペクトル範囲外の少なくともいくつかの波長を含み、前記第1の検出器および前記第2の検出器は、前記サンプルを撮像するための収集経路内に前記第1の検出器または前記第2の検出器を選択的に位置付けるように、カメラチェンジャ上に搭載される第1の撮像チャネルと、
前記第1の波長範囲とは異なる第3の波長範囲を有する照明に基づいて前記サンプルを撮像するように構成された第3の検出器を含む第2の撮像チャネルであって、前記第3の波長範囲は、前記1つ以上の照明源からの前記SWIRスペクトル範囲外の少なくともいくつかの波長を含む、第2の撮像チャネルと、
前記第1および第2の検出器に通信可能に結合されたコントローラであって、1つ以上のプロセッサにプログラム命令を実行するように構成された前記1つ以上のプロセッサを含むコントローラと、
を含み、
前記1つ以上のプロセッサが前記プログラム命令を実行することで、
第1の検出器からサンプルの1つ以上の第1の画像を受け取り、
第2の検出器からサンプルの1つ以上の第2の画像を受け取る;第3の検出器からサンプルの1つ以上の第3の画像を受け取り、
1つ以上の第1の画像、1つ以上の第2の画像、および1つ以上の第3の画像に基づいて、サンプルの1つ以上の光学計量測定値を生成する、
光学計量ツール。
【請求項30】
請求項29に記載の光学計量ツールであって、
前記第2の波長範囲または前記第3の波長範囲の少なくとも1つは、可視波長または紫外線波長の少なくとも1つを含む、
光学計量ツール。
【請求項31】
請求項29に記載の光学計量ツールであって、
前記1つ以上の光学計量測定は、オーバーレイ計量測定または光学限界寸法計量測定のうちの少なくとも1つを含む、
光学計量ツール。
【請求項32】
請求項29に記載の光学計量ツールであって、
前記第1の検出器からの1つ以上の第1の画像は、前記サンプルの第1の層上の特徴の画像を含み、前記第二検出器からの一つ以上の第二画像又は前期第三検出器からの一つ以上の第三画像の少なくとも一方は、前記サンプルの第二層上の特徴の画像を含む、
光学計量ツール。
【請求項33】
請求項29に記載の光学計量ツールであって、
前記第1の検出器はインジウムガリウムヒ素(InGaAs)検出器または水銀カドミウムテルル化物(HgCdTe)検出器のうちの少なくとも1つを含む、
光学計量ツール。
【請求項34】
請求項33に記載の光学計量ツールであって、
前記第2の検出器は以下を含むことを特徴とする。シリコン検出器またはGaAs検出器の少なくとも1つを含む、
光学計量ツール。
【請求項35】
請求項29に記載の光学計量ツールであって、
前記第1波長範囲および前記第2の波長範囲は、重複せず、カットオフ波長によって分離され、前記第1の波長範囲は、カットオフ波長を上回る波長を含み、前記第2の波長範囲は、カットオフ波長未満の波長を含む、
ことを特徴とする。
光学計量ツール。
【請求項36】
請求項35に記載の光学計量ツールであって、
前記カットオフ波長は700nm~1100nmの範囲である、
光学計量ツール。
【請求項37】
光学計量ツールであって、
1つ以上の照明源であって、前記1つ以上の照明源のうちの少なくとも1つは、短波赤外(SWIR)スペクトル範囲内の照明を生成するように構成され、前記1つ以上の照明源のうちの少なくとも1つは、前記SWIRスペクトル範囲外の照明を生成するように構成される、1つ以上の照明源と、
前記1つ以上の照明源からの照明をサンプルに向けるように構成された1つ以上の照明光学系と、
1つ以上の照明源によって生成されるSWIRスペクトル範囲内の少なくともいくつかの波長と、1つ以上の照明源によって生成されるSWIRスペクトル範囲外の少なくともいくつかの波長とに敏感である検出器と、
前記検出器に通信可能に結合されたコントローラであって、前記コントローラは、プログラム命令を実行するように構成された1つ以上のプロセッサを含む、コントローラと、
を含み、
前記1つ以上のプロセッサが前記プログラムを実行することで、
前記1つ以上の照明源によって生成された前記SWIRスペクトル範囲内の少なくともいくつかの波長での照明に基づいて、前記検出器から前記サンプルの1つ以上の第1の画像を受信するステップと、
前記1つ以上の照明源によって生成される前記SWIRスペクトル範囲外の少なくともいくつかの波長での照明に基づいて、前記検出器からサンプルの1つ以上の第2の画像を受信するステップと、
前記1つ以上の第1の画像および前記1つ以上の第2の画像に基づいて、サンプルの1つ以上の光学計量測定値を生成する、
光学計量ツール。
【請求項38】
請求項37に記載の光学計量ツールであって、
前記検出器は700nmを超える波長に敏感である、
光学計量ツール。
【請求項39】
請求項37に記載の光学計量ツールであって、
前記検出器からの1つ以上の第1の画像は、前記サンプルの第1の層上の特徴の視野平面画像を含み、前記検出器からの1つ以上の第2の画像は、前記サンプルの第2の層上の特徴の視野平面画像を含み、前記サンプルの第1の層は、前記サンプルの第2の層の下にあり、前記第2の層は、前記SWIRスペクトル範囲外の波長の少なくともいくつかを吸収する、
光学計量ツール。
【請求項40】
請求項39に記載の光学計量ツールであって、
前記サンプルの第1の層は、前記第1の層上のデバイス特徴と共通する1つ以上の材料から形成されるプロセス層を含み、前記サンプルの前記第2の層は、レジスト層を含む、
光学計量ツール。
【請求項41】
オーバーレイ計量ターゲットであって、
サンプルの第1の層における1つ以上の第1の層特徴と
前記サンプルの第2の層における1つ以上の第2の層特徴と、
を含み、
前記サンプルの第2の層は、前記サンプルの第1の層の上部に配置され、前記第1の層特徴を覆う前記サンプルの少なくとも一部は、可視波長を有する少なくともいくつかの照明を吸収し、短波赤外線(SWIR)波長を有する少なくともいくつかの照明を透過する材料から形成され、
前記1つ以上の第1の層特徴および1つ以上の第2の層特徴は、前記1つ以上の第1の層特徴の1つ以上の第1の画像および前記1つ以上の第2層特徴の1つ以上の第2の画像に基づいて、前記サンプルの前記第1および第2の層の相対的整合のオーバーレイ測定を提供するように配列され、
前記1つ以上の第1の層画像は、前記SWIR波長を含む照明と、少なくとも前記SWIR波長に敏感な第1の撮像検出器とを用いて形成され、前記1つ以上の第2の層画像は、可視波長を含む照明と、少なくとも可視波長に敏感な第2の撮像検出器とを用いて形成される、
オーバーレイ計量ターゲット。
【請求項42】
請求項41に記載のオーバーレイ計量ターゲットであって、
前記サンプル上の第3の層が、第2の層の上に配置され、
前記第3の層は、可視波長を有する少なくともいくつかの照明を吸収し、前記SWIR波長を有する少なくともいくつかの照明を透過する、
オーバーレイ計量ターゲット。
【請求項43】
請求項42に記載のオーバーレイ計量ターゲットであって、
前記第3の層は、炭素を含む、
オーバーレイ計量ターゲット。
【請求項44】
請求項41に記載のオーバーレイ計量ターゲットであって、
第1の撮像検出器からの1つ以上の第1の画像は、前記サンプルの第1の層上の第1の層特徴の視野平面画像を含み、第2の検出器からの1つ以上の第2の画像は、前記サンプルの第2の層上の第2の層特徴の視野平面画像を含むことを特徴とする
オーバーレイ計量ターゲット。
【請求項45】
請求項44に記載のオーバーレイ計量ターゲットであって、
前記1つ以上の第1の層特徴および前期1つ以上の第2の層特徴は、前記サンプルの非重複領域に配置される、
オーバーレイ計量ターゲット。
【請求項46】
請求項45に記載のオーバーレイ計量ターゲットであって、
前記1つ以上の第1の層特徴は、1つ以上の第1層作業ゾーン内に配置され、前記1つ以上の第2の層特徴は、1つ以上の第2層作業ゾーン内に配置される、
オーバーレイ計量ターゲット。
【請求項47】
請求項46に記載のオーバーレイ計量ターゲットであって、
前記1つ以上の第1層作業ゾーンは、回転対称であり、前記1つ以上の第2層作業ゾーンは、90度または180度回転対称の少なくとも1つである、
オーバーレイ計量ターゲット。
【請求項48】
請求項46に記載のオーバーレイ計量ターゲットであって、
前記1つ以上の第1層作業ゾーンは鏡面対称であり、前記1つ以上の第2層作業ゾーンは鏡面対称である、
オーバーレイ計量ターゲット。
【請求項49】
請求項41に記載のオーバーレイ計量ターゲットであって、
前記1つ以上の第1の層特徴および前記1つ以上の第2の層特徴は、先進撮像計量(advanced imaging metrology(AIM))ターゲットを形成するように配置される、
オーバーレイ計量ターゲット。
【請求項50】
請求項41に記載のオーバーレイ計量ターゲットであって、
前記検出器からの1つ以上の第1の画像は、前記サンプルの第1の層からの光の角度分布の瞳面画像を含み、前記検出器からの1つ以上の第2の画像は、前記サンプルの第2の層からの光の角度分布の瞳面画像を含む、
オーバーレイ計量ターゲット。
【請求項51】
請求項50に記載のオーバーレイ計量ターゲットであって、
前記1つ以上の第1の層特徴および前記1つ以上の第2の層特徴は、格子オーバー格子オーバーレイターゲットを形成するように配置される、
オーバーレイ計量ターゲット。
【請求項52】
請求項41に記載のオーバーレイ計量ターゲットであって、
前記サンプルの第1の層は、前記第1の層上のデバイス特徴に共通する1つ以上の材料から形成されるプロセス層を含む、
オーバーレイ計量ターゲット。
【請求項53】
請求項52に記載のオーバーレイ計量ターゲットであって、
前記サンプルの第2の層はレジスト層を含む、
オーバーレイ計量ターゲット。
【請求項54】
請求項52に記載のオーバーレイ計量ターゲットであって、
前記サンプルの第2の層は第2の層上のデバイス特徴に共通する1つ以上の材料から形成される追加のプロセス層を含む、
オーバーレイ計量ターゲット。
【発明の詳細な説明】
【技術分野】
【0001】
「関連出願の参照」
本出願は、米国仮出願63/159,451(2021年3月11日)の米国特許法119条(e)の利益を主張し、その全体が参照により本明細書に組み込まれる。
【0002】
「技術分野」
本開示は、概して、光学計量(optical metrology)に関し、より詳細には、短波赤外線(SWIR)波長を利用する光学計量に関する。
【背景技術】
【0003】
半導体プロセスロードマップは、可視波長に対してはより低い透過性を示すが、短波赤外線(SWIR)波長に対しては増加する透過性を示すサンプル層を含むように変化している。結果として、光の可視波長に基づく光学計量技術は、より低い信号強度およびより高いノイズを生成し得、これは、測定精度およびスループットに悪影響を与え得る。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】米国特許7,684,039号公報
【特許文献2】米国特許7,879,627号公報
【特許文献3】米国特許10,527,951号公報
【特許文献4】米国特許出願公開2021/0072650号公報
【特許文献5】米国特許出願公開2020/0409271号公報
【特許文献6】米国特許10,444,161号公報
【特許文献7】米国特許出願公開US2020/0124408号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
したがって、上記の欠点を解決するためのシステムおよび方法を提供することが望ましい。
【課題を解決するための手段】
【0006】
光学計量ツールは、本開示の1つ以上の例示的な実施形態に従って開示される。1つの例示的な実施形態では、ツールは、1つ以上の照明源を含み、1つ以上の照明源のうちの少なくとも1つは、短波赤外(SWIR)スペクトル範囲内の照明を生成し、1つ以上の照明源のうちの少なくとも1つは、SWIRスペクトル範囲外の照明を生成する。別の例示的な実施形態では、ツールは、1つ以上の照明源からの照明をサンプルに向けるための1つ以上の照明光学系を含む。別の例示的な実施形態では、ツールは、第1の波長範囲を有する照明に基づいてサンプルを撮像するための第1の検出器を含む第1の撮像チャネルを含み、第1の波長範囲は、1つ以上の照明源からのSWIRスペクトル範囲内の少なくともいくつかの波長を含む。別の例示的な実施形態では、ツールは、第1の波長範囲とは異なる第2の波長範囲を有する照明に基づいてサンプルを撮像するための第2の検出器を含む第2の撮像チャネルを含み、第2の波長範囲は、1つ以上の照明源からのSWIRスペクトル範囲外の少なくともいくつかの波長を含む。別の例示的な実施形態では、ツールはコントローラを含む。別の例示的な実施形態では、コントローラは、第1の検出器からサンプルの1つ以上の第1の画像を受信する。別の例示的な実施形態では、コントローラは、第2の検出器からサンプルの1つ以上の第2の画像を受信する。別の例示的な実施形態では、コントローラは、1つ以上の第1の画像および1つ以上の第2の画像に基づいて、サンプルの1つ以上の光学計量測定値を生成する。
