(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2024-03-27
(54)【発明の名称】マルチビームアレイ構成のための成形アパーチャセット
(51)【国際特許分類】
H01J 37/09 20060101AFI20240319BHJP
H01L 21/68 20060101ALI20240319BHJP
【FI】
H01J37/09 A
H01L21/68 G
H01L21/68 K
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023550061
(86)(22)【出願日】2022-03-04
(85)【翻訳文提出日】2023-08-18
(86)【国際出願番号】 US2022018811
(87)【国際公開番号】W WO2022203834
(87)【国際公開日】2022-09-29
(32)【優先日】2021-03-24
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】500049141
【氏名又は名称】ケーエルエー コーポレイション
(74)【代理人】
【識別番号】110001210
【氏名又は名称】弁理士法人YKI国際特許事務所
(72)【発明者】
【氏名】プレットナー トーマス
(72)【発明者】
【氏名】エスコルシア エルネスト
(72)【発明者】
【氏名】シュリヤン サミート
(72)【発明者】
【氏名】イ ジョン ホ
【テーマコード(参考)】
5C101
5F131
【Fターム(参考)】
5C101AA03
5C101AA22
5C101AA32
5C101BB03
5C101BB05
5C101BB09
5C101BB10
5C101EE03
5C101EE45
5C101EE69
5C101EE70
5C101EE75
5C101FF02
5C101HH11
5F131AA02
5F131AA10
5F131BA13
5F131DA09
5F131DA33
5F131DA42
5F131EA02
5F131EA22
(57)【要約】
マルチビームアレイシステムのためのアパーチャアレイ、およびマルチビームアレイシステムからビームのサブセットを選択する方法が提供される。アパーチャアレイは、ビーム源に近接して配置されたアレイ本体を含む。アレイ本体は、複数のアパーチャを備え、アパーチャのうちの少なくとも2つは、異なる幾何学形状を有する。アレイ本体は、アクチュエータを介して、ビーム源からのビームのサブセットが光軸と交差するアパーチャの幾何学形状に基づいて選択されるように、ビーム源の光軸に対して移動可能である。
【特許請求の範囲】
【請求項1】
マルチビームアレイシステムのためのアパーチャアレイであって、
ビーム源に近接して配置されたアレイ本体であって、複数のアパーチャを備え、前記アパーチャのうちの少なくとも2つが異なる幾何学形状を有する、アレイ本体
を備え、
前記アレイ本体は、アクチュエータを介してビーム源の光軸に対して移動可能であり、それにより、前記ビーム源からのビームのサブセットは、前記光軸と交差する前記アパーチャの形状に基づいて選択される、アパーチャアレイ。
【請求項2】
前記複数のアパーチャの少なくとも1つは円形であることを特徴とする請求項1に記載のアパーチャアレイ。
【請求項3】
前記複数のアパーチャの少なくとも1つは矩形であることを特徴とする請求項1に記載のアパーチャアレイ。
【請求項4】
前記複数のアパーチャの少なくとも1つは六角形であることを特徴とする請求項1に記載のアパーチャアレイ。
【請求項5】
前記複数のアパーチャのうちの2つは、サイズが異なり同じ形状を有することを特徴とする請求項1に記載のアパーチャアレイ。
【請求項6】
前記複数のアパーチャは、前記アレイ本体内に1次元的に配列されていることを特徴とする請求項1に記載のアパーチャアレイ。
【請求項7】
前記アクチュエータは、ビーム源の光軸に対してアレイ本体をX方向に移動させるリニアアクチュエータを備え、前記X方向は前記光軸に対して垂直であることを特徴とする請求項6に記載のアパーチャアレイ。
【請求項8】
前記アクチュエータは、回転軸の周りでビーム源の光軸に対してアレイ本体を回転させるように構成される回転アクチュエータを備え、前記回転軸は前記光軸と平行であることを特徴とする請求項6に記載のアパーチャアレイ。
【請求項9】
前記複数のアパーチャは、前記アレイ本体内に2次元的に配列されていることを特徴とする請求項1に記載のアパーチャアレイ。
【請求項10】
前記アクチュエータは、前記ビーム源の光軸に対してアレイ本体をX方向およびY方向にそれぞれ移動させるように構成された一対のリニアアクチュエータを備え、前記X方向および前記Y方向は、前記光軸に対して垂直であって互いに垂直であることを特徴とする請求項9に記載のアパーチャアレイ。
【請求項11】
前記アレイ本体は、窒化アルミニウム、多結晶ダイヤモンド、グラファイト、モリブデン、またはタングステンから構成されることを特徴とする請求項1に記載のアパーチャアレイ。
【請求項12】
前記アレイ本体上に配置され、前記アレイ本体からの熱を能動的または受動的に放熱するように構成される放熱デバイスをさらに含む請求項1に記載のアパーチャアレイ。
【請求項13】
前記アレイ本体と前記ビーム源との間の距離は、10cm~20cmであることを特徴とする請求項1に記載のアパーチャアレイ。
【請求項14】
前記ビーム源は電子ビーム源であることを特徴とする請求項1に記載のアパーチャアレイ。
【請求項15】
マルチビームアレイシステムからビームのサブセットを選択する方法であって、
ビーム源に近接してアレイ本体を提供するステップであって、前記アレイ本体は、複数のアパーチャを備え、前記アパーチャのうちの少なくとも2つは、異なる幾何学形状を有する、ステップと、
