IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ エーエスエムエル ネザーランズ ビー.ブイ.の特許一覧

特表2024-519662フーリエ変換ベースレイアウトパターンの階層的クラスタ化
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2024-05-21
(54)【発明の名称】フーリエ変換ベースレイアウトパターンの階層的クラスタ化
(51)【国際特許分類】
   G06T 7/60 20170101AFI20240514BHJP
   H01J 37/22 20060101ALI20240514BHJP
   H01L 21/66 20060101ALI20240514BHJP
【FI】
G06T7/60 300Z
H01J37/22 502H
H01L21/66 J
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023561297
(86)(22)【出願日】2022-04-28
(85)【翻訳文提出日】2023-12-01
(86)【国際出願番号】 EP2022061319
(87)【国際公開番号】W WO2022229312
(87)【国際公開日】2022-11-03
(31)【優先権主張番号】63/181,902
(32)【優先日】2021-04-29
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.ブルートゥース
(71)【出願人】
【識別番号】504151804
【氏名又は名称】エーエスエムエル ネザーランズ ビー.ブイ.
(74)【代理人】
【識別番号】100079108
【弁理士】
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100109346
【弁理士】
【氏名又は名称】大貫 敏史
(74)【代理人】
【識別番号】100117189
【弁理士】
【氏名又は名称】江口 昭彦
(74)【代理人】
【識別番号】100134120
【弁理士】
【氏名又は名称】内藤 和彦
(72)【発明者】
【氏名】ワン,ジンチュン
(72)【発明者】
【氏名】イェ,チュアン
(72)【発明者】
【氏名】ジン,シェンチェン
【テーマコード(参考)】
4M106
5C101
5L096
【Fターム(参考)】
4M106AA01
4M106BA02
4M106CA39
4M106DB05
4M106DJ17
4M106DJ18
4M106DJ20
4M106DJ28
5C101AA03
5C101FF02
5C101HH33
5C101HH36
5C101HH44
5C101JJ07
5C101KK06
5L096AA06
5L096BA03
5L096DA02
5L096FA23
5L096FA66
5L096GA51
5L096JA03
5L096MA07
(57)【要約】
画像データから抽出された複数のパターンをグループ化するための装置、システム及び方法が開示される。いくつかの実施形態では、パターンをグループ化する方法は、ウェーハの一部分上に形成されたフィーチャを表わす複数のパターンを含む画像データを受信することを含む。本方法はまた、フーリエ変換後の複数のパターンを複数組のパターンへ分離することを含む。本方法は更に、それぞれの組のパターン内のパターン間の類似性に関係するフィーチャを再帰的に評価することにより複数のサブセットのパターンを取得するために階層的クラスタ化をそれぞれの組のパターンに対し行うことを含む。
【選択図】 図3
【特許請求の範囲】
【請求項1】
画像データから抽出された複数のパターンをグループ化するためのシステムであって、前記システムは回路構成を含むコントローラを含み、前記回路構成は、前記システムに:
ウェーハの一部分上に形成されるフィーチャを表わす前記複数のパターンを含む前記画像データを受信すること;
フーリエ変換後の前記複数のパターンを複数組のパターンに分離すること;及び
それぞれの組のパターン内のパターン間の類似性に関係するフィーチャを再帰的に評価することにより複数のサブセットのパターンを取得するために階層的クラスタ化を前記それぞれの組のパターンに対し行うことを行わせるように構成される、システム。
【請求項2】
前記回路構成は更に、前記システムに:
周波数領域において複数のフーリエ変換ベース画像をそれぞれ取得するためにフーリエ変換を前記複数のパターンに対し行うこと;及び
前記複数のフーリエ変換ベース画像それぞれに基づき複数のベクトルを取得することを行わせるように構成される、請求項1に記載のシステム。
【請求項3】
前記回路構成は更に、前記システムに:
前記複数のベクトルの距離フィーチャに基づき前記複数のパターンの類似性を評価することを行わせるように構成される、請求項2に記載のシステム。
【請求項4】
フーリエ変換後の前記複数のパターンは距離フィーチャに基づきk平均アルゴリズムを使用することにより複数組のパターンへ分離される、請求項1に記載のシステム。
【請求項5】
前記階層的クラスタ化を行うことは:
それぞれの階層レベルにおいて前記フィーチャを再帰的に評価した結果に基づき前記それぞれの組のパターンに対し再帰的区分化を行うことを含む、請求項1に記載のシステム。
【請求項6】
前記回路構成は更に、前記システムに:
前記フィーチャを評価するための凝集性試験を行うことを行わせるように構成され、前記凝集性試験は:
評価結果を取得するために前記それぞれの組のパターンの凝集度を評価すること;及び
再帰的区分化を一時停止すべきかどうかを前記評価結果に従って判断することを含む、請求項1に記載のシステム。
【請求項7】
前記回路構成は更に、前記システムに:
前記凝集度を評価することに関連付けられたパラメータを指示するユーザ入力を受信することを行わせるように構成される、請求項6に記載のシステム。
【請求項8】
前記画像データは、グラフィックデータベースシステム(GDS)フォーマット、グラフィックデータベースシステムII(GDSII)フォーマット、オープンアートワークシステム交換標準(OASIS)フォーマット、又はCaltech中間フォーマット(CIF)のものである、請求項1に記載のシステム。
【請求項9】
画像データから抽出された複数のパターンをグループ化する方法をシステムに行わせるために前記システムの少なくとも1つのプロセッサにより実行可能である一組の指令を格納する非一時的コンピュータ可読媒体であって、前記方法は:
ウェーハの一部分上に形成されるフィーチャを表わす前記複数のパターンを含む前記画像データを受信すること;
フーリエ変換後の前記複数のパターンを複数組のパターンに分離すること;及び
それぞれの組のパターン内のパターン間の類似性に関係するフィーチャを再帰的に評価することにより複数のサブセットのパターンを取得するために階層的クラスタ化を前記それぞれの組のパターンに対し行うことを含む、非一時的コンピュータ可読媒体。
【請求項10】