【0007】
光学計量ツールは、本開示の1つ以上の例示的な実施形態に従って開示される。1つの例示的な実施形態では、ツールは、1つ以上の照明源を含み、1つ以上の照明源のうちの少なくとも1つは、短波赤外(SWIR)スペクトル範囲内の照明を生成し、1つ以上の照明源のうちの少なくとも1つは、SWIRスペクトル範囲外の照明を生成する。別の例示的な実施形態では、ツールは、1つ以上の照明源からの照明をサンプルに向けるための1つ以上の照明光学系を含む。別の例示的実施形態では、ツールは、第1の撮像チャネルを含み、第1の撮像チャネルは、第1の波長範囲を伴う照明に基づいてサンプルを撮像するための第1の検出器を含み、第1の波長範囲は、1つ以上の照明源からのSWIRスペクトル範囲内の少なくともいくつかの波長を含む。別の例示的な実施形態では、第1の撮像チャネルは、第1の波長範囲とは異なる第2の波長範囲を有する照明に基づいてサンプルを撮像するように構成された第2の検出器をさらに含み、第2の波長範囲は、1つ以上の照明源からのSWIRスペクトル範囲外の少なくともいくつかの波長を含む。別の例示的な実施形態では、第1の検出器および第2の検出器は、サンプルを撮像するための収集経路(collection pathway:集光経路)内に第1の検出器または第2の検出器を選択的に位置付けるために、カメラチェンジャに取り付けられる。別の例示的な実施形態では、ツールは、第1の波長範囲とは異なる第3の波長範囲を有する照明に基づいてサンプルを撮像するように構成された第3の検出器を含む第2の撮像チャネルを含み、第3の波長範囲は、1つ以上の照明源からのSWIRスペクトル範囲外の少なくともいくつかの波長を含む。別の例示的な実施形態では、ツールはコントローラを含む。別の例示的な実施形態では、コントローラは、第1の検出器からサンプルの1つ以上の第1の画像を受信する。別の例示的な実施形態では、コントローラは、第2の検出器からサンプルの1つ以上の第2の画像を受信する。別の例示的な実施形態では、コントローラは、第3の検出器からサンプルの1つ以上の第3の画像を受信する。別の例示的な実施形態では、コントローラは、1つ以上の第1の画像、1つ以上の第2の画像、および1つ以上の第3の画像に基づいて、サンプルの1つ以上の光学計量測定値を生成する。
【0008】
光学計量ツールは、本開示の1つ以上の例示的な実施形態に従って開示される。1つの例示的な実施形態では、ツールは、1つ以上の照明源を含み、1つ以上の照明源のうちの少なくとも1つは、短波赤外(SWIR)スペクトル範囲内の照明を生成し、1つ以上の照明源のうちの少なくとも1つは、SWIRスペクトル範囲外の照明を生成する。別の例示的な実施形態では、ツールは、1つ以上の照明源からの照明をサンプルに向けるための1つ以上の照明光学系を含む。別の例示的な実施形態では、ツールは、1つ以上の照明源によって生成されるSWIRスペクトル範囲内の少なくともいくつかの波長と、1つ以上の照明源によって生成されるSWIRスペクトル範囲外の少なくともいくつかの波長とに感度がある検出器を含む。別の例示的な実施形態では、ツールはコントローラを含む。別の例示的な実施形態では、コントローラは、1つ以上の照明源によって生成されたSWIRスペクトル範囲内の少なくともいくつかの波長での照明に基づいて、検出器からサンプルの1つ以上の第1の画像を受信する。別の例示的実施形態では、コントローラは、1つ以上の照明源によって生成されるSWIRスペクトル範囲外の少なくともいくつかの波長を伴う照明に基づいて、第2の検出器からサンプルの1つ以上の第2の画像を受信する。別の例示的な実施形態では、コントローラは、1つ以上の第1の画像および1つ以上の第2の画像に基づいて、サンプルの1つ以上の光学計量測定値を生成する。
【0009】
オーバーレイ計量ターゲットは、本開示の1つ以上の例示的な実施形態に従って開示される。1つの例示的な実施形態では、ターゲットは、サンプルの第1の層内に1つ以上の第1の層特徴を含む。別の例示的な実施形態では、ターゲットは、サンプルの第2の層に1つ以上の第2の層特徴を含み、サンプルの第2の層は、サンプルの第1の層の上部に配置される。別の例示的な実施形態では、第1の層特徴を覆うサンプルの少なくとも一部は、可視波長を有する少なくともいくつかの照明を吸収し、短波長赤外線(SWIR)波長を有する少なくともいくつかの照明を透過する材料から形成される。別の例示的な実施形態では、1つ以上の第1の層特徴および1つ以上の第2の層特徴は、1つ以上の第1の層特徴の1つ以上の第1の画像および1つ以上の第2の層特徴の1つ以上の第2の画像に基づいて、サンプルの第1の層および第2の層の相対的な位置合わせのオーバーレイ測定値を提供するように配置される。別の例示的な実施形態では、1つ以上の第1の層画像は、SWIR波長および少なくともSWIR波長に敏感な第1の撮像検出器を含む照明を用いて形成される。別の例示的実施形態では、1つ以上の第2の層画像は、可視波長および少なくとも可視波長に感受性である第2の撮像検出器を含む、照明を用いて形成される。
【発明の効果】
【0010】
前述の概要および以下の詳細な説明の両方は、例示的および説明的なものにすぎず、特許請求される本発明を必ずしも限定するものではないことを理解されたい。明細書に組み込まれ、明細書の一部を構成する添付の図面は、本発明の実施形態を示し、全般的な説明とともに、本発明の原理を説明するのに役立つ。
【図面の簡単な説明】
【0011】
本開示の多数の利点は、添付の図面を参照することによって当業者によってよりよく理解され得る。
図1A図1Aは、本開示の1つ以上の実施形態による、SWIRスペクトル範囲内の少なくとも1つの波長を有する照明を利用するSWIR光計量システムの概念ブロック図である。
図1B図1Bは、本開示の1つ以上の実施形態による、単一の測定チャネルを含むSWIR光計量ツールの概念図である。
図1C図1Cは、本開示の1つ以上の実施形態による、照明経路および収集経路が別個の要素を含むSWIR光計量ツールの概念図である。
図1D図1Dは、2つの測定チャネルを含むSWIR光計量ツールの概念図であり、測定チャネルのうちの少なくとも1つは、本開示の1つ以上の実施形態によるSWIR検出器を含む。
図1E図1Eは、本開示の1つ以上の実施形態による、可視波長検出器とSWIR検出器との間で選択的に切り替えるために1つの測定チャネル内にカメラチェンジャを含む2つの測定チャネルを有するSWIR光計量ツールの概念図である。
図1F図1Fは、本開示の1つ以上の実施形態による、SWIR検出器を含む1つの測定チャネルと、可視波長検出器を含む2つの測定チャネルとを有するSWIR光計量ツールの概念図である。
図2A図2Aは、本開示の1つ以上の実施形態による、プロセス層およびレジスト可視不透明IR透過(VOIT)層内に非重複ターゲット特徴を含むSWIR計量ターゲットの上面図である。
図2B図2Bは、本開示の1つ以上の実施形態による、図2AのSWIR計量ターゲットの1つのセルの側面図である。
図2C図2Cは、本開示の1つ以上の実施形態による、VOIT層によって覆われた2つのプロセス層内に非重複フィーチャを含むSWIR計量ターゲットの側面図である。
図2D図2Dは、本開示の1つ以上の実施形態による、プロセス層およびレジストVOIT層内に重複ターゲット特徴を含むSWIR計量ターゲットの上面図である。
図2E図2Eは、本開示の1つ以上の実施形態による図2DのSWIR計量ターゲットの側面図である。
図3図3は、本開示の1つ以上の実施形態によるSWIRオーバーレイ方法において実行されるステップを示す流れ図である。
【発明を実施するための形態】
【0012】
ここで、添付の図面に示される開示された主題を詳細に参照する。本開示は、特定の実施形態およびその特定の特徴に関して具体的に示され、説明されてきた。本明細書に記載される実施形態は、限定的ではなく例示的であると解釈される。本開示の精神および範囲から逸脱することなく、形態および詳細における種々の変更および修正が行われ得ることが、当業者に容易に明白となるはずである。
【0013】
本開示の実施形態は、短波赤外線(SWIR)波長を使用して光学計量を実施するためのシステムおよび方法を対象とする。SWIRスペクトル範囲は、概して、約700ナノメートル(nm)~約3000nmの範囲の波長を含むと考えられ、約750nm~約900nm(例えば、シリコン系検出器の感度の上限に近い)の範囲の波長、または時には1100nmまたは1400nmまでの範囲の波長が、時には近赤外(NIR)光と呼ばれることに留意されたい。本開示の目的のために、SWIRスペクトル範囲は、約700ナノメートル(nm)~約3000nmの範囲の波長を含むと広く考慮される。本明細書に開示されるシステムおよび方法は、当技術分野で公知の任意の光学計量技法に好適であり得ることが想定される。このようにして、本明細書に開示されるシステムおよび方法は、SWIRスペクトル範囲で動作することができるように、紫外(UV)スペクトル範囲で現在動作している既存の光計量技術を赤外(IR)スペクトル範囲に拡張することができる。
【0014】
本開示の目的のために、光学計量という用語は、光によるサンプルの照明、照明に応答してサンプルから光を取り込むこと(例えば、画像または離散測定の形態である)、および取り込まれた光に基づいてサンプルの1つ以上の測定値を生成することに基づく計量を広く指すために使用される。半導体デバイス製造を非限定的な例として考えると、光学計量は、オーバーレイ計量または光学クリティカルディメンション(OCD)計量を含み得るが、これらに限定されない。
【0015】
SWIR波長への光学計量測定の拡張は、可視波長に対する測定精度および/またはロバスト性を改善し得る。オーバーレイ測定に基づく例示的な例として、多くの光学オーバーレイ技術は、オーバーレイ誤差に加えてオーバーレイターゲットのさまざまな非対称性に敏感である。例えば、光学オーバーレイ技法は、側壁角度の非対称性等であるが、それらに限定されない、印刷された特徴自体の幾何学形状の非対称性に敏感であり得る。結果として、そのようなオーバーレイ技術は典型的には、オーバーレイ測定のためのオーバーレイ誤差の影響を隔離するために、望ましくないフィーチャ非対称性を制限し、既知のフィーチャ非対称性に基づいて較正され、および/または異なる条件(例えば、異なる照明条件、異なるサンプル回転など)の下で複数の測定を含み得るように高度に制御された条件の下で実行されなければならない。しかしながら、印刷された特徴の非対称性に対する感度は、概して、より長い波長に対して減少することが本明細書で考慮される。結果として、SWIR波長を使用するオーバーレイ測定は、オーバーレイ誤差の影響を他のフィーチャ非対称性から切り離し得、サンプル上のオーバーレイ誤差により正確に対応する測定を提供し得る。
【0016】
本開示の実施形態は、SWIR波長に敏感な1つ以上の検出器(例えば、SWIR検出器)を用いて光学計量測定を実行することを対象とする。例えば、SWIR検出器は、SWIR波長に敏感な焦点面アレイ(FPA)を含み得る。いくつかのオーバーレイ技術がNIRスペクトル範囲に拡張されていることが本明細書において認識されている。例えば、近赤外線スペクトル範囲におけるオーバーレイ計量は、概して米国特許7,684,039(2010年3月23日)で記載され、これは参照によりその全体が本明細書に組み込まれる。しかしながら、限定されないがインジウム-ガリウム-砒素(InGaAs)検出器または水銀-カドミウム-テルル(HgCdTeまたはMCT)検出器のようなSWIR波長に敏感なカメラにおける最近の進歩は、そのようなカメラをオーバーレイ計量システムへの統合のために実現可能にし得る。この点に関して、SWIR波長を含むように様々な光学計量技術を拡張することができる。
【0017】
いくつかの実施形態では、SWIRカメラは、既存のシステム(例えば、UV、可視、IR、またはNIRスペクトル範囲で動作する)への拡張として追加される。例えば、SWIRカメラを有する追加の測定チャネルを既存のシステムに追加することができる。別の例として、既存のカメラおよびSWIRカメラは、カメラスイッチャ(例えば、一方のカメラを他方のカメラと交換するのに適したデバイス)上に搭載され得る。このようにして、ユーザまたは自動システムは、既存のカメラとSWIRカメラとの間で選択的に切り替えることができる。
【0018】