前記アパーチャのうちの1つが光軸と交差するように、アクチュエータを介してビーム源の光軸に対して前記アレイ本体を移動させるステップと、
前記ビーム源を用いて光軸の周りに電子ビームを生成するステップと、
前記光軸と交差する前記アパーチャの形状に基づいて前記電子ビームのサブセットを選択するために、前記電子ビームを前記アレイ本体に通すステップと、
を備える方法。
【請求項16】
前記複数のアパーチャの少なくとも1つは円形であり、前記光軸と交差する前記アパーチャが円形である場合に、さらに、ホットスポット検査動作は、アレイ本体の下流で、光軸内に配置されたウェハの一部分に対してホットスポット検査動作を実行するステップを含むことを特徴とする請求項15に記載の方法。
【請求項17】
前記複数のアパーチャのうちの少なくとも1つは長方形であり、前記光軸と交差するアパーチャが長方形である場合に、さらに、前記アレイ本体の下流で前記光軸内に配置されたウェハの一部分に対してスワス動作を実行するステップを含むことを特徴とする請求項15に記載の方法。
【請求項18】
前記複数のアパーチャのうちの少なくとも1つは六角形であり、前記光軸と交差するアパーチャが六角形である場合に、さらに、前記アレイ本体の下流で、前記光軸に位置決めされたウェハの一部分に対してステップ及びセトリング動作を実行するステップを含むことを特徴とする請求項15に記載の方法。
【請求項19】
前記アパーチャのうちの異なるアパーチャが前記光軸と交差するように、前記アクチュエータを介して前記ビーム源の前記光軸に対して前記アレイ本体を移動させるステップと、
前記光軸と交差する前記アパーチャのうちの異なるアパーチャの形状に基づいて、前記電子ビームの異なるサブセットを選択するように、前記アレイ本体を通して前記電子ビームを方向付けるステップと、
をさらに含む請求項15に記載の方法。
【請求項20】
前記アレイ本体と前記ビーム源との間の距離は、10cm~20cmであることを特徴とする請求項15に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、マルチビームアレイシステムに関し、より詳細には、マルチビームアレイシステムのためのアパーチャアレイに関する。
【背景技術】
【0002】
半導体製造産業の進化は、歩留まり管理に、特に計測および検査システムに、より大きな要求を課している。臨界寸法は縮小し続けるが、産業界は、高収率、高価値生産を達成するための時間を短縮する必要がある。歩留まり問題を検出してからそれを固定するまでの総時間を最小限に抑えることは、半導体製造業者に対する投資への復帰を決定する。
【0003】
論理デバイスおよびメモリデバイスなどの半導体デバイスを製造することは、典型的には、半導体デバイスの様々な特徴および複数のレベルを形成するために、多数の製造プロセスを使用して半導体ウェハを処理することを含む。例えば、リソグラフィは、レチクルから半導体ウェハ上に配置されたフォトレジストにパターンを転写することを含む半導体製造プロセスである。半導体製造プロセスのさらなる例は、化学機械研磨(CMP)、エッチング、堆積、およびイオン注入を含むが、これらに限定されない。複数の半導体デバイスは、個々の半導体デバイスに分離される単一の半導体ウェハ上に配置で製造され得る。
【0004】
検査プロセスは、製造プロセスにおけるより高い歩留りを促進し、したがってより高い利益を促進するために、ウェハ上の欠陥を検出するために半導体製造中の様々なステップで使用される。検査は、集積回路(IC)などの半導体デバイスを製造する上で常に重要な部分である。しかしながら、半導体デバイスの寸法が減少するにつれて、より小さい欠陥がデバイスの故障を引き起こし得るため、検査は、許容可能な半導体デバイスの製造の成功にとってさらに重要になる。例えば、半導体デバイスの寸法が縮小するにつれて、比較的小さい欠陥でさえも半導体デバイスにおいて望ましくない収差を引き起こし得るため、縮小サイズの欠陥の検出が必要になる。
【0005】
検査プロセスに使用される1つのデバイスはマルチビームアレイである。マルチビームアレイは、半導体デバイスのエリア上に複数の電子ビームを放出する。検査プロセス中、電子ビームのサブセットのみを選択することが望ましい場合がある。例えば、あるアレイ形状が、異なる検査プロセスのために要求されてもよく、または異なるアレイ形状が、より高い分解能画像を提供してもよい。典型的な検査システムでは、電子ビームのサブセットを変更することは、マルチビームアレイの光路に配置された個々のブランカを交換すること、またはプロセッサを使用して個々の電子ビームをオンまたはオフにするように制御することを必要とし得る。これらの方法は、検査システムにコストを追加し得、および/または追加の保守を必要とし得る。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】米国特許出願公開第2013/0052569号
【特許文献2】特開2018-195613号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
したがって、マルチビームアレイのサブセットを選択するための新しい方法およびデバイスが必要とされている。これらの新しい方法およびデバイスは、検査プロセス間のダウンタイムを低減し、検査システムに最小限のコストを追加し、ほとんど保守を必要としない。
【課題を解決するための手段】
【0008】
本開示の実施形態は、マルチビームアレイシステムのためのアパーチャアレイを提供する。アパーチャアレイは、ビーム源に近接して配置されるアレイ本体を備えてもよい。アレイ本体は、複数のアパーチャ(開口)を含んでもよい。アパーチャのうちの少なくとも2つは、異なる幾何学形状を有してもよい。アレイ本体は、アクチュエータを介して、ビーム源からのビームのサブセットが、光軸と交差するアパーチャの幾何学形状に基づいて選択され得るように、ビーム源の光軸に対して移動可能であってもよい。