コンピューティングデバイスの前記少なくとも1つのプロセッサにより実行可能である前記一組の指令は、前記コンピューティングデバイスに更に:
周波数領域において複数のフーリエ変換ベース画像をそれぞれ取得するためにフーリエ変換を前記複数のパターンに対し行うこと;及び
前記複数のフーリエ変換ベース画像それぞれに基づき複数のベクトルを取得することを行わせる、請求項9に記載の非一時的コンピュータ可読媒体。
【請求項11】
前記コンピューティングデバイスの前記少なくとも1つのプロセッサにより実行可能である前記一組の指令は、前記コンピューティングデバイスに更に:
前記複数のベクトルの距離フィーチャに基づき前記複数のパターンの類似性を評価することを行わせる、請求項10に記載の非一時的コンピュータ可読媒体。
【請求項12】
フーリエ変換後の前記複数のパターンは距離フィーチャに基づきk平均アルゴリズムを使用することにより複数組のパターンへ分離される、請求項9に記載の非一時的コンピュータ可読媒体。
【請求項13】
前記階層的クラスタ化を行うことは:
それぞれの階層レベルにおいて前記フィーチャを再帰的に評価した結果に基づき前記それぞれの組のパターンに対し再帰的区分化を行うことを含む、請求項9に記載の非一時的コンピュータ可読媒体。
【請求項14】
コンピューティングデバイスの前記少なくとも1つのプロセッサにより実行可能である前記一組の指令は、前記コンピューティングデバイスに更に:
前記フィーチャを評価するための凝集性試験を行うことを行わせ、前記凝集性試験は:
評価結果を取得するために前記それぞれの組のパターンの凝集度を評価すること;及び
再帰的区分化を一時停止すべきかどうかを前記評価結果に従って判断することを含む、請求項9に記載の非一時的コンピュータ可読媒体。
【請求項15】
前記コンピューティングデバイスの前記少なくとも1つのプロセッサにより実行可能である前記一組の指令は、前記コンピューティングデバイスに更に:
前記凝集度を評価することに関連付けられたパラメータを指示するユーザ入力を受信することを行わせる、請求項14に記載の非一時的コンピュータ可読媒体。
【発明の詳細な説明】
【技術分野】
【0001】
[0001] 本明細書において提供される実施形態は、マスク検査又はウェーハ検査を容易にするための集積回路レイアウトの基準データ(例えばレイアウトパターン、GDSパターン)をクラスタ化するためのシステム及び方法に関する。
【背景技術】
【0002】
[0002] 集積回路(IC)の製造プロセスでは、未完成の又は完成した回路部品を検査して、それらが設計通りに製造され、欠陥がないことを保証する。走査型電子顕微鏡(SEM)などの荷電粒子(例えば、電子)ビーム顕微鏡又は光学顕微鏡を利用した検査システムが用いられることがある。IC部品の物理的サイズが縮小し続けるにつれ、欠陥検出における精度及び歩留りがより重要になる。
【0003】
[0003] 走査電子顕微鏡(SEM:scanning electron microscope)又は透過電子顕微鏡(TEM:transmission electron microscope)などの荷電粒子(例えば電子)ビーム顕微鏡は、IC部品を検査するための実用的ツールとして役立ち得る。SEM又はTEM像から測定されたパターン又は構造の限界寸法が、製造されるICの欠陥を検出するために使用され得る。例えば、パターン間のズレ又は辺配置変動は、製造プロセスを制御する際にだけでなく欠陥を判断する際においても役立ち得る。
【発明の概要】
【0004】
[0004] 本開示の実施形態は基準データをグループ化するための装置、システム及び方法を提供する。
【0005】
[0005] いくつかの実施形態では、画像データから抽出された複数のパターンをグループ化する方法が提供される。本方法は、ウェーハの一部分上に形成されるフィーチャを表わす複数のパターンを含む画像データを受信すること;フーリエ変換後の複数のパターンを複数組のパターンに分離すること;及びそれぞれの組のパターン内のパターン間の類似性に関係するフィーチャを再帰的に評価することにより複数のサブセットのパターンを取得するために階層的クラスタ化をそれぞれの組のパターンに対し行うことを含む。
【0006】
[0006] いくつかの実施形態では、画像データから抽出された複数のパターンをグループ化するためのシステムが提供される。本システムは回路構成を含むコントローラを含み、回路構成は:ウェーハの一部分上に形成されるフィーチャを表わす複数のパターンを含む画像データを受信すること;フーリエ変換後の複数のパターンを複数組のパターンに分離すること;及びそれぞれの組のパターン内のパターン間の類似性に関係するフィーチャを再帰的に評価することにより複数のサブセットのパターンを取得するために階層的クラスタ化をそれぞれの組のパターンに対し行うことをシステムに行わせるように構成される。
【0007】
[0007] いくつかの実施形態では、画像データから抽出された複数のパターンをグループ化する方法をシステムに行わせるためにシステムの少なくとも1つのプロセッサにより実行可能である一組の指令を格納する非一時的コンピュータ可読媒体が提供される。本方法は、ウェーハの一部分上に形成されるフィーチャを表わす複数のパターンを含む画像データを受信すること;フーリエ変換後の複数のパターンを複数組のパターンに分離すること;及びそれぞれの組のパターン内のパターン間の類似性に関係するフィーチャを再帰的に評価することにより複数のサブセットのパターンを取得するために階層的クラスタ化をそれぞれの組のパターンに対し行うことを含む。
【0008】
[0008] いくつかの実施形態では、複数のパターンをグループ化する方法が提供される。本方法は、ウェーハの一部分上に形成されるフィーチャを表わす複数のパターンを含む画像データを受信すること;複数のパターンのそれぞれから変換された複数の周波数領域フィーチャに対し階層的クラスタ化を行うこと、を含み、階層的クラスタ化を行うことは、パラメータのユーザ選択を受信すること;及びそれぞれの階層レベルにおいて対応組のパターンを区分化することを継続すべきかどうかをパラメータに基づき再帰的に評価することを行うことにより複数の周波数領域フィーチャを再帰的に区分化することを含む。
【0009】
[0009] いくつかの実施形態では、画像データから抽出された複数のパターンをグループ化するためのシステムが提供される。本システムは、ウェーハの一部分上に形成されるフィーチャを表わす複数のパターンを含む画像データを受信すること;及び複数のパターンのそれぞれから変換された複数の周波数領域フィーチャに対し階層的クラスタ化を行うことをシステムに行わせるように構成された回路構成を含むコントローラを含み;階層的クラスタ化を行うことは、パラメータのユーザ選択を受信すること;及びそれぞれの階層レベルにおいて対応組のパターンを区分化することを継続すべきかどうかをパラメータに基づき再帰的に評価することを行うことにより複数の周波数領域フィーチャを再帰的に区分化することを含む。
【0010】