いくつかの実施形態では、SWIRカメラは、既存のカメラ(例えば、UV、可視、またはIRスペクトル範囲で動作する)を置換および/または補完してもよい。例えば、可視カメラおよびSWIRカメラの両方を含む光学計量は、一方または両方のカメラの量子効率が比較的低いスペクトル領域において感度の向上を提供し得ることが本明細書で企図される。例えば、シリコンベースの検出器の量子効率は、概して、400nmを上回る可視波長に対して高くなり得るが、概して、700nmを上回る波長に対して劣化し得る。対照的に、InGaAs検出器などのSWIR検出器の量子効率は、400nmでは比較的悪いことがあるが、概して、より長い波長に対して改善し得る。しかしながら、InGaAs検出器の量子効率は、700~750nmの範囲の波長に対するシリコン検出器の量子効率と等しいか、またはそれを超えることがある。このようにして、SWIR検出器は、特定のスペクトル領域における可視波長検出器を置換および/または補完することができる。別の例として、単一のSWIRセンサは、SWIR波長および非SWIR波長を含む対象の全スペクトル範囲にわたって充分な量子効率を有し得る。例えば、SWIR検出器は、関心のある可視波長に対して感度を提供するように選択されたInP厚さを有するInGaAsセンサなどのSWIR-VISセンサを含むことができるが、これに限定されない。SWIR-VIS InGaAsセンサは、概して、Jaydeep K.Duttaら、「Analytical model for design-optimization and performances of fabricated broadband(VIS-SWIR) photo red for Image sensor and optical communication applications」、Proc.SPIE 10656、Image Sensing Technologiesに記載される:Materials, Devices Systems, and Applications V, 106560N(15 May 2018)。これは、その全体が参照により本明細書に組み込まれる。
【0019】
本開示の追加の実施形態は、少なくともいくつかのSWIR波長を有する照明を利用するSWIR計量ツールを対象とする。一実施形態では、SWIR光学計量ツールは、SWIR照明を生成するための少なくとも1つの照明源と、限定されないが、InGaAs検出器またはHgCdTe検出器等のSWIR照明に敏感なSWIR検出器を有する少なくとも1つの測定チャネルとを含む。例えば、SWIR光計量ツールは、少なくともいくつかのSWIR波長での照明に基づいてオーバーレイ測定を提供するのに適した単一の測定チャネルを含みえる。別の例として、SWIR光学計量ツールは、2つ以上の測定チャネルを含んでもよく、測定チャネルの少なくとも1つは、少なくともいくつかのSWIR波長を有する照明に基づいてオーバーレイ測定を提供するのに適している。一般的な意味では、SWIR計量ツールは、非SWIRスペクトル範囲ならびにSWIRスペクトル範囲に敏感であり得、したがって、それに基づいて測定値を提供し得る。例えば、SWIR光計量ツールは、SWIR波長に加えてUV、可視、IR、および/またはNIR波長に基づく測定値を提供することができる。
【0020】
本開示のさらなる実施形態は、多波長照明および集光を提供するSWIR光学計量ツールを対象とし、多波長照明は、少なくとも1つのSWIR波長を含む。本明細書では、高度に制御された条件および「理想的な」計量ターゲットの下で、光学計量測定は、概して、波長独立であり得ることが企図される。多くの実用的な用途では、光学計量測定は、異なる波長を使用して生成されるときに異なり得る。しかしながら、いくつかの場合において、異なる波長で生成された複数の光学計量測定は、単一の波長での単一の測定よりもターゲットまたは測定条件の変動に対してより正確またはよりロバストでありえる最終的なオーバーレイ測定を提供するために、組み合わせられるかまたは他の仕方で一緒に分析されえる。
【0021】
多波長光学計量測定は、本開示の精神および範囲内の種々の技法を使用して生成されてもよい。一実施形態では、SWIR光学計量ツールは、測定信号の逐次捕捉を提供するためのカメラスイッチャ(例えば、制御可能なビーム方向付け光学系、収集経路に異なる検出器を選択的に配置するための並進ステージなどである)を含んでもよい。別の実施形態では、SWIR光計量ツールは、2つ以上の測定チャネルを含み、少なくとも1つの測定チャネルは、SWIR検出器を含む。この構成では、SWIR光計量ツールは、各チャネルにおいて計量信号を同時にまたは連続的に生成することができる。例えば、SWIR光計量ツールは、異なるスペクトル帯域の測定光を異なる検出器に向けるための1つ以上のビームスプリッタ(例えば、波長感応ビームスプリッタ)を含むことができる。これは、サンプルが各スペクトル範囲の光で同時に照明されるときに異なるスペクトル範囲に関連する測定信号の同時捕捉を可能にし、サンプルが各スペクトル範囲の光で順次照明されるときに測定信号の逐次捕捉を可能にし得る。
【0022】
測定チャネル間の種々のカットオフ波長が、本開示の精神および範囲内で選択され得ることが、本明細書でさらに企図される。いくつかの実施形態では、カットオフ波長は、SWIRスペクトル範囲と非SWIRスペクトル範囲との間の遷移に基づく。例えば、カットオフ波長は700nm~1100nmの範囲であり得る。別の例として、カットオフ波長は700nm~1400nmの範囲であり得る。いくつかの実施形態では、カットオフ波長は、可視波長検出器の限界に基づいて選択される。例えば、シリコンベースの検出器は、概して、約900nm未満の波長に制限され得る。一実施形態では、SWIR光計量ツールは、SWIR検出器を含む第1の測定チャネルと、可視波長検出器を含む第2の測定チャネルとを含み、第1の測定チャネルと第2の測定チャネルとの間のカットオフ波長は、約900nmであるように選択される。このようにして、SWIR検出器を含む第1の測定チャネルは、第2の測定チャネル内の可視波長検出器にアクセスできない波長の計量データを捕捉することができる。
【0023】
いくつかの実施形態では、カットオフ波長は、種々のチャネル内の検出器の量子効率に基づいて選択される。例えば、本明細書で前述したように、InGaAs検出器の量子効率は、700~750nmの範囲の波長を上回るシリコン検出器の量子効率と等しいか、またはそれを超えてもよい。一実施形態では、SWIR光計量ツールは、SWIR検出器を含む第1の測定チャネルと、可視波長検出器を含む第2の測定チャネルとを含み、第1の測定チャネルと第2の測定チャネルとの間のカットオフ波長は、約700nmであるように選択される。このようにして、SWIR検出器を含む第1の測定チャネルは、第2の測定チャネル内の可視波長検出器にアクセス可能ないくつかの波長の計量データを捕捉することができるが、SWIR検出器はより高い量子効率を有する。
【0024】
本開示のさらなる実施形態は、可視波長に対して少なくとも部分的に不透明であるが、SWIR波長に対して少なくとも部分的に透明である1つ以上の層を含む、サンプル上の光学計量測定を対象とし、本明細書では、可視不透明IR透過性層またはVOIT層と称される。本明細書では、VOIT層は、処理ステップおよび/またはデバイス設計の両方においてますます普及しており、これは、照明の可視波長のみを利用するオーバーレイ測定技法の使用に制約を課し得ることが企図される。例えば、VOIT層は、より深い層上の任意の特徴と関連付けられる光信号を遮断または遮断でなければ低減し得る。画像ベースの技法の場合、VOIT層の下のサンプル特徴の画像は、貧弱なコントラストを有し得る。散乱計測または回折に基づく技術の場合、VOIT層の下のサンプルフィーチャに関連する回折次数は、比較的低い強度を有し得る。いずれの場合も、そのようなVOIT層の使用は、可視波長を有する光に基づく技法の信号対雑音比を減少させ得る。
【0025】
SWIR波長光を含む光学計量測定技術による特性評価に適し得るVOIT層の例としては、ハードフォトマスク層、カーボン層(例えば、カーボンキャップ層)、又は厚い材料層が挙げられるが、これらに限定されない。例えば、VOIT層は、リソグラフィ露光後の高コントラストエッチングに適した特性を有するが、可視波長に対する透過性が限定されたハードフォトマスク層を含み得る。別の例として、VOIT層は、サンプル上の任意の材料の厚い層を含んでもよく、材料の厚さは、比較的長い吸収経路を提供し、および/またはそのような層の下に位置する特徴を高感度にプローブする能力を制限し得る収差を導入する。さらに、VOIT層は、概して、透過率が選択されたSWIR波長(例えば、SWIR照明源によって生成され、SWIR検出器で検出可能なSWIR波長)に対する選択された許容範囲を上回るが、透過率が選択された可視波長(または他の非SWIR波長)に対する選択された許容範囲を下回る任意の層を含み得る。このように、本明細書では、異なる用途は、非SWIR波長(例えば、可視、UV、IR、NIRなど)とは対照的に、光学計量のためのSWIR波長の使用を必要とし得る異なる許容差を有し得ることが企図される。
【0026】
SWIR光でVOIT層を含むサンプルを特徴付けることは、そのようなサンプルの非破壊測定を可能にし得ることが本明細書で認識される。例えば、可視光によるそのようなサンプルの特性評価は、VOIT層の下の特徴の可視測定を容易にするために、VOIT層に1つ以上の窓を開けることを必要とし得る。対照的に、本明細書に開示されるシステムおよび方法は、VOIT層の下の特徴の直接的および非破壊的計量測定を促進し得る。さらに、いくつかの実施形態では、VOIT層は、測定に適したパターン化フィーチャ(例えば、オーバーレイフィーチャ、OCDフィーチャ等である)を含む。
【0027】
SWIR照明を使用する光学計量測定は、サンプル上の任意の適切な位置で実施することができる。例えば、光学計量測定は、デバイス特徴に対して直接行われてもよく、これは、デバイス関連特性(例えば、オーバーレイ、OCDなど)の直接測定を提供してもよい。別の例として、光学計量測定は、1つ以上のセル内のターゲット特徴を含む専用の計量ターゲット上で実行することができ、専用の計量ターゲットに基づく計量測定は、サンプル上の対象のデバイス特徴を表すように設計される。これらの計量ターゲットは、ダイ内又はダイ間のスクライブライン内を含む様々な位置に配置することができる。専用の計量ターゲットは、概して、様々な技術を用いた光学計量測定のために設計されてもよく、光学技術を用いて分解可能であるように設計されたデバイススケール特徴又はより大きな特徴を含んでもよい。したがって、一般的な意味で、計量ターゲットは、任意の適切なサイズを有し得る。例えば、典型的な計量ターゲットは、約2~40マイクロメートルの範囲であり得る。しかしながら、これは単なる例示であり、限定ではないことを理解されたい。別の例として、光学計量測定は、検査測定を含み得る。例えば、可視的に不透明な材料(例えば、VOIT層)を貫通し得るSWIR照明は、可視的に不透明な材料の下のターゲットまたはデバイス構造を精査および/または検査するために有用であり得る。
【0028】
加えて、計量ターゲットは、製造プロセスにおける任意のステップに関連する特徴を含み得る。例えば、計量ターゲットは、リソグラフィで露光されたフォトレジストに露光フィーチャを含むことができる。例えば、露光フィーチャは、周囲の材料とは異なる屈折率を有する領域を含むことができる。別の例として、計量ターゲットは、リソグラフィ露光に関連するパターン化されたフィーチャ(特徴)と、限定はしないが、エッチングステップ、充填ステップ、研磨ステップ、または洗浄ステップなどのフィーチャを現像するための1つ以上の追加のステップとを含み得る。計量ターゲットはまた、異なるサンプル層に異なるタイプの特徴を含んでもよい。したがって、製造の任意の段階における任意の種類の光学計量は、本開示の精神および範囲内であり、エッチング後検査(AEI)測定、開発後検査(ADI)測定、または洗浄後検査(ACI)測定を含み得るが、それらに限定されない。
【0029】
このようにして、本明細書で開示されるシステムおよび方法は、限定はしないが、メモリデバイス製作(例えば、ダイナミックランダムアクセスメモリ(DRAM)、2Dまたは3D NANDメモリ、次世代メモリ(emerging memory)など)、論理デバイス製作、または鋳造施設(foundry facilities:半導体製造工場および半導体の受託製造に特化した専門企業)など、任意のタイプのデバイスセグメントまたは製作セットアップ上での任意のタイプの光学計量測定に好適であり得ることが本明細書で企図される。例えば、大規模な計量は概して米国特許出願17/068,328(2020年10月12日)に記載されており、その全体が参照により本明細書に組み込まれる。本明細書に開示されるシステムおよび方法は、SWIR波長を利用するために、米国特許出願17/068,328における計量技法のうちのいずれかを拡張し得ることが検討される。しかしながら、米国特許出願17/068,328への参照は、単に例示目的で提供され、本明細書に開示されるシステムおよび方法は、少なくともいくつかのSWIR波長を含むように、非SWIR波長で動作する任意の計量技法を拡張するために利用され得ることを理解されたい。