【0009】
本開示の実施形態によれば、複数のアパーチャの少なくとも1つは円形であってもよい。
【0010】
本開示の実施形態によれば、複数のアパーチャの少なくとも1つは矩形であり得る。
【0011】
本開示の実施形態によれば、複数のアパーチャの少なくとも1つは六角形であってもよい。
【0012】
本開示の実施形態によれば、複数のアパーチャのうちの2つは、異なるサイズを有し同じ形状を有し得る。
【0013】
本開示の実施形態によれば、複数のアパーチャは、アレイ本体内に1次元的に配置されてもよい。
【0014】
本開示の実施形態によれば、アクチュエータは、アレイ本体をビーム源の光軸に対してX方向に移動させるように構成されたリニアアクチュエータを備えてもよい。X方向は、光軸に垂直であってもよい。
【0015】
本開示の実施形態によれば、アクチュエータは、回転軸の周りでビーム源の光軸に対してアレイ本体を回転させるように構成された回転アクチュエータを備え得る。回転軸は、光軸と平行であってもよい。
【0016】
本開示の実施形態によれば、複数のアパーチャは、アレイ本体内に2次元的に配置されてもよい。
【0017】
本開示の実施形態によれば、アクチュエータは、アレイ本体をビーム源の光軸に対してX方向およびY方向にそれぞれ移動させるように構成された一対のリニアアクチュエータを備えることができる。X方向及びY方向は、光軸に対して垂直であってもよく、互いに垂直であってもよい。
【0018】
本開示の実施形態によれば、アレイ本体は、窒化アルミニウム、多結晶ダイヤモンド、グラファイト、モリブデン、またはタングステンから構成され得る。
【0019】
本開示の実施形態によれば、アパーチャアレイは、アレイ本体上に配置された放熱デバイスをさらに備え得る。熱放散デバイスは、アレイ本体から熱を能動的または受動的に放散するように構成され得る。
【0020】
本開示の実施形態によれば、アレイ本体とビーム源との間の距離は、10cm~20cmであってもよい。
【0021】
本開示の実施形態によれば、ビーム源は電子ビーム源であってもよい。
【0022】
本開示の実施形態は、マルチビームアレイシステムからビームのサブセットを選択する方法を提供する。本方法は、ビーム源に近接してアレイ本体を提供するステップを含んでもよい。アレイ本体は、複数のアパーチャを含んでもよい。アパーチャのうちの少なくとも2つは、異なる幾何学形状を有してもよい。本方法はさらに、アパーチャのうちの1つが光軸と交差し得るように、アクチュエータを介して、ビーム源の光軸に対してアレイ本体を移動させるステップを含んでもよい。本方法はさらに、ビーム源を使用して、光軸の周囲で電子ビームを生成するステップを含んでもよい。本方法はさらに、光軸と交差するアパーチャの形状に基づいて電子ビームのサブセットを選択するように、アレイ本体を通して電子ビームを方向付けるステップを含んでもよい。
【0023】
本開示の実施形態によれば、複数のアパーチャのうちの少なくとも1つは円形であってもよく、光軸と交差するアパーチャが円形である場合、方法は、アレイ本体の下流で光軸内に位置するウェハの部分に対してホットスポット検査動作を実行することをさらに含んでもよい。
【0024】
本開示の実施形態によれば、複数のアパーチャのうちの少なくとも1つは長方形であってもよく、光軸と交差するアパーチャが長方形である場合、方法は、アレイ本体の下流で光軸内に位置するウェハの部分に対してスワス動作を実行することをさらに含んでもよい。
【0025】
本開示の一実施形態によれば、複数のアパーチャのうちの少なくとも1つは六角形であってもよく、光軸と交差するアパーチャが六角形である場合、方法は、アレイ本体の下流で光軸内に位置するウェハの部分に対してステップ及びセトル(step and settle)動作を実行するステップをさらに含んでもよい。
【0026】
本開示の実施形態によれば、方法は、アパーチャのうちの異なるアパーチャが光軸と交差するように、アクチュエータを介してビーム源の光軸に対してアレイ本体を移動させることをさらに含む。本方法はさらに、光軸と交差するアパーチャのうちの異なるアパーチャの形状に基づいて、電子ビームの異なるサブセットを選択するように、アレイ本体を通して電子ビームを方向付けるステップを含んでもよい。
【0027】
本開示の実施形態によれば、アレイ本体とビーム源との間の距離は、10cm~20cmであり得る。
【図面の簡単な説明】
【0028】
本開示の性質および目的をより完全に理解するために、添付の図面と併せて以下の詳細な説明を参照されたい。
【
図1A】本開示の一実施形態によるアパーチャアレイの上面図である。
【
図2A】本開示の別の実施形態によるアパーチャアレイの上面図である。
【
図3A】本開示の別の実施形態によるアパーチャアレイの上面図である。
【
図4】本開示の一実施形態によるマルチビームアレイシステムからビームのサブセットを選択する方法のフローチャートである。
【
図5】本開示の実施形態によるアパーチャアレイを有するマルチビームアレイシステムのブロック図である。
【発明を実施するための形態】
【0029】
特許請求される主題は、ある実施形態に関して説明されるが、本明細書に記載される利益および特徴の全てを提供しない実施形態を含む、他の実施形態もまた、本開示の範囲内である。様々な構造的、論理的、プロセスステップ、および電子的変更が、本開示の範囲から逸脱することなく行われ得る。したがって、本開示の範囲は、添付の特許請求の範囲を参照することによってのみ定義される。
【0030】
図1Aに示されるように、本開示の実施形態は、マルチビームアレイシステムのためのアパーチャアレイ100を提供する。アパーチャアレイ100は、アレイ本体10を備えることができる。アレイ本体10は、少なくとも100μmの厚さを有するプレートであり得る。アレイ本体10は、以下の材料のうちの1つから構成されてもよい:窒化アルミニウム、多結晶ダイヤモンド、グラファイト、モリブデン及びタングステン。他の材料も可能であり、これらの材料は例として列挙されているにすぎない。