[0010] いくつかの実施形態では、画像データから抽出された複数のパターンをグループ化する方法をシステムに行わせるためにシステムの少なくとも1つのプロセッサにより実行可能である一組の指令を格納する非一時的コンピュータ可読媒体が提供される。本方法は、ウェーハの一部分上に形成されるフィーチャを表わす複数のパターンを含む画像データを受信すること;複数のパターンのそれぞれから変換された複数の周波数領域フィーチャに対し階層的クラスタ化を行うことを含み、階層的クラスタ化を行うことは、パラメータのユーザ選択を受信すること;及びそれぞれの階層レベルにおいて対応組のパターンを区分化することを継続すべきかどうかをパラメータに基づき再帰的に評価することを行うことにより複数の周波数領域フィーチャを再帰的に区分化することを含む。
【0011】
[0011] 本開示の実施形態の他の利点は、図解及び例を手段として本発明のいくつかの実施形態が記載される添付図面に関連して行われる以下の説明から明白になる。
【図面の簡単な説明】
【0012】
図1】[0012]本開示のいくつかの実施形態に一致する例示的電子ビーム検査(EBI:electron beam inspection)システムを示す概略図を示す。
図2】[0013]本開示のいくつかの実施形態に一致する図1の電子ビーム検査システムの一部であり得る例示的電子ビームツールを示す概略図を示す。
図3】[0014]本開示のいくつかの実施形態に一致する基準データを処理するための例示的システムのブロック図を示す。
図4A】[0015]本開示のいくつかの実施形態に一致する基準データ内に含まれるパターンの第1レベルグループ化の例示的プロセスを示す。
図4B】[0016]本開示のいくつかの実施形態に一致する基準データ内に含まれるパターンをクラスタ化する例示的プロセスを示す。
図4C】[0017]本開示のいくつかの実施形態に一致する基準データ内に含まれるパターンの第2レベルグループ化の例示的プロセスを示す。
図4D】[0018]本開示のいくつかの実施形態に一致するクラスタ化又はグループ化プロセス中に2つのパターンを比較する例示的線図を示す。
図5A】[0019]本開示のいくつかの実施形態に一致する基準データ内の複数のパターンに対しフーリエ変換を行う例示的プロセスを示す。
図5B】[0020]本開示のいくつかの実施形態に一致するフーリエ変換ベース基準画像をベクトルへ変換する例示的プロセスを示す。
図5C】[0021]本開示のいくつかの実施形態に一致するフーリエ変換ベースフィーチャを区分化する例示的階層的クラスタ化プロセスを示す線図を示す。
図6A】[0022]本開示のいくつかの実施形態に一致する凝集性試験の線図を示す。
図6B】[0023]本開示のいくつかの実施形態に一致する再帰的区分化が継続する線図を示す。
図6C】[0024]本開示のいくつかの実施形態に一致する再帰的区分化が停止する線図を示す。
図7】[0025]本開示のいくつかの実施形態に一致する基準データを処理する例示的方法を表わすプロセスフローチャートである。
図8】[0026]本開示のいくつかの実施形態に一致する基準データを処理する例示的方法を表わすプロセスフローチャートである。
【発明を実施するための形態】
【0013】
[0027] ここで、例示的な実施形態を詳細に参照する。これらの実施形態の例が、添付の図面に示されている。以下の説明は添付の図面を参照し、異なる図面中の同じ番号は、特に断りの無い限り、同じ又は同様の要素を表す。例示的な実施形態の以下の説明文中に記載される実施態様は、全ての実施態様を表すものではない。その代わり、それらは、添付の特許請求の範囲に列挙される開示される実施形態に関連する態様と一致する装置及び方法の単なる例にすぎない。例えば、いくつかの実施形態は、電子ビームを利用するという文脈で説明されているが、本開示はそのように限定はされない。他のタイプの荷電粒子ビームも、同様に適用することができる。更に、光学撮像、光検出、x線検出などの他の撮像システムが使用されることができる。
【0014】
[0028] 電子デバイスは、基板と呼ばれるシリコン片上に形成された回路から構成される。多数の回路が、同じシリコン片上に一緒に形成されることができ、集積回路又はICと呼ばれる。多数のより多くの回路を基板上に収めることができるように、これらの回路の寸法は劇的に低減された。例えば、スマートフォン内のICチップは、親指の爪ほど小さいことがあり得るが、20億個を超えるトランジスタを含むことができ、各トランジスタの寸法は、人間の髪の毛の寸法の1/1000よりも小さい。
【0015】
[0029] これらの極端に小さなICを製造することは、複雑で時間がかかり高価なプロセスであり、しばしば数百にのぼる個別ステップを含む。たった1つのステップでのエラー(例えば、設計又はパターニングにおいて)が、完成したICにおける欠陥をもたらし、そのICを使い物にならなくする可能性がある。従って、製造プロセスの目標の1つは、そのような欠陥を回避して、プロセスにおいて作製される機能的ICの数を最大化すること、即ち、プロセスの全体的歩留まりを向上させることである。
【0016】
[0030] 歩留まりを向上させる1つの構成要素は、チップ作製プロセスを監視して、十分な数の機能的集積回路が製造されていることを確認することである。プロセスを監視する1つの方法は、チップ回路構造物を形成する様々な段階において、チップ回路構造物を検査することである。検査は、走査型電子顕微鏡(SEM)を使用して実行することができる。SEMを使用すると、これらの非常に小さな構造物を撮像する、要するに、これらの構造物の「写真」を撮ることができる。この画像を使用して、構造物が適切に形成されたかどうか、及び構造物が適切な位置に形成されたかどうかを決定することができる。構造物に欠陥がある場合、欠陥が再発する可能性が低くなるようにプロセスを調節することができる。欠陥は半導体処理の様々な段階中に生成され得る。ホットスポットはリソグラフィパターニング又はエッチング後に欠陥を有する可能性が高いエリアである。従って、設計段階における初期にホットスポットを識別及び低減すること又は欠陥をできるだけ早く正確且つ効率的に識別することが重要である。
【0017】
[0031] ウェーハ検査プロセス中に、ウェーハ上の関心エリアが判断され得る。いくつかの実施形態では、関心エリアは、様々な形状(多角形、正方形、又は検査のために好適である他の規則的又は不規則的形状など)を有するパターンを含み得る。検査のための様々なシステム及びプロセスは、例えば集積回路(IC)上の膨大な数のフィーチャとICの又はICのSEM像の膨大なデータを解析する複雑性とに起因する挑戦に直面し得る。例えば、パターングループ化又はクラスタ化プロセスは時間がかり得る。更に、パラメータ(グループの数、又はどれほどパターンが各グループ内で似ているかなど)をグループ化又はクラスタ化することは予め定義されそして固定される。ユーザは、パターンがどれだけ多くのグループに分類され得るかに関し又はグループ内のパターン間の類似性の程度に関し制御しなくてもよい。