【0030】
サンプルのSWIR光学計量ツール又はサンプル上の計量ターゲットの様々な動作モードは、本開示の精神及び範囲内である。例えば、単一のSWIR検出器を利用して、サンプル上の様々な層または特徴の測定に基づいて光学計量測定値を生成することができる。さらに、本開示全体にわたって説明されるように、SWIR検出器は、SWIR検出器が複数の照明波長での様々な測定に使用され得るように、SWIR波長だけでなく非SWIR波長にも敏感であり得る。別の例として、SWIR検出器を使用して、1つ以上のサンプル層または特徴(たとえば、VOIT層の下方の特徴)に関連する第1のデータセットを生成することができ、任意のタイプの追加の検出器を使用して、追加のサンプル層または特徴(例えば、VOIT層の上又は上方のフィーチャ)に関連する第2のデータセットを生成することができる。これらの2つのデータセットは、単一の測定値(例えば、オーバーレイ測定などである)の基礎を形成するようにスティッチングされるかまたは他の方法で組み合わされ得る。あるいは、2つのデータセットはそれぞれ、別々の測定の基礎であってもよい。このようにして、SWIR光学計量も、並列に動作する2つのツールとして動作することができる。
【0031】
本開示のいくつかの実施形態は、少なくともいくつかのSWIR波長を利用するオーバーレイ計量を対象とする。オーバーレイという用語は、本明細書では、2つ以上のリソグラフィ露光によって製作されるか、そうでなければそれに関連するサンプル上のフィーチャの相対位置を記述するために使用され、オーバーレイ誤差という用語は、公称配置からのフィーチャの偏差を記述する。例えば、オーバーレイ計量は、限定されないが、任意の選択された波長または波長範囲(例えば、極紫外線、深紫外線などである)で動作するスキャナまたはステッパ等のリソグラフィ露光デバイス内のフィールドの相対的整合と関連付けられ得る。
【0032】
例として、多層デバイスは、各層に対して異なるリソグラフィ露光を使用して複数のサンプル層上にパターン化されたフィーチャを含むことができ、層間のフィーチャのアライメントは、典型的には、得られるデバイスの適切な性能を確実にするために厳密に制御されなければならない。したがって、オーバーレイ測定は、2つ以上のサンプル層上のフィーチャの相対位置を特徴付けることができる。別の例として、複数のリソグラフィステップを使用して、単一のサンプル層上にフィーチャを製造することができる。ダブルパターニング技術またはマルチパターニング技術と一般に呼ばれるそのような技術は、リソグラフィシステムの解像度に近い高密度フィーチャの製造を容易にすることができる。この文脈におけるオーバーレイ測定は、この単一層上の異なるリソグラフィステップからのフィーチャの相対位置を特徴付けることができる。オーバーレイ計量の特定の用途に関する本開示全体にわたる例および例示は、例示目的のみのために提供され、本開示を限定するものとして解釈されるべきではないことを理解されたい。
【0033】
少なくともいくつかのSWIR波長を利用するオーバーレイ計量は、任意の測定技術に適した任意の設計でオーバーレイ計量ターゲット上で実行され得る。例えば、オーバーレイターゲットは、周期的および/または非周期的フィーチャを含み得る。別の例として、オーバーレイ計量ターゲットは、1次元測定値(例えば、単一の測定方向に沿った測定である)または2次元測定値(例えば、2つの測定方向に沿った測定値)を提供するように配置されたフィーチャを含みうる。いくつかの実施形態では、オーバーレイ計量ターゲットは、限定はしないが、ボックスインボックス(BiB)ターゲット、バーネクストネクストバー(BnB)ターゲット、アドバンストイメージング計量(AIM)ターゲット、トリプルAIM(TAIM)ターゲットなどの非オーバーラップエリア(例えば、作業(ワーキング)ゾーン)内のフィーチャを含む。またはAIMインダイ(in-die)(AIMid)ターゲット。そのようなターゲットは、限定はしないが、1つ以上の関心層上の異なるリソグラフィ露光に関連するフィーチャを別々に見ることができる撮像ベースの技法に適していることがある。いくつかの実施形態では、オーバーレイ計量ターゲットは、重なり合うエリア内にフィーチャを含む。例えば、オーバーレイ計量ターゲットは、1つ以上のサンプル層上の重複領域における2つ以上のリソグラフィ露光に関連する格子又は他の周期的構造を含む格子上格子フィーチャを含み得る。別の例として、オーバーレイ計量ターゲットは、モアレ縞を生成するよう設計されたフィーチャを含むロバストAIM(rAIM)ターゲットを含みうる。オーバーレイ計量ターゲットおよび関連する測定技術は、概して、2020年2月31日に公開された2011年3月11日に公開された米国特許7,879,627(2011年2月1日)、米国特許10,527,951(2020年1月7日)、米国特許出願公開2021/0072650、米国特許出願公開2020/0409271に記載されており、これらの全ては、参照によりその全体が本明細書に組み込まれる。
【0034】
本開示のいくつかの実施形態は、少なくともいくつかのSWIR波長を使用するOCD計量を対象とする。例えば、SWIR照明を使用するOCD計量は、VOIT層における窓の形成を必要とすることなく、VOIT層の下の特徴の非破壊測定を容易にすることができる。さらに、SWIR照明を使用するOCD計量は、明視野または暗視野撮像計量などであるがこれらに限定されない、当技術分野で知られている任意の技法を使用して実装され得る。
【0035】
本明細書では、光学計量は、様々な方法で少なくともいくつかのSWIR波長を使用して実行され得ることが企図される。一実施形態では、第1の計量測定値は、SWIRスペクトル範囲内の第1の波長を使用して生成され、第2の計量測定値は、SWIRまたは可視スペクトル範囲内であり得る追加の波長を使用して生成される。このようにして、第1および第2の計量測定値に基づく最終計量測定値を生成することができる。別の実施形態では、異なる波長を使用して異なるサンプル層に対して異なる測定信号を生成することによって、単一の計量測定値が生成される。層特異的照明スペクトルを用いた計量は、概して、米国特許10,444,161(2019年10月15日)に記載されており、その全体が参照により組み込まれる。本明細書に開示されるシステムおよび方法は、少なくともいくつかのSWIR波長を利用する層特有の計量を提供し得ることが企図される。例えば、サンプルの第1の層の第1の測定信号(例えば、第1の画像等である)は、SWIRスペクトル範囲内の第1の波長を使用して生成され得、サンプルの第2の層の第2の測定信号は、SWIRまたは可視スペクトル範囲内であり得る第2の波長を使用して生成され得る。
【0036】
さらなる実施形態は、SWIR波長による特徴付けから利益を得るか、または場合によってはそれを必要とし得るSWIR計量ターゲットを対象とする。いくつかの実施形態では、SWIR計量ターゲットは、1つ以上のVOIT層を含む。例えば、SWIR計量ターゲットは、1つ以上のVOIT層の下の1つ以上の関心層上に位置するターゲットフィーチャを含むことができる。このようにして、SWIR波長を使用して、1つ以上のVOIT層を貫通し、ターゲット特徴を特徴付けることができる。一実施形態では、関心のある層上のすべてのターゲットフィーチャは、少なくとも1つのVOIT層の下に位置する。別の実施形態では、SWIR計量ターゲットは、VOIT層の下に位置するサンプルの第1の層上の1つ以上の第1の層特徴と、VOIT層の上または上に位置する1つ以上の第2の層特徴とを含む。
【0037】
SWIR計量ターゲットは、任意の選択されたオーバーレイ計量技術に適した任意の選択されたレイアウトを有するフィーチャを含むことができ、少なくとも1つのサンプル層はVOIT層である。オーバーレイ計量の文脈における例示的な例として、SWIRオーバーレイ計量ターゲットは、BiBターゲット、BnBターゲット、AIMターゲット、AIMidターゲット、rAIMターゲット、TAIMターゲット、またはグレーティングオーバーグレーティングターゲットなどであるがこれらに限定されない当技術分野で知られている任意のオーバーレイターゲットの変形を含み得る。ここで、少なくとも1つの対象のサンプル層は、VOIT層の上または下にある。
【0038】
一実施形態では、画像ベースのオーバーレイ計量に適したSWIRオーバーレイ計量ターゲットは、非重複領域内の1つ以上のサンプル層上のフィーチャを含み、少なくとも1つのサンプル層上のターゲットフィーチャはVOIT層の下に位置する。このようにして、各関心層上のターゲット特徴を撮像することができる。次いで、オーバーレイは、当技術分野で公知の任意の技術を用いて決定され得る。例えば、オーバーレイは、関心のあるサンプル層上のフィーチャの相対位置(例えば、対象の特徴の対称中心の相対位置)に基づいて決定され得る。別の実施形態において、散乱計量オーバーレイに適するSWIRオーバーレイターゲットは、格子オーバー格子構造を形成するためにオーバーラップするエリアにおいて1または複数のサンプル層上のフィーチャを含み、ここで少なくとも1つのサンプル層上のターゲットフィーチャはVOIT層の下に配置される。このようにして、オーバーレイ測定は、SWIRオーバーレイターゲットを照明し、グレーティングオーバーグレーティング構造による照明ビームの回折、散乱、および/または反射に関連するサンプルから発せられる光の角度分布を捕捉することによって生成され得る。
【0039】
本開示の追加の実施形態は、少なくともいくつかのSWIR波長を使用してSWIR計量ターゲットを特徴付けることに関する。例えば、SWIR照明は、VOIT層の下の1つ以上のサンプル層を特徴付けるために使用され得る。さらに、SWIRまたは可視照明の任意の組み合わせを使用して、VOIT層またはVOIT層の上の任意の追加の層を特徴付けることができる。
【0040】
ここで図1A-3を参照すると、SWIR波長を使用する光学計量のためのシステムおよび方法が、本開示の1つ以上の実施形態に従って開示される。
【0041】
図1Aは、本開示の1つ以上の実施形態による、SWIRスペクトル範囲内の少なくとも1つの波長を有する照明を利用するSWIR光計量システム100の概念ブロック図を示す。
【0042】
一実施形態では、SWIR光学計量システム100は、サンプル106上のSWIR計量ターゲット104の光学計量測定を提供するためのSWIR光学計量ツール102を含む。SWIR光学計量ツール102は、SWIRスペクトル範囲内の照明110を生成する少なくとも1つの照明源108と、照明源108によって提供されるSWIR照明110に敏感な検出器114を含む少なくとも1つの測定チャネル112とを含むことができる。さらに、SWIR光学計量ツール102は、可視スペクトル範囲内の照明110を生成するための少なくとも1つの照明源108と、可視照明110に敏感な検出器114を含む少なくとも1つの測定チャネル112とを含み得るが、これを含む必要はない。このようにして、SWIR光計量ツール102は、マルチチャネル光計量ツールとすることができる。例えば、図1Aは、N個の測定チャネル112-1~112-Nを有するSWIR光計量ツール102を示す。別の実施形態では、SWIR光計量システム100は、サンプル106を固定するのに適した並進ステージ116を含み、SWIR光計量ツール102に対してサンプル106を位置決めするようにさらに構成される。
【0043】
SWIR光学計量ツール102は、少なくともSWIRスペクトル範囲内の照明110を生成するのに適した、当技術分野で知られている任意の照明源108を含むことができる。さらに、可視波長が生成される構成では、SWIR光計量ツール102は、関心のあるすべての波長を生成する単一の照明源108、または複数のスペクトル帯域の照明110を生成する複数の照明源108を含むことができる。さらに、任意のスペクトル帯域における照明110は、任意の選択された帯域幅を有し得る。例えば、照明源108は、狭帯域照明110または広帯域照明110を生成することができる。SWIR光学計量ツール102はまた、1つ以上の照明源108のいずれかからの照明110のスペクトル特性をさらに調整するためのスペクトルフィルタを含んでもよい。
【0044】
照明源108は、任意の程度の空間的および/または時間的コヒーレンスを有する照明110を生成し得る。さらに、低コヒーレンスが要求される場合(例えば、スペックル(speckle:斑点)が望ましくないイメージング用途)、照明源108は、低コヒーレンス照明110を直接生成してもよく、またはSWIR光計量システム100は、より高いコヒーレンス照明110を生成し、コヒーレンスを低減するための1つ以上の要素(例えば、スペックル低減器)を含んでもよい。