【0031】
アレイ本体10は、複数のアパーチャ12を含んでもよい。アレイ本体10は、複数のアパーチャ12を画定するように機械加工されてもよい。例えば、レーザ切断操作を使用して、アレイ本体10に複数のアパーチャ12を画定することができる。放電加工(EDM)、エッチング、または任意の他の好適な操作などの他の操作を使用して、アレイ本体10内に複数のアパーチャ12を画定することができる。複数のアパーチャ12のうちの少なくとも2つは、異なる幾何学形状を有してもよい。例えば、複数のアパーチャ12のそれぞれは、異なるサイズ又は異なる形状を有してもよい。複数のアパーチャ12の各々は、1mm~25mmのサイズを有し得る。複数のアパーチャ12の各々は、マルチビームアレイシステムの特定の動作に適し得る。アパーチャ12は、電子ビームの一部をクリップまたは遮断することができる。
【0032】
本開示の実施形態によれば、複数のアパーチャ12の少なくとも1つは円形であってもよい。例えば、
図1A、
図2A、及び
図3Aに示すように、複数のアパーチャ12は、円形のアパーチャ12aを含むことができる。円形アパーチャ12aは、ホットスポット検査動作に適し得る。ホットスポットは、パターン故障の影響を受けやすい半導体デバイスまたはウェハ上のフィーチャである。ホットスポット検査のさらなる詳細は、関連技術において公知であり、ここでは詳述しない。
【0033】
本開示の実施形態によれば、複数のアパーチャ12の少なくとも1つは矩形であり得る。例えば、
図1A、
図2A、及び
図3Aに示すように、複数のアパーチャ12は、矩形のアパーチャ12bを含むことができる。長方形のアパーチャ部12bは、1:1~2:1のアスペクト比を有し得る。矩形アパーチャ12bは、スワス動作に適している。スワスは、一連の画像を撮影するか、または半導体デバイスの行もしくはウェハの一部にわたって走査することができる。例えば、ウェハは、2次元画像のストリップ(スワス)が生成されるようにイメージングが起こるときに移動してもよい。このプロセスは、ケア領域全体が撮像されるまで、複数のそのようなスワスを用いて繰り返すことができる。スワス動作のさらなる詳細は、関連技術において公知であり、ここでは詳述しない。
【0034】
本開示の実施形態によれば、複数のアパーチャ12の少なくとも1つは六角形であってもよい。例えば、
図1A、
図2A、及び
図3Aに示すように、複数のアパーチャ12は六角形のアパーチャ12cを含むことができる。六角形のアパーチャ部12cは、ステップおよびセトリング(step and settle)動作に適し得る。ウェハは、ある位置でウェハの画像を取り込むために静止することができるが、ウェハは、様々な撮像位置の間で移動することができる。この移動及び撮像プロセスは、ステップおよびセトリング動作中にケア領域全体が撮像されるまで繰り返すことができる。ステップおよびセトリング動作のさらなる詳細は、関連技術分野において公知であり、ここでは詳述しない。
【0035】
本開示の実施形態によれば、複数のアパーチャ12のうちの2つは、同じ形状を有するが、異なるサイズを有することができる。より小さいサイズのアパーチャは、アパーチャ形状に対応する動作のためのより高い分解能を提供し得る。例えば、
図1A、
図2A、及び
図3Aに示すように、複数のアパーチャ12は、第1の六角形のアパーチャ12c及び第2の六角形のアパーチャ12dを含むことができる。第2の六角形アパーチャ12dは、第1の六角形アパーチャ12cと比較して、より高い分解能ステップおよびセトリング動作を提供し得る。
【0036】
アレイ本体10は、マルチビームアレイシステム内のビーム源に近接して配置されてもよい。アレイ本体とビーム源との間の距離は、システムの設計に依存し得る。例えば、アレイ本体は、ビーム源から10cm~20cm以内に配置されてもよい。ビーム源は電子ビーム源であってもよい。ビーム源は、シングルビームを含んでもよく、またはマルチビームを放射するように構成されたマルチビームアレイであってもよい。ビーム源は、ビーム源からのエネルギーがウェハに向かって指向される、光軸を画定してもよい。アレイ本体10は、マルチビームアレイシステム内の任意の集束要素の上流に配置されてもよい。複数のアパーチャ12のうちの1つがビーム源の光軸と交差するようにアレイ本体10を配置することによって、ビーム源からの不要なビームがアレイ本体10によってクリップされ、ウェハに向けられないようにすることができる。したがって、ビーム源からのビームのサブセットは、光軸と交差するアパーチャ12の幾何学的形状に基づいて選択することができる。例えば、アパーチャ12は光軸と一致してもよい。アレイ本体10とビーム源との間の距離を最適化することは、以下の利点を提供し得ることが理解され得る。(1)電子線に対するクーロン効果が少ない。(2)(電子ビームのいくつかがクリッピングされるため)ビーム光学系を動かすのに必要とされる電力は少なくてよい。(3)電子ビームを用いて生成される熱は少なくてよい(なぜなら、電子ビームのいくらかがクリップされた後のビーム電流は少ないからである)。
【0037】
アレイ本体10は、ビーム源の光軸に対して移動可能であってもよい。アレイ本体10を移動させることによって、光軸は、複数のアパーチャ12のうちの異なる1つと交差し得る。したがって、ビームの異なるサブセットは、光軸と交差する異なるアパーチャの異なる幾何学形状に基づいて選択されてもよい。
【0038】
本開示の実施形態によれば、複数のアパーチャ12は、アレイ本体10内に1次元的に配置されてもよい。例えば、