【0018】
[0032] 開示される実施形態のいくつかは、本明細書において開示される欠点のいくつか又はすべてに対処するシステム及び方法を提供する。本開示では、グラフィックデータベースシステム(GDS)データファイルのようなICデータ又は基準データ(基準画像データ、設計データ、標準データ、レイアウト情報とも呼ばれる)は、類似特性を有するパターンをグループ化又はクラスタ化するように処理され得る。いくつかの実施形態では、類似パターンは、検査効率を改善するために検査が各グループの代表パターンに対し行われ得るようにグループ化又はクラスタ化され得る。いくつかの実施形態では、類似パターンは幾何学的特性に基づきグループ化される。いくつかの実施形態では、類似パターンは周波数領域における高次元ベクトルを取得するために処理され、そしてベクトルは、データセット全体を複数のグループへ区分化するために階層的クラスタ化を使用することにより処理される。従って、改善された効率及び精度を有するホットスポット解析又はウェーハ検査が行われ得る。更に、ユーザは、階層的クラスタ化をカスタム化するために1つ又は複数のパラメータを調節し得る。
【0019】
[0033] 図面における構成要素の相対的な寸法は、理解しやすいように誇張されていることができる。以下の図面の説明では、同じ又は同様の参照番号は、同じ又は同様の構成要素又はエンティティを指しており、個々の実施形態に関して異なる点のみが説明されている。本明細書で使用する場合、特段の断りが無い限り、「又は」という用語は、実行不可能である場合を除いて、全ての可能な組み合わせを包含する。例えば、構成要素がA又はBを含むことができると記載されている場合、特段の断りが無い限り又は実行不可能で無い限り、構成要素はA、又はB、又はA及びBを含むことができる。第2の例として、構成要素がA、B、又はCを含むことができると記載されている場合、特段の断りが無い限り又は実行不可能で無い限り、構成要素はA、又はB、又はC、又はA及びB、又はA及びC、又はB及びC、又はA及びB及びCを含むことができる。
【0020】
[0034] 図1は、本開示のいくつかの実施形態と一致した、例示的な電子ビーム検査(EBI)システム100を示す。EBIシステム100は、撮像のために使用されることができる。図1に示すように、EBIシステム100は、メインチャンバ101、装填/ロックチャンバ102、電子ビームツール104、及び機器フロントエンドモジュール(EFEM)106を含む。電子ビームツール104は、メインチャンバ101内部に配置されている。EFEM106は、第1の装填ポート106a及び第2の装填ポート106bを含む。EFEM106は、追加の装填ポートを含むことができる。第1の装填ポート106a及び第2の装填ポート106bは、検査対象のウェーハ(例えば、半導体ウェーハ、又は他の材料で作られたウェーハ)又はサンプル(ウェーハ及びサンプルは、互換的に使用されることができる)を収容するウェーハFOUP(front opening unified pod)を受け取る。「ロット」とは、バッチとして処理するために装填されることができる複数のウェーハである。
【0021】
[0035] EFEM106内の1つ又は複数のロボットアーム(図示せず)が、ウェーハを装填/ロックチャンバ102に運ぶことができる。装填/ロックチャンバ102は、装填/ロック真空ポンプシステム(図示せず)に接続され、このポンプシステムは、大気圧よりも低い第1の圧力に達するように、装填/ロックチャンバ102内のガス分子を除去する。第1の圧力に達した後、1つ又は複数のロボットアーム(図示せず)がウェーハを装填/ロックチャンバ102からメインチャンバ101に運ぶことができる。メインチャンバ101は、メインチャンバ真空ポンプシステム(図示せず)に接続され、このポンプシステムは、第1の圧力よりも低い第2の圧力に達するように、メインチャンバ101内のガス分子を除去する。第2の圧力に達した後、ウェーハは電子ビームツール104による検査にかけられる。電子ビームツール104は、シングルビームシステム又はマルチビームシステムであり得る。本明細書において開示されるシステム及び方法はシングルビームシステム及びマルチビームシステムの両方へ適用し得るということが理解される。
【0022】
[0036] コントローラ109は電子ビームツール104へ電子的に接続される。コントローラ109はEBIシステム100の様々な制御を行うように構成されたコンピュータであり得る。コントローラ109はまた、様々な信号及び画像処理機能を実行するように構成された処理回路を含み得る。いくつかの実施形態では、コントローラ109はEBIシステム100から離れそしてそれから独立し得る。例えば、コントローラ109はEBIシステム100へ通信可能に結合されるコンピュータであり得る。いくつかの実施形態では、コントローラ109はメインチャンバ101、ロード/ロックチャンバ102及びEFEM106を含む構造の外に在るとして図1に示されるが、コントローラ109は構造の一部であり得るということが認識される。
【0023】
[0037] いくつかの実施形態では、コントローラ109は1つ又は複数のプロセッサ142を含むことができる。プロセッサは、情報を操作又は処理することができる汎用的な又は特定の電子デバイスであり得る。例えば、プロセッサは、任意の数の、中央処理装置(即ち「CPU」)、グラフィックス処理装置(即ち「GPU」)、光プロセッサ、プログラマブル論理制御装置、マイクロコントローラ、マイクロプロセッサ、デジタル・シグナル・プロセッサ、IP(intellectual property)コア、プログラマブル・ロジック・アレイ(PLA)、プログラマブル・アレイ・ロジック(PAL)、汎用アレイロジック(GAL)、コンプレックス・プログラマブル・ロジック・デバイス(CPLD)、フィールド・プログラマブル・ゲート・アレイ(FPGA)、システム・オン・チップ(SoC)、特定用途向け集積回路(ASIC)、及びデータ処理可能な任意の種類の回路、の任意の組み合わせを含むことができる。プロセッサはまた、ネットワークを介して結合された複数の機械又はデバイスにまたがって分散した1つ又は複数のプロセッサを含む、仮想プロセッサであり得る。
【0024】
[0038] いくつかの実施形態では、コントローラ109は更に、1つ又は複数のメモリ144を含むことができる。メモリは、(例えば、バスを介して)プロセッサがアクセス可能なコード及びデータを記憶することができる、汎用の又は特定の電子デバイスであり得る。例えば、メモリは、任意の数のランダム・アクセス・メモリ(RAM)、読み出し専用メモリ(ROM)、光ディスク、磁気ディスク、ハードドライブ、ソリッド・ステート・ドライブ、フラッシュドライブ、セキュリティ・デジタル(SD)カード、メモリスティック、コンパクト・フラッシュ(CF)カード、又は任意の種類の記憶デバイス、の任意の組み合わせを含むことができる。コードには、オペレーティングシステム(OS)、及び特定のタスク用の1つ又は複数のアプリケーション・プログラム(即ち「apps」)が含まれることができる。メモリはまた、ネットワークを介して結合された複数の機械又はデバイスにまたがって分散した1つ又は複数のメモリを含む、仮想メモリであり得る。