【0045】
照明源108はさらに、任意の選択された時間特性を有する光を提供してもよい。一実施形態では、照明源108は、連続波照明110を提供するための1つ以上の連続波源を含む。別の実施形態では、照明源108は、パルス状または別様に変調された照明110を提供するように、1つ以上のパルス状源を含む。例えば、照明源108は、1つ以上のモードロックレーザ、1つ以上のQスイッチレーザ、または同等物を含んでもよい。
【0046】
一実施形態では、照明源108はレーザ源を含む。例えば、照明源108は、1つ以上の狭帯域レーザ源、広帯域レーザ源、スーパーコンティニューム(supercontinuum)レーザ源、白色光レーザ源、または同等物を含んでもよいが、それらに限定されない。別の実施形態では、照明源108は、レーザ維持プラズマ(LSP)源を含む。例えば、照明源108は、限定はしないが、LSPランプ、LSPバルブ、またはレーザ源によってプラズマ状態に励起されると広帯域照明を放出することができる1つ以上の要素を収容するのに適したLSPチャンバを含むことができる。別の実施形態では、照明源108はランプ源を含む。例えば、照明源108は、アークランプ、放電ランプ、無電極ランプなどを含み得るが、これらに限定されない。別の実施形態では、照明源108は発光ダイオード(LED)を含む。
【0047】
照明源108は、自由空間技法および/または光ファイバを使用して、照明110(例えば、SWIR波長、可視波長、またはそれらの組み合わせを伴う照明110)を提供してもよい。さらに、SWIR光学計量ツール102は、限定された角度範囲を有する1つ以上の照明ビームまたは照明ローブの形態の照明110を生成することができ、これは、光学計量測定を生成するために離散回折次数が捕捉および分析されるスキャトロメトリ(scatterometry)または回折ベースの光学計量技法に好適であり得るが、それらに限定されない。一実施形態では、SWIR光学計量ツール102は、照明源108からの照明を別々の照明ビームに分割するために、照明瞳平面に1つ以上の開口および/または偏光制御要素を含むことができる。別の実施形態では、SWIR光学計量ツール102は、2つ以上の光ファイバ内に光を提供することによって、マルチビーム照明110を生成し、光ファイバ内の照明110は、別個の照明ビームとしてサンプル106に別個に指向されてもよい。別の実施形態では、SWIR光学計量ツール102は、照明源108からの照明110を2つ以上の回折次数に回折することによってマルチローブ(multi-lobe)照明110を生成し、回折次数は、別個の照明ビームとしてサンプル106に別個に向けられ得る。制御された回折による複数の照明ローブの効率的な生成は、概して、2020年4月23日に公開された米国特許出願公開US2020/0124408に記載されている。これは、その全体が参照により本明細書に組み込まれる。
【0048】
SWIR光学計量ツール102は、任意の数の検出器114をさらに含むことができ、検出器114のうちの少なくとも1つは、少なくともいくつかのSWIR波長に敏感なSWIR検出器である。一実施形態では、SWIR光計量ツール102は、InGaAs検出器を含む。別の実施形態では、SWIR光計量ツール102は、HgCdTe検出器を含む。別の実施形態では、SWIR光学計量ツール102は、シリコン検出器、黒色シリコン検出器、GaAs検出器、または量子ドットセンサを含むが、それらに限定されない、光の可視波長に敏感な1つ以上の検出器を含む。
【0049】
SWIR光計量ツール102の測定チャネル112は、サンプル106からの光を捕捉するのに適した任意の数、種類、または配置の検出器114を含むことができる。一実施形態では、測定チャネル112は、静的サンプルを特徴付けるのに適した1つ以上の検出器114を含む。この点に関して、測定チャネル112は、サンプル106が測定中に静的である静的モードで動作することができる。例えば、検出器114は、電荷結合素子(CCD)または相補型金属酸化膜半導体(CMOS)デバイスなどの2次元画素アレイ(例えば、焦点面アレイ(FPA))を含み得るが、これらに限定されない。別の実施形態では、測定チャネル112は、移動するサンプル(例えば、平行移動ステージ116によって走査されたサンプルである)を特徴付けるのに適した1つ以上の検出器114を含む。この点に関して、測定チャネル112は、測定中にサンプル106が測定フィールドに対して走査される走査モードで動作することができる。例えば、検出器114は、選択された画像許容差(例えば、画像のぼけ、コントラスト、シャープネスなど)内で走査中に1つ以上の画像を捕捉するのに充分な捕捉時間および/またはリフレッシュレートを有する2Dピクセルアレイを含んでもよい。別の例として、検出器114は、一度に1ラインの画素の画像を連続的に生成するライン走査検出器を含んでもよい。別の例として、検出器114は、時間遅延積分(TDI)検出器を含み得る。
【0050】
別の実施形態では、ピクセルアレイ(例えば、1Dまたは2Dピクセルアレイ)を有する検出器114は、ピクセルの様々なサブセットが異なる測定に使用されるように構成され得る。例えば、検出器114のピクセルの異なるサブセットは、偏光または波長等であるが、それらに限定されない、異なる照明および/または収集条件(collection condition:集光条件)と関連付けられる測定値を提供してもよい。さらに、ピクセルのサブセットによって提供される異なる測定値は、共通の測定チャネル112または異なる測定チャネル112に関連付けられ得る。
【0051】
測定チャネル112は、光学計量測定を生成するのに適したサンプル106からの光を捕捉するのに適した任意の所望の位置に1つ以上の検出器114をさらに含むことができる。一実施形態では、測定チャネル112は、サンプル106上のターゲット特徴の画像を生成するために、視野平面(field plane:例えば、サンプル106と共役な平面である)に検出器114を含む。別の実施形態では、測定チャネル112は、瞳面(例えば、回折面(diffraction plane))に検出器114を含み、サンプル106からの光または選択された角度でサンプル106から発する光の角度分布を捕捉する。例えば、サンプル106からの照明110の回折に関連付けられた回折次数(例えば、SWIR計量ターゲット104は、サンプル106上のターゲットである)は、瞳平面内で撮像されるか、または別様に観察されてもよい。一般的な意味で、検出器114は、サンプル106からの反射(または透過)、散乱、または回折光の任意の組み合わせを捕捉することができる。
【0052】
一般的な意味で、測定チャネル112は、任意のタイプの光学計量測定を提供するように構成された構成要素を含むことができる。さらに、マルチチャネルSWIR光計量ツール102内の様々な測定チャネル112は、同じまたは異なるタイプの測定値を提供するように構成することができる。例えば、SWIR光学計量ツール102は、1つ以上の波長(例えば、SWIR波長、可視波長など)で明視野画像を生成するための1つ以上の測定チャネル112と、暗視野画像および1つ以上の波長を生成するための1つ以上の測定チャネル112とを含んでもよい。別の例として、SWIR光学計量ツール102は、サンプル106の1つ以上の視野平面画像を生成するための1つ以上の測定チャネル112と、サンプル106の1つ以上の瞳平面画像を生成するための1つ以上の測定チャネル112とを含み得る。このようにして、SWIR光学計量ツール102は、光学計量測定の任意の組み合わせを実行することができ、および/または少なくとも1つの測定チャネル112がSWIRスペクトル範囲の光を利用する、当技術分野で知られている任意の光学計量測定技術に基づいて光学計量データを提供することができる。
【0053】
別の実施形態では、SWIR光計量システム100は、コントローラ118を含む。コントローラ118は、メモリ媒体122またはメモリ上に維持されるプログラム命令を実行するように構成された1つ以上のプロセッサ120を含み得る。この点に関して、コントローラ118の1つ以上のプロセッサ120は、本開示全体にわたって説明する様々なプロセスステップのいずれかを実行することができる。さらに、コントローラ118は、SWIR光計量ツール102またはその中の任意の構成要素に通信可能に結合され得る。
【0054】
コントローラ118の1つ以上のプロセッサ120は、当技術分野で知られている任意のプロセッサまたは処理要素を含むことができる。本開示の目的のために、「プロセッサ」または「処理要素」という用語は、1つ以上の処理または論理要素(例えば、1つ以上のマイクロプロセッサデバイス、1つ以上の特定用途向け集積回路(ASIC)デバイス、1つ以上のフィールドプログラマブルゲートアレイ(FPGA)、または1つ以上のデジタル信号プロセッサ(DSP))を有する任意のデバイスを包含するように広く定義され得る。この意味で、1つ以上のプロセッサ120は、アルゴリズムおよび/または命令(たとえば、メモリに記憶されたプログラム命令)を実行するように構成された任意のデバイスを含み得る。一実施形態では、1つ以上のプロセッサ120は、デスクトップコンピュータ、メインフレームコンピュータシステム、ワークステーション、画像コンピュータ、並列プロセッサ、ネットワーク接続されたコンピュータ、または本開示全体にわたって説明されるように、SWIR光計量システム100とともに動作または動作するように構成されたプログラムを実行するように構成された任意の他のコンピュータシステムとして具現化され得る。
【0055】
さらに、SWIR光計量システム100の異なるサブシステムは、本開示で説明するステップの少なくとも一部を実行するのに適したプロセッサまたは論理要素を含むことができる。したがって、上記の説明は、本開示の実施形態に対する限定として解釈されるべきではなく、単なる例示として解釈されるべきである。さらに、本開示全体にわたって説明されるステップは、単一のコントローラ118によって、または代替として複数のコントローラによって実行され得る。さらに、コントローラ118は、共通のハウジングまたは複数のハウジング内に収容された1つ以上のコントローラを含むことができる。このようにして、任意のコントローラまたはコントローラの組合せを、SWIR光計量システム100への統合に適したモジュールとして別々にパッケージ化することができる。
【0056】
メモリ媒体122は、関連する1つ以上のプロセッサ120によって実行可能なプログラム命令を記憶するのに適した、当技術分野で知られている任意の記憶媒体を含み得る。例えば、記憶媒体122は、非一時的な記憶媒体を含んでもよい。別の例として、記憶媒体122は、読取り専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、磁気または光メモリデバイス(たとえば、ディスク)、磁気テープ、ソリッドステートドライブなどを含み得るが、それらに限定されない。さらに、メモリ媒体122は、1つ以上のプロセッサ120とともに共通のコントローラハウジング内に収容され得ることに留意されたい。一実施形態では、メモリ媒体122は、1つ以上のプロセッサ120およびコントローラ118の物理的位置に対して遠隔に配置され得る。たとえば、コントローラ118の1つ以上のプロセッサ120は、ネットワーク(例えば、インターネット、イントラネットなど)を介してアクセス可能なリモートメモリ(たとえば、サーバ)にアクセスすることができる。
【0057】
ここで図2A図2Eを参照すると、SWIR光学計量システム100による特性評価に適したSWIRターゲット104が、本開示の1つ以上の実施形態に従ってより詳細に説明されている。
【0058】
本明細書で前述したように、SWIR計量ターゲット104は、専用の計量ターゲットとして形成されてもよく、又は直接的な光学計量測定に適した方法で配置されたデバイスフィーチャを含むサンプル106の一部分に対応してもよい。SWIR計量ターゲット104が専用の計量ターゲットである構成では、SWIR計量ターゲット104は、計量測定に適した任意のサイズ、分布、密度、または配向を有するターゲット特徴を含み得る。例えば、SWIR計量ターゲット104は、計量測定に適したデバイス様又はデバイススケールの特徴を含むことができる。
【0059】