図1Aに示すように、複数のアパーチャ12は、アパーチャ12の各々の中心点が共線状であるように直線状に配置されてもよい。このようにして、アレイ本体10を光軸に垂直な単一の軸に沿って移動させて、どのアパーチャ12が光軸と交差するかを変更することができる。例えば、
図1Bに示すように、六角形のアパーチャ部12cは、光軸と一致しているので、現在選択されている。アレイ本体をX方向(
図1Bの左または右)に沿って移動させることによって、異なるアパーチャ(例えば、長方形のアパーチャ部12bまたは第2の六角形のアパーチャ部12dである)を選択することができる。
【0039】
本開示の実施形態によれば、アパーチャアレイ100は、リニアアクチュエータ14xを備え得る。
図1Aに示すように、リニアアクチュエータ14xは、アレイ本体10をビーム源の光軸に対してX方向に移動させるように構成されてもよい。X方向は、光軸に垂直であってもよい。このようにして、リニアアクチュエータ14xは、アレイ本体10を単一の軸に沿って移動させて、どのアパーチャ12が光軸と交差するかを変更することができる。
【0040】
あるいは、
図2Aに示すように、複数のアパーチャ12は、アパーチャ12のそれぞれの中心点が円環状になるように円形に配置されてもよい。このようにして、アレイ本体10は、光軸に平行な単一の軸の周りを回転して、どのアパーチャ12が光軸と交差するかを変えることができる。例えば、
図2Bに示すように、六角形のアパーチャ部12cは、光軸と一致しているので、現在選択されている。異なるアパーチャ(例えば、長方形のアパーチャ12b)は、アレイ本体を回転軸の周りに180度回転させることによって選択することができる。同様に、円形アパーチャ12aまたは第2の六角形アパーチャ12dは、アレイ本体10を回転軸の周りにそれぞれ90度および-90度回転させることによって選択することができる。
【0041】
本開示の実施形態によれば、アパーチャアレイ100は、回転アクチュエータ14rを備えることができる。
図2A及び
図2Bに示すように、回転アクチュエータ14rは、回転軸を中心に円周方向にアレイ本体10を回転させるように構成されてもよい。回転軸は、アレイ本体10に対して垂直であり、光軸に対して平行であってもよい。複数のアパーチャ12のそれぞれの中心点は、回転軸から同じ距離であってもよい。このようにして、回転アクチュエータ14rは、アレイ本体10を回転させて、どのアパーチャ12が光軸と交差するかを変更することができる。
【0042】
本開示の実施形態によれば、複数のアパーチャ12は、アレイ本体10内に2次元的に配置されてもよい。例えば、
図3Aに示すように、複数のアパーチャ10は、各アパーチャ12の中心点がグリッド上のX-Y位置に対応するように、グリッドに配置されてもよい。このように、アレイ本体10は、各々が光軸に垂直な2つの軸に沿って移動することができ、どのアパーチャ12が光軸と交差するかを、各アパーチャ12のX-Y位置に応じて変えることができる。
【0043】
本開示の実施形態によれば、アパーチャアレイ100は、一対のリニアアクチュエータ14x、14yを備えることができる。
図3Aに示すように、一対のリニアアクチュエータ14x,14yは、光源の光軸に対してアレイ本体10をそれぞれX方向及びY方向に移動させるように構成されていてもよい。例えば、一方のリニアアクチュエータ14xがアレイ本体10をX方向に移動させ、他方のリニアアクチュエータ14yがアレイ本体10をY方向に移動させるようにしてもよい。X方向及びY方向は、光軸に対して垂直であってもよく、互いに垂直であってもよい。このように、アレイ本体10を2軸に沿って移動させることにより、各アパーチャ12のX-Y位置に応じて、どのアパーチャ12が光軸と交差するかを変更することができる。例えば、
図3Bに示すように、六角形のアパーチャ部12cは、光軸と一致しているので、現在選択されている。異なるアパーチャ(例えば、第2の六角形のアパーチャ12d)は、アレイ本体をX方向(
図3Bの右)に沿って移動させることによって選択することができる。さらに、
図3Cに示すように、アレイ本体をY方向(
図3Cの左)に沿って移動させることによって、異なるアパーチャ(例えば円形のアパーチャ12a)を選択することができる。同様に、アレイ本体をX方向及びY方向に沿って移動させることにより、異なるアパーチャ(例えば矩形のアパーチャ12b)を選択してもよい。
【0044】
本開示の実施形態によれば、アパーチャアレイ100は、アレイ本体10上に配置された放熱デバイス20を備え得る。放熱デバイス20は、アレイ本体10の上側、アレイ本体10の下側、又はアレイ本体10の両側に配置されてもよい。ビーム源によって生成される熱により、アレイ本体10は、高い熱にさらされ得る。アレイ本体10の損傷を防止するために、アレイ本体10から熱を放散し、アレイ本体10の温度を10°C未満に維持することが望ましい場合がある。放熱デバイス20は、アレイ本体10からの熱を能動的または受動的に放熱するように構成され得る。例えば、
図1~
図3に示すように、放熱デバイス20は、アレイ本体10上に配置された1つ以上のヒートシンクであってもよく、アレイ本体10からヒートシンクに受動的に熱を伝達する。放熱デバイス20は、アレイ本体10から受動的に熱を伝達するために真空チャンバ本体と熱接触することができる。放熱デバイス20は、冷却流体をアレイ本体10に循環させる冷却チャネルを含み得、アレイ本体10から冷却流体に熱を積極的に伝達する。
【0045】
図4に示すように、本開示の実施形態は、マルチビームアレイシステムからビームのサブセットを選択する方法200を提供する。方法200は、以下のステップを含むことができる。
【0046】