【0025】
[0039] ここで図2を参照すると、図2は、本開示のいくつかの実施形態と一致した、図1のEBIシステム100の一部であるマルチビーム検査ツールを含む例示的な電子ビームツール104を示す概略図である。マルチビーム電子ビームツール104(本明細書では装置104とも呼ばれる)は、電子源201、クーロンアパーチャプレート(又は「ガンアパーチャプレート」)271、集光レンズ210、放射源変換ユニット220、一次投影系230、電動ステージ209、及び検査対象のウェーハ208を保持するために電動ステージ209によって支持されるサンプルホルダー207を含む。マルチビーム電子ビームツール104は更に、二次投影系250及び電子検出デバイス240を含むことができる。一次投影系230は、対物レンズ231を含むことができる。電子検出デバイス240は、複数の検出素子241、242、及び243を含むことができる。ビームセパレータ233及び偏向走査ユニット232が、一次投影系230の内部に配置されることができる。
【0026】
[0040] 電子源201、クーロンアパーチャプレート271、集光レンズ210、放射源変換ユニット220、ビームセパレータ233、偏向走査ユニット232、及び一次投影系230は、装置104の一次光軸204と位置合わせされていることができる。二次投影系250及び電子検出デバイス240は、装置104の二次光軸251と位置合わせされていることができる。
【0027】
[0041] 電子源201は、カソード(図示せず)及び抽出器又はアノード(図示せず)を含んでいてよく、動作中、電子源201は、カソードから一次電子を放出するように構成され、この一次電子は抽出器及び/又はアノードによって抽出されるか又は加速されて、一次電子ビーム202を形成し、これは、(仮想の又は現実の)一次ビームクロスオーバー203を形成する。一次電子ビーム202は、一次ビームクロスオーバー203から放出されるものとして視覚化されることができる。
【0028】
[0042] 放射源変換ユニット220は、画像形成素子アレイ(図示せず)、収差補償器アレイ(図示せず)、ビーム制限アパーチャアレイ(図示せず)、及び予備曲げマイクロ偏向器アレイ(図示せず)を含むことができる。いくつかの実施形態では、予備曲げマイクロ偏向器アレイは、一次電子ビーム202の複数の一次ビームレット211、212、213を、ビーム制限アパーチャアレイ、画像形成素子アレイ、及び収差補償器アレイに垂直に入射するように偏向させる。いくつかの実施形態では、集光レンズ210は、一次電子ビーム202を集束させて、平行ビームにし、放射源変換ユニット220に垂直に入射させるように、設計される。画像形成素子アレイは、複数のマイクロ偏向器又はマイクロレンズを含んで、一次電子ビーム202の複数の一次ビームレット211、212、213に影響を与え、且つ、一次ビームレット211、212、及び213の夫々に対して1つずつ、一次ビームクロスオーバー203の複数の(仮想の又は現実の)平行画像を形成し得る。いくつかの実施形態では、収差補償器アレイは、フィールド湾曲補償器アレイ(図示せず)及び非点収差補償器アレイ(図示せず)を含むことができる。フィールド湾曲補償器アレイは、複数のマイクロレンズを含んで、一次ビームレット211、212、及び213のフィールド湾曲収差を補償し得る。非点収差補償器アレイは、複数のマイクロ非点収差補正器を含んで、一次ビームレット211、212、及び213の非点収差を補償し得る。ビーム制限アパーチャアレイは、個々の一次ビームレット211、212、及び213の直径を制限するように構成されることができる。図2は、例として3つの一次ビームレット211、212、及び213を示しており、放射源変換ユニット220は、任意の数の一次ビームレットを形成するように構成されてもよいことが理解されよう。コントローラ109は、放射源変換ユニット220、電子検出デバイス240、一次投影系230、又は電動ステージ209などの、図1のEBIシステム100の様々な部分に接続されることができる。いくつかの実施形態では、以下で更に詳細に説明するように、コントローラ109は、様々な画像及び信号の処理機能を実行し得る。コントローラ109は、様々な制御信号を生成して、荷電粒子ビーム検査システムの1つ又は複数の部品の動作を制御することもある。
【0029】
[0043] 集光レンズ210は、一次電子ビーム202を集束させるように構成される。集光レンズ210は更に、集光レンズ210の集束力を変化させることにより、放射源変換ユニット220の下流の一次ビームレット211、212、及び213の電流を調節するように構成されることができる。或いは、個々の一次ビームレットに対応するビーム制限アパーチャアレイ内部のビーム制限アパーチャの半径のサイズを変えることによって、電流を変化させることができる。電流は、ビーム制限アパーチャの半径のサイズと集光レンズ210の集束力の両方を変えることによって、変化させることができる。集光レンズ210は、第1の原理平面の位置が移動可能であるように構成され得る調整可能集光レンズであり得る。調整可能集光レンズは磁気性であるように構成されていてもよく、その結果、オフアクシスのビームレット212及び213が回転角度を有して放射源変換ユニット220を照射することになり得る。回転角度は、集束力、又は調整可能集光レンズの第1の主平面の位置と共に変化する。集光レンズ210は、集光レンズ210の集束力が変化している間に回転角度を不変に保つように構成されることができる、回転防止集光レンズであり得る。いくつかの実施形態では、集光レンズ210は調整可能の回転防止集光レンズであり得、このレンズでは、集束力及び第1の主平面の位置が変化した場合に回転角度が変化しない。
【0030】
[0044] 対物レンズ231は、検査のために、ビームレット211、212、及び213をウェーハ208上に集束させるように構成されていてもよく、また、現在の実施形態では、ウェーハ208の表面上に3つのプローブスポット221、222、及び223を形成し得る。クーロンアパーチャプレート271は、動作時に、一次電子ビーム202の周辺電子を遮断して、クーロン効果を低減するように構成される。クーロン効果は、一次ビームレット211、212、213のプローブスポット221、222、及び223の各々のサイズを拡大し、従って検査解像度を低下させることができる。
【0031】
[0045] ビームセパレータ233は、例えば、静電双極子場及び磁気双極子場(図2には図示せず)を生成する静電偏向器を含むウィーンフィルタであり得る。動作時には、ビームセパレータ233は、一次ビームレット211、212、及び213の個々の電子に静電双極子場によって静電気力を及ぼすように構成されることができる。静電気力は、個々の電子にビームセパレータ233の磁気双極子場によって及ぼされる磁気力と、大きさは等しいが方向が反対である。従って、一次ビームレット211、212、及び213は、少なくとも実質的にゼロの偏向角で、ビームセパレータ233を少なくとも実質的に真っ直ぐに通過することができる。