SWIR計量ターゲット104の任意の層上のターゲットフィーチャは、任意の製造または処理段階にさらに関連付けられ得る。例えば、1つ又は複数の層上のターゲットフィーチャは、リソグラフィ露光及び1つ又は複数の追加の処理ステップ、例えば、限定されないが、エッチング又はクリーニングに関連するパターン化要素とすることができる。このようにして、パターン化フィーチャは、選択された材料(例えば、プロセス層)の3次元パターン化構造に対応し得る。別の例として、1つ以上の層上のターゲットフィーチャは、追加の処理ステップの前にリソグラフィ露光によって誘発されたレジスト層内のパターンに関連する露光フィーチャとすることができる。このようにして、露光フィーチャは、リソグラフィ露光によって誘発されるレジスト層中の異なる光学的および/または化学的特性のパターンに関連付けられ得る。したがって、一般的な意味で、SWIR計量ターゲット104は、限定はしないが、現像後検査(ADI)、エッチング後検査(AEI)、または洗浄後検査(ACI)などの任意の製造段階における光学計量に好適であり得る。
【0060】
一実施形態では、SWIR計量ターゲット104は、少なくとも1つのVOIT層202と、VOIT層202の上または下の1つ以上の層上の1つ以上のターゲットフィーチャとを含む。VOIT層202は、可視波長に対して限定された透過性を有し、SWIR波長に対して好適な透過性を有する任意の層を含んでもよい。本明細書では、材料は、概して、複雑な吸収および透過スペクトルを有し得、不透明領域と透過領域との間の遷移は、様々な鮮明度を有し得ることが認識される。したがって、本開示の文脈において、VOIT層202は、選択された可視波長耐性(visible-wavelength tolerance)を下回る選択された可視波長における透過率と、選択されたSWIR波長耐性を上回る選択されたSWIR波長における透過率とを有することを理解されたい。例えば、可視波長耐性および/またはSWIR波長耐性は、限定されないが、ある着目波長における照明源108のスペクトル強度、ある着目波長における利用可能な検出器114の量子効率、所与の用途のための信号対雑音閾値、または所与の用途のための測定感度ターゲット等の要因に基づいて選択されてもよい。例示として、SWIR計量ターゲット104が、第1の層(例えば、プロセス層)内の1つ以上のパターン形成フィーチャと、プロセス層の上方に位置するレジスト層内の1つ以上の露光フィーチャとを含む、エッチング後検査の場合である。高度に選択的なエッチング特性をもたらすが、典型的な光学検査システムに関連する可視波長に対する透過性が限られているか、または全くない硬質フォトマスクを利用することが望ましい場合がある。次いで、このハードフォトマスクは、特に、典型的な光学検査システムに関連する可視に対する透過率が、光学計量測定の感度または精度を低下させるほど充分に低い場合に、VOIT層202として特徴付けられ得る。
【0061】
一般的な意味で、本明細書に開示されるシステムおよび方法は、オーバーレイ計量ターゲットまたはOCD計量ターゲットなどであるがこれらに限定されない少なくとも1つのVOIT層202を含むように計量ターゲットの任意の設計を拡張するために使用され得る。さらに、図2A図2Eは、関心のある2つのサンプル層のオーバーレイを特徴付けるのに適した2層SWIRターゲット104を示しているが、SWIR計量ターゲット104は、任意の数のサンプル層上にターゲットフィーチャを有することができ、したがって、任意の数の関心のある層のオーバーレイを特徴付けるのに適したものとすることができることを理解されたい。
【0062】
図2Aは、本開示の1つ以上の実施形態による、プロセス層およびレジストVOIT層202内に非オーバーラップターゲットフィーチャを含むSWIR計量ターゲット104の上面図である。いくつかの実施形態において、図2AはX-Y平面上のSWIR計量ターゲット104の上面図である。図2Bは、本開示の1つ以上の実施形態による、図2AのSWIR計量ターゲット104の1つのセル204の側面図である。いくつかの実施形態において、図2BはY-Z平面上のSWIR計量ターゲット104の1つのセルの側面図である。このようなターゲットは、オーバーレイ計量に適しているが、これに限定されない。
【0063】
一実施形態では、SWIR計量ターゲット104は、サンプル106の第1の層208上の第1の露光フィーチャ206と、可視波長に対して少なくとも部分的に不透明であるレジスト層として形成されたサンプル106の第2の層212上の第2の露光フィーチャ210とを含む。このように、第2層212は、VOIT層202に相当する。図2Aおよび図2Bは、第1の層208および第2の層212が堆積される基板214をさらに示す。さらに、第1の露光フィーチャ206および第2の露光フィーチャ210は、それらを別々に特徴付ける(例えば、撮像する)ことができるように重複しなくてもよい。したがって、そのような構造は、限定ではないが、画像ベースのオーバーレイ技法に好適であり得る。第2の露光フィーチャ210に関連付けられていないレジストVOIT層202の部分は、第1の露光フィーチャ206を不明瞭にするため、図2Aの上面図から省略されていることに留意されたい。
【0064】
しかし、第2の層212はVOIT層202であるので、第1の露光フィーチャ206は、VOIT層202を通して見えないか、または少なくとも限られた可視性を有することがある。このように、可視波長のみに基づくオーバーレイ計量は、実行不可能であり得るか、または特定の用途に必要とされる閾値よりも低い感度を提供し得る。しかしながら、第1の露光フィーチャ206は、最小限または少なくとも許容可能な損失でVOIT層202を通って伝搬するSWIR波長を有する照明110によって容易に特徴付けることができる。さらに、以下でより詳細に説明するように、第2の層212は、可視波長またはSWIR波長を含む任意の選択された波長で特徴付けることができる。
【0065】
第1の露光フィーチャ206および第2の露光フィーチャ210は、オーバーレイ測定に適した任意のサイズ、分布、密度、または配向を有し得る。たとえば、図2Aおよび図2Bに示すように、第1の露光フィーチャ206および/または第2の露光フィーチャ210は、選択された方向(たとえば、測定方向)に沿って周期的に分布され得る。このようにして、第1の露光フィーチャ206および/または第2の露光フィーチャ210は、オーバーレイ測定が選択された回折次数に基づき得るように、離散的な回折次数を生成し得る。さらに、第1の露光フィーチャ206および第2の露光フィーチャ210は、第1の露光フィーチャ206および第2の露光フィーチャ210からの回折次数が集光瞳内で並置されるように、共通の周期を有することができるが、その必要はない。図示されていないが、第1の露光フィーチャ206または第2の露光フィーチャ210のいずれも、さらにセグメント化されてもよい(例えば、サブ波長アシストフィーチャ(SWAF)を有する)。
【0066】
加えて、図2Aおよび図2Bに示すように、SWIR計量ターゲット104は、複数のセル204を含むことができ、異なるセル204は、異なる方向に沿った測定を容易にするために異なる方向に沿って配向された特徴を含む。様々なセル204におけるターゲットフィーチャの分布(例えば、第1の露光フィーチャ206及び第2の露光フィーチャ210)は、サンプル106の2つ以上の層に関連するオーバーレイ誤差を決定するために使用されるオーバーレイアルゴリズムに基づいて変化し得ることが本明細書で企図される。例えば、図2Aに示すSWIR計量ターゲット104は、サンプルの各層上の特定の測定方向に関連付けられたターゲットフィーチャがセルの回転対称パターン(例えば、90°回転、180°回転、または任意の選択された角度を中心とする回転に関して対称である)内に配置される、高度撮像計量(AIM)オーバーレイターゲットの変形例に対応する。しかしながら、AIMオーバーレイターゲットの使用は、単に例示を目的として提供され、限定として解釈されるべきではないことを理解されたい。むしろ、1つ以上のサンプル層上に特徴の任意のレイアウトを有するSWIR計量ターゲット104は、本開示の精神および範囲内である。
【0067】
図2Cは、本開示の1つ以上の実施形態による、VOIT層202によって覆われた2つのプロセス層内に非重複フィーチャを含むSWIR計量ターゲット104の側面図である。図2CのSWIR計量ターゲット104は、第1の露光フィーチャ206および第2の露光フィーチャ210がそれぞれ、プロセス層において完全に製造されたパターン化要素として形成されることを除いて、図2Aおよび図2BのSWIR計量ターゲット104と同様であり得る。いくつかの実施形態において、図2CはY-Z平面上のSWIR計量ターゲット104の側面である。さらに、第1の層208および第2の層212の両方は、VOIT層202(たとえば、キャップ層)によって覆われる。したがって、第1の露光フィーチャ206および第2の露光フィーチャ210の両方は、最小限または少なくとも許容可能な損失でVOIT層202を通って伝搬するSWIR波長を有する照明110によって特徴付けられ得る。
【0068】
図2Dは、本開示の1つ以上の実施形態による、プロセス層およびレジストVOIT層202内の重複ターゲットフィーチャを含むSWIR計量ターゲット104の上面図である。いくつかの実施形態において、図2DはX-Y平面上のSWIR計量ターゲット104の上面図である。いくつかの実施形態において、図2EはY-Z平面上のSWIR計量ターゲット104の側面図である。図2Eは、本開示の1つ以上の実施形態による、図2DのSWIR計量ターゲット104の側面図である。
【0069】
図2D及び図2Eに示すように、一実施形態では、SWIR計量ターゲット104は、第1の層208上の第1の露光フィーチャ206と、第2の層212上の第2の露光フィーチャ210とを含み、第1の露光フィーチャ206及び第2の露光フィーチャ210は、サンプル106の重なり合う領域内に製作されて格子オーバー格子構造を形成する。さらに、第1の露光フィーチャ206および第2の露光フィーチャ210は、意図されたオフセット、オーバーレイ誤差、またはそれらの組合せに関連付けられ得るオフセット距離216でオフセットされ得る。さらに、図示されていないが、重複するターゲット特徴を有するSWIR計量ターゲット104は、複数のセル204を有することができ、異なるセル204は、感度の高い計量を容易にするために、異なる周期性方向(例えば、異なる方向に沿ってオーバーレイを測定するためのものである)および/または異なる意図されたオフセット距離216を有する特徴を含む。
【0070】
別の実施形態では、図2Eに示すように、SWIR計量ターゲット104は、第1の露光フィーチャ206及び第2の露光フィーチャ210を覆うVOIT層202を含む。第1の露光フィーチャ206および第2の露光フィーチャ210の図示を容易にするために、明確にするために、VOIT層202は図2Dから省略されていることに留意されたい。このようにして、第1の露光フィーチャ206および第2の露光フィーチャ210は、可視波長のみに基づくオーバーレイ計量が実現不可能であり得るか、または特定の用途に必要とされる閾値よりも低い感度を提供し得るように、VOIT層202を通して可視ではないか、または少なくとも限定された可視性を有し得る。しかしながら、第1の露光フィーチャ206および第2の露光フィーチャ210は、最小限または少なくとも許容可能な損失でVOIT層202を通って伝搬するSWIR波長を有する照明110を用いて容易に特徴付けることができる。
【0071】
しかしながら、図2A図2Eに示すSWIRターゲット104は、単に例示を目的として提供されており、限定として解釈されるべきではないことを理解されたい。例えば、図2A図2EのSWIRターゲット104は、2つのサンプル層上のリソグラフィ露光間のオーバーレイ誤差を特徴付けるのに適した2層ターゲットを示しているが、SWIR計量ターゲット104は、オーバーラップまたは非オーバーラップ構成における1つ以上のサンプル層上の任意の数のリソグラフィ露光間のオーバーレイ誤差を特徴付けるのに適したものとすることができる。
【0072】
さらに、オーバーレイ計量に適した図2A~2Eに示されるSWIRターゲット104の図はまた、単に例示目的で提供され、限定として解釈されるべきではないことを理解されたい。例えば、OCD計量は、SWIR計量ターゲット104の層のいずれかに存在するフィーチャに対して実行され得る。さらに、図示されていないが、専用OCD計量のためのSWIR計量ターゲット104は、VOIT層202の下の1つ以上のサンプル層上にフィーチャを含むことができる。例えば、専用OCD計量のためのSWIR計量ターゲット104は、図2Eに示すSWIR計量ターゲット104(またはその一部)と同様であり得るが、VOIT層202の下の単一の層のみに特徴を含む。
【0073】
ここで図1B-1Fを参照すると、SWIR光計量ツール102の様々な態様および構成が、本開示の1つ以上の実施形態に従ってより詳細に説明される。SWIR光学計量ツール102は、SWIR光学計量ツール102によって提供される照明110の波長に適した寸法を有する任意のSWIR計量ターゲット104を使用して光学計量測定値を生成するのに適し得る。例えば、SWIR光計量ツール102は、図2A図2Eに示すものなどであるがこれに限定されないVOIT層202を有するSWIRターゲット104に基づいて光計量測定値を生成することができる。別の例として、SWIR光計量ツール102は、VOIT層202なしでSWIRターゲット104に基づいて光計量測定値を生成することができる。