ステップ201では、アレイ本体が、ビーム源に近接して提供される。アレイ本体は、複数のアパーチャを備えてもよく、アパーチャのうちの少なくとも2つは、異なる幾何学形状を有してもよい。例えば、複数のアパーチャのそれぞれは、異なるサイズ又は異なる形状を有し得る。複数のアパーチャの各々は、マルチビームアレイシステムの特定の動作に好適であり得る。例えば、円形アパーチャは、ホットスポット検査動作に好適であり得る;矩形アパーチャは、スワス動作に適している;また、六角形アパーチャは、ステップおよびセトリング動作に適し得る。複数のアパーチャのうちの2つは、同じ形状を有するが、異なるサイズを有することができる。より小さいサイズのアパーチャは、同じ形状のより大きいアパーチャよりも高い解像度を有し得る。複数のアパーチャのうちの1つがビーム源の光軸と交差するようにアレイ本体を配置することによって、ビーム源からの不要なビームがアレイ本体によってクリップされ、ウェハに向けられないようにすることができる。したがって、ビーム源からのビームのサブセットは、光軸と交差するアパーチャの幾何学形状に基づいて選択されてもよい。
【0047】
ステップ202において、アパーチャのうちの1つが光軸と交差するように、アレイ本体をビーム源の光軸に対して移動させる。アレイ本体を移動させることによって、複数のアパーチャのうちの異なるアパーチャを光軸と交差させることができる。したがって、ビームの異なるサブセットは、光軸と交差する異なるアパーチャの異なる幾何学形状に基づいて選択されてもよい。
【0048】
複数のアパーチャは、アレイ本体内に1次元的に配置されてもよい。例えば、複数のアパーチャは、アパーチャの各々の中心点が共線状であるように直線的に配置されてもよい。このようにして、アレイ本体を光軸に垂直な単一の軸に沿って移動させて、どのアパーチャが光軸と交差するかを変更することができる。アレイ本体をビーム源の光軸に対して光軸に垂直なX方向に移動させるように構成することができるリニアアクチュエータを設けることができる。したがって、ステップ202は、アパーチャの1つが光軸と交差するように、リニアアクチュエータを介してアレイ本体をX方向に移動させることを含むことができる。
【0049】
複数のアパーチャは、アパーチャの各々の中心点が円環状であるように円形に配置され得る。このようにして、アレイ本体は、光軸と平行な単一の軸の周りを回転して、どのアパーチャが光軸と交差するかを変更することができる。回転アクチュエータが提供されてもよく、回転アクチュエータは、アレイ本体に垂直かつ光軸に平行な回転軸を中心に円周方向にアレイ本体を回転させるように構成されてもよい。したがって、ステップ202は、アパーチャのうちの1つが光軸と交差するように、回転アクチュエータを介して円周方向にアレイ本体を回転させることを含むことができる。
【0050】
前記複数のアパーチャは、前記アレイ本体内に二次元的に配列されていてもよい。例えば、複数のアパーチャは、各アパーチャの中心点がグリッド上のX-Y位置に対応するようにグリッドに配置されてもよい。このように、アレイ本体は、各々が光軸に垂直な2つの軸に沿って移動することができ、各アパーチャのX-Y位置に従って、どのアパーチャが光軸と交差するかを変化させる。アレイ本体をビーム源の光軸に対してそれぞれX方向およびY方向に移動させるように構成することができる一対のリニアアクチュエータを設けることができ、各リニアアクチュエータは、光軸に垂直かつ互いに垂直である。したがって、ステップ202は、アパーチャの1つが光軸と交差するように、一対のリニアアクチュエータを介してアレイ本体をX方向およびY方向に移動させることを含むことができる。
【0051】
ステップ203において、ビーム源を用いて光軸の周りに電子ビームが生成される。
【0052】
ステップ204において、電子ビームは、光軸と交差するアパーチャの形状に基づいて電子ビームのサブセットを選択するためにアレイ本体を通して方向付けられる。したがって、電子ビームの一部のみがアパーチャを通過することができる。
【0053】
複数のアパーチャの少なくとも1つは円形であってもよい。円形アパーチャは、ホットスポット検査動作に好適であり得る。したがって、光軸と交差するアパーチャが円形である場合、方法200は、アレイ本体の下流で光軸内に配置されたウェハの一部分に対してホットスポット検査動作を実行することをさらに含むことができる。
【0054】
複数のアパーチャのうちの少なくとも1つは、長方形であり得る。矩形アパーチャは、スワス動作に適している。したがって、光軸と交差するアパーチャが矩形である場合、方法200は、アレイ本体の下流で光軸内に配置されたウェハの一部分に対してスワス動作を実行することをさらに含むことができる。
【0055】
複数のアパーチャの少なくとも1つは六角形であってもよい。六角形アパーチャは、ステップおよびセトリング動作に好適であり得る。したがって、光軸と交差するアパーチャが六角形である場合、方法200は、アレイ本体の下流で、光軸内に位置するウェハの一部分に対してステップおよびセトリング動作を実行することをさらに含むことができる。
【0056】
方法200では、電子ビームの異なるサブセットは、以下の追加のステップによって選択され得る。
【0057】
アレイ本体は、アパーチャのうちの異なるアパーチャが光軸と交差するように、アクチュエータを介してビーム源の光軸に対して移動される。
【0058】
電子ビームは、光軸と交差するアパーチャの異なるものの形状に基づいて電子ビームの異なるサブセットを選択するためにアレイ本体を通して方向付けられる。
【0059】
図5は、システム300の実施形態のブロック図である。システム300は、ウェハ304の画像を生成するように構成されたウェハ検査ツール(電子コラム301を含む)を含む。
【0060】
ウェハ検査ツールは、少なくともエネルギー源及び検出器を含む出力取得サブシステムを含む。出力取得サブシステムは、電子ビームベースの出力取得サブシステムであってもよい。例えば、一実施形態では、ウェハ304に向けられたエネルギーは電子を含み、ウェハ304から検出されたエネルギーは電子を含む。このようにして、エネルギー源は電子ビーム源とすることができる。