【0032】
[0046] 動作時には、偏向走査ユニット232は、一次ビームレット211、212、及び213を偏向させて、ウェーハ208の表面のセクション内の個々のスキャンエリア全体に渡ってプローブスポット221、222、及び223をスキャンさせるように構成される。ウェーハ208上での一次ビームレット211、212、及び213、又はプローブスポット221、222、及び223の入射に応答して、ウェーハ208から電子が出現し、3つの二次電子ビーム261、262、及び263が生成される。二次電子ビーム261、262、及び263の各々は、通常、二次電子(50eV以下の電子エネルギーを有する)及び後方散乱電子(50eVと一次ビームレット211、212、及び213のランディングエネルギーとの間の電子エネルギーを有する)を含む。ビームセパレータ233は、二次電子ビーム261、262、及び263を二次投影系250に向けて偏向させるように構成される。続いて、二次投影系250は、二次電子ビーム261、262、及び263を、電子検出デバイス240の検出素子241、242、及び243に集束させる。検出素子241、242、及び243は、対応する二次電子ビーム261、262、及び263を検出し、例えば、ウェーハ208の対応するスキャンエリアの画像を構築するために、コントローラ109又は信号処理システム(図示せず)に送信される対応する信号を生成するように構成される。
【0033】
[0047] いくつかの実施形態では、検出素子241、242、及び243は、対応する二次電子ビーム261、262、及び263をそれぞれ検出し、画像処理システム(例えば、コントローラ109)に向けて対応する強度信号出力(図示せず)を生成する。いくつかの実施形態では、各検出素子241、242、及び243は、1つ又は複数のピクセルを含むことができる。検出素子の強度信号出力は、検出素子内の全てのピクセルによって生成される信号の合計であり得る。
【0034】
[0048] 図2に示すように、ウェーハ検査システム199(又は「システム199」)は、放射源変換ユニット220により提供され得る又はそれへ通信可能に結合され得る。例えば、システム199は、互いに通信可能に結合される検査画像取得器200、ストレージ130、基準データ取得器160(又は「基準データ取得器160」)及びコントローラ109を含み得る。いくつかの実施形態では、検査画像取得器200、ストレージ130又は基準データ取得器160は、コントローラ109又はシステム199のモジュールとして取り込まれ得る、又はコントローラ109又はシステム199内に実装され得る部品を含み得る。いくつかの実施形態では、システム199又はコントローラ109は本明細書において開示されるようにウェーハ上のICレイアウトの基準データ(例えばGDSデータ)を取得及び解析し得る。いくつかの実施形態では、システム199又はコントローラ109は、本明細書において開示されるように、処理された基準データに基づき荷電粒子マルチビームシステム(例えばシステム104)により行われる検査プロセスを制御し得る。
【0035】
[0049] 検査画像取得器200は1つ又は複数のプロセッサを含み得る。例えば、検査画像取得器200はコンピュータ、サーバ、メインフレームホスト、端末、パーソナルコンピュータ、任意の種類のモバイルコンピューティングデバイス等々又はその組み合わせを含み得る。検査画像取得器200は、とりわけ導電体、光ファイバケーブル、携帯ストレージ媒体、IR、ブルートゥース、インターネット、ワイヤレスネットワーク、ワイヤレス無線又はその組み合わせなどの媒体を介し装置104の電子検出デバイス240へ通信可能に結合され得る。検査画像取得器200は電子検出デバイス240から信号を受信し得、そして画像を構築し得る。従って、検査画像取得器200はウェーハ208の画像を取得し得る。検査画像取得器200はまた、輪郭を生成すること、取得された画像上に指示子を重畳することなどの様々な後処理機能を行い得る。検査画像取得器200は取得された画像の輝度及びコントラストなどの調節を行うように構成され得る。
【0036】
[0050] いくつかの実施形態では、画像取得器200は電子検出デバイス240から受信された撮像信号に基づきウェーハの画像データを取得し得る。撮像信号は、荷電粒子撮像を行うための走査動作に対応し得る。取得された画像データは、ウェーハ208の様々なフィーチャ(例えば、本明細書において開示されるようなセルパターン又はセル辺を反復すること)含み得る1つ又は複数のエリアを含む単一画像に対応し得る。取得された画像データはストレージ130内に格納され得る。単一画像は複数の領域に分割され得る元画像であり得る。これらの領域の各々は、ウェーハ208のパターン又はフィーチャを含む1つの撮像エリアを含み得る。取得された画像データは、一時系列にわたって複数回サンプリングされるウェーハ208の1つ又は複数のエリアの複数の画像に対応し得る。複数の画像はストレージ130内に格納され得る。いくつかの実施形態では、コントローラ109は本明細書において開示される画像処理工程をウェーハ208の1つ又は複数のエリアの複数の画像に関連付けられた検査画像データに対し行うように構成され得る。
【0037】
[0051] いくつかの実施形態では、コントローラ109は、測定回路(例えば、アナログ/デジタル変換器)を含んで、検出された二次電子の分布を取得し得る。検出時間ウィンドウ中に収集された電子の分布データを、ウェーハ表面に入射する一次ビームレット211、212、及び213の各々の対応するスキャンパスデータと組み合わせて使用して、検査中のウェーハ構造の画像を再構築することができる。再構築された画像を使用して、ウェーハ208の内部構造又は外部構造の様々な特徴を明らかにすることができ、それによって、再構築された画像を使用して、ウェーハ内に存在する可能性がある欠陥を明らかにすることができる。
【0038】
[0052] 基準データ取得器160は1つ又は複数のプロセッサを含み得る。例えば、基準データ取得器160は、コンピュータ、サーバ、メインフレームホスト、端末、パーソナルコンピュータ、任意の種類のモバイルコンピューティングデバイス等々又はその組み合わせを含み得る。基準データ取得器160は、ストレージ130、又はウェーハ上の集積回路レイアウトの設計及び検査のために使用される基準データ(例えばGDSデータ又は設計データ)を格納するように構成された他のタイプの内部又は外部ストレージ(例えば設計データベース)へ通信可能に結合され得る。基準データ取得器160は、とりわけ導電体、光ファイバケーブル、携帯ストレージ媒体、IR、ブルートゥース、インターネット、無線ネットワーク、ワイヤレス無線又はその組み合わせなどの媒体を介し基準データを取得し得る。基準データはウェーハ上のICレイアウトの設計に関連付けられ得る。基準データは、ソフトウェアシミュレーション、又は幾何学的設計及びブール演算を介し取得され得る。いくつかの実施形態では、基準データは、GDSデータファイルのようなデータ構造で又は任意の好適なデータフォーマットで格納され得る。