【0074】
いくつかの実施形態では、SWIR光計量ツール102は、可視波長に敏感な検出器を使用するシングルまたはマルチチャネル光計量ツールへのアップグレードとして提供することができる。例えば、SWIR光計量ツール102は、SWIR照明110(または、既存の広帯域照明源108によって提供されるSWIR照明110を利用する)を提供するのに適した照明源108を追加し、1つ以上の測定チャネル112内の1つ以上の可視波長検出器114をSWIR検出器114に切り替えることによって提供され得る。さらに、SWIR照明110および/または関連する収集光(collected light:集光された光)132の経路内のSWIR光計量ツール102全体にわたる様々な追加の構成要素もまた、SWIR波長と互換性があるように切り替えられ、交換され、またはアップグレードされ得る。例えば、可視波長検出器114を含む2チャネル光計量ツールは、可視波長検出器114の一方又は両方をSWIR検出器114に切り替える又は置き換えることによってSWIR光計量ツール102にアップグレードすることができる。別の例として、可視波長検出器114を含む2チャネル光計量ツールは、SWIR検出器114を有する追加の測定チャネル112を追加することによって、SWIR光計量ツール102にアップグレードすることができる。しかしながら、上記の実施例は、単に例示目的で提供され、限定として解釈されるべきではないことを理解されたい。むしろ、SWIR光計量ツール102は、少なくとも1つのSWIR検出器114を有する任意の数のチャネルを含むことができる。さらに、SWIR光計量ツール102は、可視波長光計量ツールのアップグレードバージョンである必要はない。
【0075】
図1Bは、本開示の1つ以上の実施形態による、単一の測定チャネル112を含むSWIR光計量ツール102の概念図である。
【0076】
一実施形態では、SWIR光学計量ツール102は、SWIRスペクトル範囲内の1つ以上の波長を有する照明110を生成するための照明源108を含む。さらに、SWIR光学計量ツール102は、照明110を照明源108から照明経路124を介してサンプル106に向けることができる。照明経路124は、照明110を修正および/または調整するのに、ならびに照明110をサンプル106に向けるのに適した1つ以上の光学構成要素を含むことができる。例えば、照明経路124は、1つ以上の照明経路レンズ126(例えば、照明110をコリメートするため、瞳面および/または視野面を中継するためなどである)を含むことができる。別の例として、照明経路124は、照明110を成形するかまたは他の方法で制御するための1つ以上の照明経路光学系128を含む。例えば、照明経路光学系128は、1つ以上の視野絞り、1つ以上の瞳絞り、1つ以上の偏光子、1つ以上のフィルタ、1つ以上のビームスプリッタ、1つ以上の拡散器、1つ以上のホモジナイザ、1つ以上のアポダイザ、1つ以上のビーム整形器、または1つ以上のミラー(例えば、静的ミラー、平行移動可能ミラー、走査ミラーなどである)を含んでもよいが、それらに限定されない。
【0077】
別の実施形態では、SWIR光計量ツール102は、サンプル106からの光(例えば、収集された光132)を収集するための対物レンズ130を含む。別の実施形態では、SWIR光計量ツール102は、収集された光132を1つ以上の測定チャネル112内の1つ以上の検出器114に向けるための収集経路134を含む。本明細書で前述したように、測定チャネル112は、任意の位置に1つ以上の検出器114を含むことができる。例えば、測定チャネル112は、SWIR計量ターゲット104の特徴を画像化するか、または他の何らかの形で特徴付けるために、フィールド平面に検出器114を含むことができる。別の例として、測定チャネル112は、瞳平面に検出器114を含むことができる。このようにして、検出器114は、集光された光132の角度分布に関連する瞳孔画像を生成することができ、これは、散乱計量又は回折ベースの技術に有用であり得るが、これらに限定されない。
【0078】
収集経路134は、サンプル106からの収集光132を修正および/または調整するのに適した1つ以上の光学素子を含むことができる。一実施形態では、収集経路134は、1つ以上の収集経路(collection pathway:集光経路)レンズ136(例えば、照明110をコリメートするため、瞳面および/または視野面を中継するためなどである)を含み、これは、対物レンズ130を含み得るが、これを含む必要はない。別の実施形態では、収集経路134は、収集された光132を成形または別様に制御する、1つ以上の収集経路光学部138を含む。例えば、集光経路光学系138は、1つ以上の視野絞り、1つ以上の瞳絞り、1つ以上の偏光子、1つ以上のフィルタ、1つ以上のビームスプリッタ、1つ以上の拡散器、1つ以上のホモジナイザ、1つ以上のアポダイザ、1つ以上のビーム整形器、または1つ以上のミラー(例えば、静的ミラー、平行移動可能ミラー、走査ミラーなどである)を含んでもよいが、それらに限定されない。さらに、収集経路134および/または検出器114の様々な構成要素は、測定に使用するためのサンプル106の所望の関心領域を選択するように構成され得る。例えば、エッジ効果等を軽減するために、1つ以上のセル204内の関心領域を選択することが望ましい場合がある。さらに、関心領域の選択および/または関心領域内の特徴の特性を使用して、検出器114のフレームレートを制御または別様に決定することもできる。
【0079】
SWIR光学計量ツール102の照明経路124および収集経路134は、サンプル106を照明し、入射照明110に応答してサンプル106から発する光を収集するのに適した広範囲の構成に向けることができる。例えば、図1Bに示すように、SWIR光学計量ツール102は、共通の対物レンズ130が同時に照明110をサンプル106に向け、サンプル106から光を収集することができるように配向されたビームスプリッタ140を含むことができる。
【0080】
別の例として、照明経路124および収集経路134は、重複しない光路を含み得る。図1Cは、本開示の1つ以上の実施形態による、照明経路124および収集経路134が別個の要素を含む、SWIR光学計量ツール102の概念図である。例えば、照明経路124は、第1の集束要素142を利用して照明110をサンプル106に向けることができ、収集経路134は、第2の集束要素(focusing element)144を利用してサンプル106からの光(例えば、収集された光132)を収集することができる。これに関して、第1の集束要素142及び第2の集束要素144の開口数は異なっていてもよい。別の実施形態では、1つ以上の光学構成要素は、サンプル106上の照明110の入射角および/または収集角が、回転可能なアームの位置によって制御され得るように、サンプル106の周囲で枢動する1つ以上の回転可能なアーム(図示せず)に搭載されてもよい。
【0081】
ここで図1D~1Fを参照すると、SWIR光学計量ツール102のマルチチャネル構成が、本開示の1つ以上の実施形態に従って、より詳細に説明される。図1D-1Fに提供されるいくつかの実施例は、可視波長検出器114を含むが、これは、非限定的例証としてのみ提供され、そのような検出器114は、概して、限定ではないが、可視またはUVスペクトル範囲を含む、任意の非SWIRスペクトル範囲内の測定に好適な任意の検出器114を含んでもよいことに留意されたい。
【0082】
図1Dは、2つの測定チャネル112を含むSWIR光計量ツール102の概念図であり、測定チャネル112のうちの少なくとも1つは、本開示の1つ以上の実施形態によるSWIR検出器114を含む。
【0083】
一実施形態では、収集経路134は、収集された光132を2つ以上の測定チャネル112(例えば、測定チャネル112-1および112-2)につながる2つ以上の経路に分割するための1つ以上のチャネルビームスプリッタ146を含む。チャネルビームスプリッタ146は、当技術分野で公知の任意のビームスプリッタ構成要素を含んでもよい。一実施形態では、チャネルビームスプリッタ146は、偏光非感受性ビームスプリッタを含む。このようにして、様々な測定チャネル112は、任意の偏光を有する収集された光132を受け取ることができる。別の実施形態では、チャネルビームスプリッタ146は、偏光感知ビームスプリッタを含む。このようにして、特定の測定チャネル112は、選択された偏光を有する直線偏光を受光することができる。別の実施形態では、チャネルビームスプリッタ146は、限定ではないが、ダイクロイックミラー等のスペクトル選択的ビームスプリッタを含む。例えば、スペクトル選択ビームスプリッタは、カットオフ波長を上回る光をある経路に沿って(例えば、ある測定チャネル112に)指向させ、カットオフ波長を下回る光を別の経路に沿って(例えば、別の測定チャネル112に)指向させてもよい。さらに、複数のスペクトル選択チャネルビームスプリッタ146または他のスペクトルフィルタを組み合わせて、収集された光132の任意の選択された波長範囲を任意の選択された測定チャネル112に提供することができる。
【0084】
一実施形態では、SWIR光計量ツール102は、SWIR検出器114を含む2つ以上の測定チャネル112を含む。例えば、チャネルビームスプリッタ146は、SWIR波長を用いて同時または逐次測定を提供するように、スペクトル非感受性であってもよい。例えば、1つの測定チャネル112は、サンプル106の視野平面画像を提供してもよく、1つの測定チャネル112は、サンプル106の瞳平面画像を提供してもよい。別の例では、異なる測定チャネル112は、異なるサンプル層の合焦画像を提供するように構成され得る。このようにして、光学計量測定は、複数の合焦層に基づき得る。別の例では、チャネルビームスプリッタ146は、各SWIR検出器114が異なる範囲のSWIR波長に関する光学計量データを提供し得るように、SWIRスペクトル範囲のカットオフ波長に基づいて光を分割し得る。
【0085】
さらに、SWIR検出器114を含む測定チャネル112は、少なくとも1つのSWIR波長を含む任意のスペクトル範囲に基づいて光学計量データを提供するように構成され得る。一実施形態では、SWIR光計量ツール102は、SWIR波長(例えば、約900nmを超える波長)のみをSWIR検出器114(例えば、SWIR波長のみを含む照明110を介して、スペクトル感受性チャネルビームスプリッタ146を介して、スペクトルフィルタを介して、または同等物を介する)に向ける。別の実施形態では、SWIR光計量ツール102は、SWIR波長および少なくともいくつかの可視波長をSWIR検出器114に向ける。このようにして、SWIR検出器114は、ハイブリッド検出器として動作することができる。例えば、InGaAs検出器114は、約700nmを上回る波長において、可視波長検出器(例えば、シリコンベースの検出器)に匹敵するか、またはそれより良好な量子効率を有し得る。したがって、SWIR検出器114は、いくつかの可視波長範囲における使用に好適であり得る。
【0086】
別の実施形態では、SWIR光計量ツール102は、SWIR検出器114を有する少なくとも1つの測定チャネル112と、可視波長検出器114を有する少なくとも1つの測定チャネル112とを含む。例えば、2チャネル構成では、選択されたカットオフ波長を上回る収集された光132は、SWIR検出器114を用いて測定チャネル112に指向されてもよく(例えば、SWIR波長のみを含む照明110を介して、スペクトル感受性チャネルビームスプリッタ146を介して、スペクトルフィルタを介して、または同等物を介する)、選択されたカットオフ波長を下回る収集された光132は、可視波長検出器114を用いて測定チャネル112に指向されてもよい。本明細書で前述したように、カットオフ波長は、任意の適切な波長となるように選択することができる。一実施形態では、カットオフ波長は、SWIR光計量ツール102内の検出器114の検出限界に基づいて選択される。例えば、カットオフ波長は、可視波長検出器114の検出上限に対応するように約900nmとなるように選択することができる。別の実施形態では、カットオフ波長は、SWIR光計量ツール102内の検出器114の量子効率に基づいて選択される。例えば、カットオフ波長は、可視波長検出器114及びSWIR検出器114の量子効率が等しい波長となるように選択することができる。例えば、可視波長検出器の量子効率は、概して、波長上限に近いより長い波長で劣化し得るが、SWIR検出器114の量子効率は、概して、可視波長範囲内の低い値からSWIR波長範囲内の比較的高い値まで増加し得る。その結果、一般に、特定の可視波長検出器114および特定のSWIR検出器114が等しいまたは同様の量子効率を有し得る波長または波長範囲が存在し得る。したがって、カットオフ波長は、この範囲内にあるように選択することができる。本明細書では、SWIR光計量ツール102内の検出器114の量子効率に基づいてカットオフ波長を選択することにより、検出限界に基づく選択よりも測定感度及び/又は精度を高めることができると考えられる。