図5に示される1つのそのような実施形態では、出力取得サブシステムは、コンピュータサブシステム302に結合される電子カラム301を含む。ステージ310は、ウェハ304を保持することができる。
【0061】
図5にも示すように、電子カラム301は、1つまたは複数の要素305によってウェハ304に集束される電子を生成するように構成された電子ビーム源303を含む。電子ビーム源303は、例えば、カソード源またはエミッタティップを含んでもよい。1つまたは複数の要素305は、たとえば、ガンレンズ、アノード、ビーム制限アパーチャ、ゲートバルブ、ビーム電流選択アパーチャ、対物レンズ、および走査サブシステムを含むことができ、これらのすべては、当技術分野で知られている任意のそのような好適な要素を含むことができる。アパーチャアレイ100は、電子ビーム源303に近接して、1つ以上の要素305の上流に配置され得る。別の実施形態では、アパーチャアレイ100は、1つ以上の要素305のうちの2つの間に電子ビーム源303に近接して配置されてもよい。
図5には1つのビームのみが示されているが、複数の電子ビーム源303が設けられてもよく、または電子ビーム源は複数のビームのアレイを放出するように構成されてもよい。
【0062】
ウェハ304から戻った電子(例えば、二次電子)は、1つ以上の要素306によって検出器307に集束させることができる。1つ以上の要素306は、例えば、要素305に含まれるものと同じ走査サブシステムであり得る走査サブシステムを含み得る。
【0063】
電子カラム301はまた、当技術分野で公知の任意の他の好適な要素を含んでもよい。
【0064】
電子コラム301は、電子が斜めの入射角でウェハ304に向けられ、別の斜めの角度でウェハ304から散乱されるように構成されるものとして
図5に示されているが、電子ビームは、任意の適切な角度でウェハ304に向けられ、そこから散乱されてもよい。さらに、電子ビームベースの出力取得サブシステムは、ウェハ304の画像(例えば、異なる照明角度、集光角度などを有する。)を生成するために複数のモードを使用するように構成することができる。電子ビームベースの出力取得サブシステムの複数のモードは、出力取得サブシステムの任意の画像生成パラメータにおいて異なり得る。
【0065】
コンピュータサブシステム302は、上述のように検出器307に結合されてもよい。検出器307は、ウェハ304の表面から戻ってきた電子を検出し、それによってウェハ304の電子ビーム画像を形成することができる。電子ビーム画像は、任意の適切な電子ビーム画像を含み得る。コンピュータサブシステム302は、ウェハ304の画像を生成し、または検出器307の出力および/または電子ビーム画像を使用して本明細書に記載の機能のいずれかを実行するように構成することができる。コンピュータサブシステム302は、本明細書に記載の任意の追加のステップを実行するように構成されてもよい。
図5に示される出力取得サブシステムを含むシステム300は、本明細書に記載されるようにさらに構成され得る。
【0066】
図5は、本明細書で説明される実施形態で使用され得る電子ビームベースの出力取得サブシステムの構成を概略的に図示するために本明細書で提供されることに留意されたい。本明細書で説明される電子ビームベースの出力取得サブシステム構成は、商業的出力取得システムを設計するときに通常行われるように、出力取得サブシステムの性能を最適化するように変更されてもよい。加えて、本明細書で説明されるシステムは、既存のシステム(たとえば、本明細書で説明する機能を既存のシステムに追加することによって、)を使用して実装され得る。いくつかのそのようなシステムに関して、本明細書で説明される方法は、システムの随意の機能性(例えば、システムの他の機能に加えて、)として提供されてもよい。代替として、本明細書に説明されるシステムは、完全に新しいシステムとして設計されてもよい。
【0067】
出力取得サブシステムは、電子ビームベースの出力取得サブシステムとして上述されているが、出力取得サブシステムは、イオンビームベースの出力取得サブシステムであってもよい。そのような出力取得サブシステムは、電子ビーム源が当技術分野で公知の任意の好適なイオンビーム源と置換され得ることを除いて、
図5に示されるように構成され得る。加えて、出力取得サブシステムは、市販の集束イオンビーム(FIB)システム、ヘリウムイオン顕微鏡(HIM)システム、および二次イオン質量分析(SIMS)システムに含まれるもの等の任意の他の好適なイオンビームベースの出力取得サブシステムであってもよい。
【0068】
コンピュータサブシステム302は、プロセッサ308および電子データ記憶ユニット309を含む。プロセッサ308は、マイクロプロセッサ、マイクロコントローラ、または他のデバイスを含み得る。
【0069】
コンピュータサブシステム302は、プロセッサ308が出力を受信することができるように、任意の好適な様式(例えば、有線および/または無線伝送媒体を含むことができる1つまたは複数の伝送媒体を介する)でシステム300の構成要素に結合されてもよい。プロセッサ308は、出力を使用していくつかの機能を実行するように構成され得る。ウェハ検査ツールは、プロセッサ308から命令又は他の情報を受信することができる。プロセッサ308および/または電子データ記憶ユニット309は、随意に、別のウェハ検査ツール、ウェハ計測ツール、またはウェハレビューツール(図示せず)と電子通信し、付加的情報を受信する、または命令を送信してもよい。
【0070】
プロセッサ308は、検出器307またはアパーチャアレイ100のためのアクチュエータ等のウェハ検査ツールと電子通信する。プロセッサ308は、検出器307からの測定値を使用して生成された画像を処理するか、またはアパーチャアレイ100内のアパーチャを選択するように構成されてもよい。