【0039】
[0053] いくつかの実施形態では、コントローラ109は基準データ取得器160により取得された基準データを解析し得る。例えば、本開示において開示されるように、コントローラ109は、セルアレイ及びセルの辺に対応する反復パターンをそれぞれ識別するためにGDSデータファイルを処理し得る。処理されたGDSデータファイルに基づき、コントローラ109はまた、所定パラメータを使用することによりウェーハ208のいくつかのエリアを検査するために、放射源変換ユニット220の動作又は電子ビームツール104の他の部品の動作を制御するための制御信号を生成し得る。例えば、コントローラ109により生成される制御信号は、ウェーハ208上のいくつかの走査エリア(識別されたセルアレイ又はセル辺に対応する領域など)全体にわたってプローブスポット221、222、223を走査するために一次ビームレット211、212、213を制御するために使用され得る。
【0040】
[0054] ストレージ130は、ハードディスク、ランダムアクセスメモリ(RAM)、クラウドストレージ、他のタイプのコンピュータ可読メモリ等々などのストレージ媒体であり得る。ストレージ130は、検査画像取得器200へ結合され得、そして走査済み生画像データを元画像及び後処理済み画像として保存するために使用され得る。ストレージ130はまた、基準データ取得器160へ結合され、そして基準データ及び後処理済み基準データを保存するために使用され得る。
【0041】
[0055] いくつかの実施形態では、コントローラ109は、ウェーハ208の検査中にウェーハ208を移動させるように電動ステージ209を制御し得る。いくつかの実施形態では、コントローラ109は、電動ステージ209が一定速度で一方向にウェーハ208を連続的に移動させることを可能にし得る。他の実施形態では、コントローラ109は、電動ステージ209が走査プロセスの工程に応じて経時的にウェーハ208の移動速度を変更することを可能にし得る。
【0042】
[0056] 図2に示すように、コントローラ109は電子ビームツール104へ電子的に接続され得る。本明細書において開示されるように、コントローラ109は、電子ビームツール104の様々な制御を実行するように構成されたコンピュータであり得る。いくつかの実施形態では、検査画像取得器200、基準データ取得器160、ストレージ130及びコントローラ109は一制御ユニットとして一体化され得る。
【0043】
[0057] 図2は電子ビームツール104が3つの一次電子ビームを使用することを示すが、電子ビームツール104は任意の好適な数の一次電子ビームであり得るということが認識される。本開示は、電子ビームツール104内で使用される一次電子ビームの数を制限しない。単一荷電粒子ビーム撮像システム(「単一ビームシステム」)と比較すると、複数荷電粒子ビーム撮像システム(「マルチビームシステム」)は、異なる走査モードについてスループットを最適化するように設計され得る。本開示の実施形態は、異なるジオメトリを有するビームアレイを使用し、異なるスループット要件及び解像度要件に適応することにより、異なる走査モードでのスループットを最適化する能力を有するマルチビームシステムを提供する。
【0044】
[0058] 図3は、本開示のいくつかの実施形態に一致する基準データ(例えばGDSデータ)を処理するための例示的システム300のブロック図である。いくつかの実施形態では、システム300は基準データ取得器305、第1レベルグループ化部品310、クラスタ化部品320、第2レベルグループ化部品340、及びパターンのクラス(例えば、又はクラスタ、グループ、組、又はサブセットなど)を出力するための出力部品345を含む。いくつかの実施形態では、クラスタ化部品320は更にフーリエ変換部品325、再帰的区分化部品330及び凝集性試験部品335を含む。いくつかの実施形態では、基準データ解析は、第1レベルグループ化部品310により行われる第1レベルグループ化プロセス、クラスタ化部品320により行われるクラスタ化プロセス、及びこれに続いて第2レベルグループ化部品340により行われる第2レベルグループ化プロセスを含み得る。いくつかの実施形態では、第1レベルグループ化又は第2レベルグループ化プロセスは基準データを処理するための任意選択的であり得る。
【0045】
[0059] システム300は荷電粒子ビーム検査システム(例えば図1の電子ビーム検査システム100)の一部として一体化される1つ又は複数の部品又はモジュールを含み得るということが理解される。システム300はまた、荷電粒子ビーム検査システムとは別個のそしてそれへ通信可能に結合された1つ又は複数の部品又はモジュールを含み得る。システム300は1つ又は複数のプロセッサ及びストレージメモリを含み得る。例えば、システム300はコンピュータ、サーバ、メインフレームホスト、端末、パーソナルコンピュータ、任意の種類のモバイルコンピューティングデバイス等々又はその組み合わせを含み得る。いくつかの実施形態では、システム300は、本明細書において開示されるようにコントローラ109又はシステム199内に実装され得る1つ又は複数の部品(例えばソフトウェアモジュール、ハードウェアモジュール、又はその組み合わせ)を含み得る。
【0046】
[0060] 図3に示ようにいくつかの実施形態では、システム300は基準データ取得器305を含み得る。基準データ取得器305は、システム300により処理される基準データ(例えば図4A-4D、図5A、5Cに示すような複数のパターンを含む)を取得するように構成され得る。取得された基準データ内の複数のパターンは、ウェーハの一部分(例えばダイ)を区分化するために使用されるマスク上のパターン又はウェーハの一部分(例えばダイ)上にリソグラフィプロセスを介し印刷されるパターンに対応し得る。いくつかの実施形態では、基準データ取得器305は図2の基準データ取得器160と実質的に同様であり得る。いくつかの実施形態では、基準データ取得器305は基準データ取得器160とは異なり得る。例えば、基準データ取得器305は、荷電粒子ビーム検査システムから離れたコンピューティングデバイス内に含まれ得る又はその中に実装され得る。
【0047】