【0087】
SWIR検出器を有する少なくとも1つの測定チャネル112と、可視波長検出器114を有する少なくとも1つの測定チャネル112とを含むSWIR光学計量ツール102は、調整された波長を有するサンプル106の異なる層の特徴付けに基づく光学計量測定に適し得るが、これに限定されない。本明細書で前述したように、層特有の照明スペクトルを有する計量は、概して米国特許10,444,161(2019年10月15日)で説明され、その全体が参照により組み込まれる。一般的な意味において、異なるサンプル層に対する調整された照明または収集条件に基づく計量は、高感度の測定を提供し得る。本明細書で開示されるシステムおよび方法は、米国特許10,444,161(SWIR)波長で説明される技法を拡張し、増強された感度を提供し得ることが、本明細書でさらに企図される。
【0088】
加えて、本明細書に開示されるシステムおよび方法は、可視波長のみを使用する光学計量システムに適さないSWIRターゲット104上の測定を可能にし得る。例えば、図2A図2EのSWIRターゲット104に関して説明したように、SWIR検出器114を含む第1の測定チャネル112と、可視波長検出器114(例えば、図1Dに示すように)を含む第2の測定チャネル112とを有するSWIR光計量ツール102は、VOIT層202を有するSWIRターゲット104を特徴付けるのに適している。たとえば、第1の測定チャネル112は、VOIT層202の下の第1の層208に関連するデータを生成することができ、第2の測定チャネル112は、VOIT層202を含むかまたはその上にある第2の層212に関連するデータを生成することができる。
【0089】
ここで図1Eおよび図1Fを参照すると、可視波長検出器114を有する2つの測定チャネル112と、SWIR検出器114を有する少なくとも1つの測定チャネル112とを有するSWIR光計量ツール102の構成が、本開示の1つ以上の実施形態に従ってより詳細に説明される。
【0090】
図1Eは、可視波長検出器114または他の非SWIR検出器(例えば、検出器114b)とSWIR検出器114(例えば、検出器114c)との間で選択的に切り替えるために、1つの測定チャネル112(例えば、測定チャネル112-1および112-2)内にカメラチェンジャ148を含む2つの測定チャネル112を有するSWIR光計量ツール102の概念図である。本開示の1つ以上の実施形態によれば、例えば、第1の測定チャネル112(例えば、測定チャネル112-1)は、第1の可視波長検出器114aを含んでもよく、第2の測定チャネル112(例えば、測定チャネル112-2)は、第2の可視波長検出器114bとSWIR検出器114cとの間で選択的に切り替えるためのカメラチェンジャ148を含んでもよい。
【0091】
カメラチェンジャ148は、異なる検出器114の間で切り替えるのに適した当技術分野で知られている任意の構成要素を含むことができる。一実施形態では、カメラチェンジャ148は、収集された光132を受光するために光路内に選択された検出器114を選択的に位置決めするための並進ステージを含む。別の実施形態では、カメラチェンジャ148は、集光された光132の経路を選択的に調整するための1つ以上の調整可能なビーム制御光学系、例えば、限定されないが、偏光ビームスプリッタと結合された偏光回転子、回転可能なミラー、または平行移動可能なミラーを含む。
【0092】
図1Fは、本開示の1つ以上の実施形態による、SWIR検出器114を含む1つの測定チャネル112と、可視波長検出器114(またはより一般的には非SWIR検出器114)を含む2つの測定チャネル112とを有するSWIR光計量ツール102の概念図である。例えば、第1の測定チャネル112-1は第1の可視波長検出器114aを含むことができ、第2の測定チャネル112-2は第2の可視波長検出器114bを含むことができ、第3の測定チャネル112-3はSWIR検出器114cを含むことができる。
【0093】
本明細書では、図1Eおよび1Fに図示される構成は、可視波長に基づく既存のマルチチャネル光学計量システムのための便利かつ費用効果的なアップグレード経路を提供し得ることが検討される。さらに、そのような構成は、可視およびSWIR波長にわたる多種多様の測定構成(例えば、計量レシピ)を促進し、高感度かつ正確な計量を提供してもよい。さらに、図示されていないが、SWIR光学計量ツール102は、SWIR照明110を提供する少なくとも1つの照明源108を含む(または含むようにアップグレードされる)べきであることを理解されたい。
【0094】
ここで全体的に図1A~2Eを参照すると、SWIR光学計量システム100は、本開示の精神および範囲内で様々な動作フローを利用し得ることが本明細書で企図される。VOIT層202(例えば、図2A~2Eに示すように)を有するSWIR計量ターゲット104を利用する、オーバーレイ計量などであるがこれに限定されない光学計量の文脈における例示的な例として、SWIR光学計量システム100は、デフォルトで、またはユーザもしくは自動システムの選択に基づいて、複数のモードのいずれかで動作することができる。一モードでは、単一のSWIR検出器114を利用して、VOIT層202の下の1つ以上の層(またはその上の特徴)ならびにVOIT層202の上または上の1つ以上の層(またはその上の特徴)の測定値を提供する。このようにして、計量測定に適した単一の画像を、単一の検出器114を使用して生成することができる。第2のモードでは、少なくとも1つのSWIR検出器114を含む2つの検出器114を並列に動作させて、様々な層(またはその上の特徴)を撮像する。例えば、2つの検出器114は、同時にトリガされてもよく、2つの検出器114によって生成される画像は、単一の複合画像またはファイルに共にステッチ(stitched:縫い付け、紐づけ)されてもよいが、その必要はない。さらに、2つの画像または2つの画像のステッチされた合成に基づいて、単一の合成計量測定値を生成することができる。第3のモードでは、少なくとも1つのSWIR検出器114を含む2つの検出器114が並列に動作される(例えば、第2のモードと同様に)が、各画像は、計量測定のソースとして使用されてもよい。このようにして、SWIR光計量システム100は、並列に動作する2つの別個のツールとして動作することができる。加えて、任意のモードでは、任意の所与の画像内の特定の関心領域のみが、測定のソースとして分離され得る。しかしながら、これらの3つの例示的なモードの説明は、単に例示を目的として提供され、限定として解釈されるべきではないことを理解されたい。むしろ、本明細書に開示されるSWIR光計量システム100の様々な構成に基づいて、多種多様な動作モードが達成可能である。
【0095】
図3は、本開示の1つ以上の実施形態によるSWIR光計量方法300において実行されるステップを示す流れ図である。出願人は、SWIR光計量システム100および/またはSWIR計量ターゲット104の文脈において本明細書で前述された実施形態および有効化技術は、方法300に拡張されると解釈されるべきであることに留意する。しかしながら、方法300は、SWIR光計量システム100またはSWIR計量ターゲット104のアーキテクチャに限定されないことにさらに留意されたい。
【0096】
一実施形態では、方法300は、照明の第1の波長範囲に基づいてサンプルを撮像して1つ以上の第1の画像を生成するステップ302を含み、第1の波長範囲は、SWIRスペクトル範囲内の少なくともいくつかの波長を含む。別の実施形態では、方法300は、1つ以上の照明源からの照明の第2の波長範囲に基づいてサンプルを撮像して、1つ以上の第2の画像を生成するステップ304を含み、第2の波長範囲は、SWIRスペクトル範囲(例えば、可視波長、UV波長など)外の少なくともいくつかの波長を含む。別の実施形態では、方法300は、1つ以上の第1の画像および1つ以上の第2の画像に基づいてサンプルの1つ以上の光学計量測定値を生成するステップ306を含む。これに関して、方法300は、光学計量技術をSWIR波長に拡張することができる。
【0097】
例えば、方法300は、VOIT層の上または下の1つ以上のサンプル層上のフィーチャを含むオーバーレイターゲット上のオーバーレイを測定するのに適しうる。例えば、ステップ302は、VOIT層の下の1つ以上の特徴の画像または他のオーバーレイデータを提供してもよく、ステップ304は、VOIT層の上または上の1つ以上の特徴の画像または他のオーバーレイデータを提供してもよい。ステップ306は、次いで、画像または他のオーバーレイデータを組み合わせて、1つ以上の光学計量測定値を提供することができる。例えば、1つ以上の第1の画像は、1つ以上の第1の光学計量測定値を生成するために使用されてもよく、1つ以上の第2の画像は、1つ以上の第2の光学計量測定値を生成するために使用されてもよい。この場合、異なる波長範囲に基づく別個の測定値を使用して最終測定値を生成することができる。別の例では、第1および第2の画像は、単一の光学計量測定が、結合またはステッチされた画像に基づいて生成され得るように、結合またはステッチされ得る。
【0098】
方法300は、単に例示目的で提供され、限定として解釈されるべきではないことを理解されたい。例えば、方法300は、画像ベースの光学計量の特定の非限定的なケースを示す。本明細書では、非撮像光学計量技術に関連する追加の方法も本開示の精神および範囲内であることが企図される。一実施形態では、光学計量測定は、SWIRスペクトル範囲内の少なくともいくつかの波長での照明に基づく1つ以上の第1の光学計量測定と、SWIRスペクトル範囲外の少なくともいくつかの波長での照明に基づく1つ以上の第2の光学計量測定との組み合わせに基づく。例えば、1つ以上の第1の光学計量測定および/または1つ以上の第2の光学計量測定は、スキャトロメトリベースの光学計量測定であってもよいが、そうである必要はない。
【0099】
加えて、SWIR光学計量システム100、SWIR計量ターゲット104、または方法300に関連する例の多くは、SWIRスペクトル範囲内の波長を含む照明およびSWIRスペクトル範囲外の波長を含む照明に基づくが、これらの例は、単に例示目的で提供される。例えば、SWIR光計量システムは、SWIR波長のみを使用して1つ以上の測定値を生成することができ、SWIR計量ターゲット104は、SWIR波長のみで特徴付けることができる。
【0100】
本明細書で説明される主題は、場合によっては、他の構成要素内に含まれる、または他の構成要素と接続される、異なる構成要素を図示する。そのような描写されたアーキテクチャは、単なる例示であり、実際には、同じ機能性を達成する多くの他のアーキテクチャが実装され得ることを理解されたい。概念的な意味では、同じ機能を達成するための構成要素の任意の配置は、所望の機能が達成されるように効果的に「関連付けられる」。したがって、特定の機能を達成するために組み合わされた本明細書の任意の2つの構成要素は、アーキテクチャまたは中間構成要素にかかわらず、所望の機能が達成されるように互いに「関連付けられる」と見なすことができる。同様に、そのように関連付けられた任意の2つの構成要素はまた、所望の機能性を達成するために、相互に「接続」または「結合」されていると見なされることができ、そのように関連付けられることが可能な任意の2つの構成要素はまた、所望の機能性を達成するために、相互に「結合可能」であると見なされることができる。結合可能な特定の例は、物理的に相互作用可能な及び/又は物理的に相互作用するコンポーネント及び/又は無線で相互作用可能な及び/又は無線で相互作用するコンポーネント及び/又は論理的に相互作用可能な及び/又は論理的に相互作用するコンポーネントを含むが、これらに限定されない。
【0101】
本開示およびその付随する利点の多くは、前述の説明によって理解されるであろうと考えられ、開示される主題から逸脱することなく、またはその物質的利点の全てを犠牲にすることなく、構成要素の形態、構造、および配置において種々の変更が行われ得ることが明白となるであろう。説明される形態は単なる説明であり、そのような変更を包含し、含むことが以下の特許請求の範囲の意図である。さらに、本発明は添付の特許請求の範囲によって定義されることを理解されたい。
図1A
図1B
図1C
図1D
図1E
図1F
図2A
図2B
図2C
図2D
図2E
図3
【国際調査報告】