【0071】
本明細書に記載されるコンピュータサブシステム302、他のシステム、または他のサブシステムは、パーソナルコンピュータ、画像コンピュータ、メインフレームコンピュータシステム、workstation、ネットワークアプライアンス、インターネットアプライアンス、または他のデバイスを含む、種々のシステムの一部であり得る。サブシステムまたはシステムは、並列プロセッサなど、当技術分野で知られている任意の適切なプロセッサも含み得る。加えて、サブシステムまたはシステムは、スタンドアロンツールまたはネットワークツールのいずれかとして、高速処理およびソフトウェアを有するプラットフォームを含んでもよい。
【0072】
プロセッサ308および電子データ記憶ユニット309は、システム300または別のデバイスの中に配置されるか、または別様にその一部であり得る。ある例では、プロセッサ308および電子データ記憶ユニット309は、独立型制御ユニットの一部であってもよく、または集中型品質制御ユニットであってもよい。複数のプロセッサ308または電子データ記憶ユニット309が使用されてもよい。
【0073】
プロセッサ308は、実際には、ハードウェア、ソフトウェア、およびファームウェアの任意の組合せによって実装され得る。また、本明細書で説明されるようなその機能は、1つのユニットによって実行されてもよく、または異なる構成要素の間で分割されてもよく、その各々は、ハードウェア、ソフトウェア、およびファームウェアの任意の組み合わせによって順に実装されてもよい。プロセッサ308が種々の方法および機能を実装するためのプログラムコードまたは命令は、電子データ記憶ユニット309内のメモリまたは他のメモリ等の可読記憶媒体内に記憶されてもよい。
【0074】
システム300が複数のコンピュータサブシステム302を含む場合、画像、データ、情報、命令などをサブシステム間で送信できるように、異なるサブシステムを互いに結合することができる。たとえば、1つのサブシステムは、当技術分野で知られている任意の適切な有線および/または無線伝送媒体を含み得る任意の適切な伝送媒体によって追加のサブシステムに結合され得る。そのようなサブシステムのうちの2つ以上はまた、共有コンピュータ可読記憶媒体(図示せず)によって効果的に結合されてもよい。
【0075】
プロセッサ308は、システム300の出力または他の出力を使用して、いくつかの機能を行うように構成されてもよい。例えば、プロセッサ308は、出力を電子データ記憶ユニット309または別の記憶媒体に送信するように構成されてもよい。プロセッサ308はさらに、本明細書で説明されるように構成され得る。
【0076】
プロセッサ308またはコンピュータサブシステム302は、欠陥レビューシステム、検査システム、計測システム、または何らかの他のタイプのシステムの一部であってもよい。したがって、本明細書で開示される実施形態は、異なる用途に多かれ少なかれ適している異なる能力を有するシステムのためにいくつかの方法で調整され得るいくつかの構成を説明する。
【0077】
プロセッサ308は、本明細書で説明される実施形態のいずれかに従って構成され得る。プロセッサ308はまた、システム300の出力を使用して、または他のソースからの画像もしくはデータを使用して、他の機能または追加のステップを行うように構成されてもよい。
【0078】
プロセッサ308は、当技術分野で知られている任意の方式で、システム300の様々な構成要素またはサブシステムのいずれかに通信可能に結合され得る。さらに、プロセッサ308は、有線および/または無線部分を含み得る伝送媒体によって、他のシステム(例えば、レビューツールなどの検査システムからの検査結果、設計データを含むリモートデータベースなど)からデータまたは情報を受信および/または取得するように構成され得る。このようにして、伝送媒体は、プロセッサ308とシステム300の他のサブシステムまたはシステム300の外部のシステムとの間のデータリンクとしての役割を果たし得る。
【0079】
本明細書で開示されるシステム300および方法の様々なステップ、機能、および/または動作は、以下のうちの1つまたは複数によって実行される:電子回路、論理ゲート、マルチプレクサ、プログラマブル論理デバイス、ASIC、アナログもしくはデジタル制御/スイッチ、マイクロコントローラ、またはコンピューティングシステム。本明細書で説明されるもの等の方法を実装するプログラム命令は、キャリア媒体を介して伝送されるか、またはキャリア媒体上に記憶されてもよい。キャリア媒体は、読取り専用メモリ、ランダムアクセスメモリ、磁気または光ディスク、不揮発性メモリ、ソリッドステートメモリ、磁気テープなどの記憶媒体を含み得る。キャリア媒体は、ワイヤ、ケーブル、またはワイヤレス伝送リンクなどの伝送媒体を含み得る。例えば、本開示全体にわたって説明される様々なステップは、単一のプロセッサ308(またはコンピュータサブシステム302)、または代替として、複数のプロセッサ308(または複数のコンピュータサブシステム302)によって実行され得る。さらに、システム300の異なるサブシステムは、1つ以上のコンピューティングまたは論理システムを含んでもよい。したがって、上記の説明は、本開示に対する限定として解釈されるべきではなく、単なる例示として解釈されるべきである。
【0080】
電子ビームに関して説明したが、アパーチャアレイ100は、イオンビーム又は他の粒子ビームシステムと共に使用することもできる。
【0081】
本開示は、1つ以上の特定の実施形態に関して説明されたが、本開示の他の実施形態が、本開示の範囲から逸脱することなく行われ得ることが理解されるであろう。したがって、本開示は、添付の特許請求の範囲及びその妥当な解釈によってのみ限定されると見なされる。
【国際調査報告】