[0061] いくつかの実施形態では、本明細書において開示される基準データは、グラフィックデータベースシステム(GDS)フォーマット、グラフィックデータベースシステムII(GDSII)フォーマット、オープンアートワークシステム相互交換標準(OASIS:Open Artwork System Interchange Standard)フォーマット、Caltech中間フォーマット(CIF:Caltech Intermediate Format)などであり得る。いくつかの実施形態では、基準データは、検査下のウェーハ208上のIC設計レイアウトを含み得る。IC設計レイアウトはウェーハを構築するためのパターンレイアウトに基づき得る。IC設計レイアウトは、1つ又は複数のフォトリソグラフィマスクに、又はフィーチャをフォトリソグラフィマスク又はレチクルからウェーハへ転送するために使用されるレチクルに対応し得る。いくつかの実施形態では、GDS又はOASISにおける基準データは、とりわけ、ウェーハ設計レイアウトに関係する平面幾何学的形状、テキスト及び他の情報を表わすバイナリファイルフォーマットで格納された特徴情報を含み得る。
【0048】
[0062] いくつかの実施形態では、GDSデータファイルなどの基準データは、ウェーハ上の複数の階層的層上に形成される設計アーキテクチャに対応し得る。基準データは、画像ファイルで提示され得、そしてウェーハ上に形成される様々な層上の様々なパターンの特性情報(例えば形状、寸法など)を含み得る。例えば、基準データは、ウェーハ上に作製される様々な構造、デバイス及びシステム(制限しないが基板、ドープ領域、ポリゲート層、抵抗層、誘電体層、金属層、トランジスタ、プロセッサ、メモリ、金属接続、コンタクト、ビア、システムオンチップ(SoCs)、ネットワークオンチップ(NoCs)、又は他の好適な構造を含む)に関連付けられた情報を含み得る。基準データは更にメモリブロック、論理ブロック、相互接続配線のICレイアウト設計を含み得る。
【0049】
[0063] いくつかの実施形態では、システム300は、基準データ取得器305から取得された基準データを処理するように構成された第1レベルグループ化部品310を含み得る。いくつかの実施形態では、第1レベルグループ化部品310は、1つ又は複数のパターンを解析しそしてグループ化し得る(例えばパターンタイプ、形状、数、密度などにより)。例えば、第1レベルグループ化部品310は、同じグループ(例えばクラス、カテゴリ、ビンなど)内の同一パターンを分類(例えば、カテゴリ化)するために基準データ内の複数のパターンを比較し得る(例えば図4Aに示すように)。第1レベルグループ化部品310は、基準データからの1つ又は複数の対内のパターン間の幾何学的形状及びフィーチャを比較し得る。いくつかの実施形態では、第1レベルグループ化部品310は図7を参照して開示されるように1つ又は複数の工程を行うように構成され得る。いくつかの実施形態では、第1レベルグループ化部品310は荷電粒子ビーム検査システムの一部(例えば、コントローラ109又はシステム199内に実装され得る1つ又は複数の部品又はモジュールを含む)であり得る。いくつかの実施形態では、第1レベルグループ化部品310は、荷電粒子ビーム検査システムとは別個のそしてそれへ通信可能に結合されるコンピューティングデバイス内に含まれ得る。
【0050】
[0064] いくつかの実施形態では、システム300は、基準データからのパターンをクラスタ化するための本明細書において開示されるような1つ又は複数のクラスタ化アルゴリズムを適用するように構成されたクラスタ化部品320を含み得る。クラスタ化部品320は、クラスタ化アルゴリズムを、第1レベルグループ化部品310(例えば図4Bに示すような代表的パターン)から取得されたグループ化済みパターンへ又は基準データ取得器305により取得された基準データ内のパターンへ適用し得る。いくつかの実施形態では、図4Bに示すように、クラスタ化部品320は、パターンを同じクラスタ内へマージすべきかどうかを判断するために、2つ以上のパターン間の類似性が所定閾値を上回るかどうかを解析するために(DBSCAN)アルゴリズムを使用し得る。
【0051】
[0065] いくつかの実施形態では、フーリエ変換部品(例えば部品320をクラスタ化するフーリエ変換部品325)は、周波数領域内で画像を描画するために複数のパターンに対しフーリエ変換(例えば、1D又は2Dフーリエ変換:フーリエ変換とも呼ばれる)を行い得る。例えば、図5Aに示すように、パターン502、504はフーリエ変換ベース画像(例えばフーリエ領域画像、又は周波数領域画像)512、514へ変換され得る。いくつかの実施形態では、フーリエ変換部品(例えばフーリエ変換部品325)はフーリエ変換ベース画像を高次元ベクトルへ変換し得る。例えば、図5Bに示すように、フーリエ変換ベース画像522はベクトル526へ変換され得る。いくつかの実施形態では、フーリエ変換部品325は更に、フーリエ変換ベースベクトルのフィーチャ点とクラスタ重心との間の距離(例えばユークリッド距離)を判断し得る。この距離は図5A-5C及び図6A-6Cに示すようにパターン間の類似性を評価するために使用され得る。
【0052】
[0066] いくつかの実施形態では、部品320をクラスタ化する再帰的区分化部品330は、複数のクラスタを取得するために周波数領域においてフーリエ変換ベースフィーチャ(例えば、本明細書において開示されるような画像又はベクトル)を区分化するための階層的クラスタ化プロセス(例えばプロセス540)を行い得る。いくつかの実施形態では、図5Cに示すように、再帰的区分化部品330は、再帰的区分化のためのクラスタ化アルゴリズム(k平均クラスタ化アルゴリズム又は任意の他の好適なクラスタ化アルゴリズムなど)を使用する。例えば、再帰的区分化部品330は最初に、パターンを一定数のグループ(又はサブセット)へ区分化し得る。それぞれのグループ内で、再帰的区分化部品330は更に、再帰的区分化を停止するための条件又は閾値が満たされるまで再帰的区分化を行う。
【0053】
[0067] いくつかの実施形態では、部品320をクラスタ化する凝集性試験部品335は、再帰的区分化を停止するために使用される条件又は閾値を判断し得る。この条件又は閾値は、さらなる区分化の前に、類似性閾値、階層的クラスタ化プロセスの階層の最大レベル、又はサブセット内に含まれるベクトルの最小数などに関連付けられ得る。いくつかの実施形態では、凝集性試験部品335は凝集性試験を使用し得る。例えば、図6Aに示すように、凝集性試験は、カイ二乗分布凝集性試験又は試験円の半径を判断するための使用される変形凝集性試験を含み得る。図6B-6Cに示すように、試験円は、再帰的区分化を停止するために十分なデータ点が試験円内にあるかどうかを評価するために使用され得る。いくつかの実施形態では、ユーザは、再帰的区分化プロセスにおいて使用される1つ又は複数のパラメータを直接的又は間接的にチューニングするための試験円のサイズをカスタム化するために半径を調節し得る。凝集性試験部品335は更に、凝集度(例えば、試験円の内部のデータ点の数とデータ点の合計数との比)を判断し、そして再帰的区分化を停止すべきか又は継続すべきかを判断するために凝集度と閾値とを比較し得る(例えば図6B-6C)。
【0054】
[0068] いくつかの実施形態では、クラスタ化部品320は図7を参照して開示されるような1つ又は複数の工程を行うように構成され得る。いくつかの実施形態では、クラスタ化部品320は荷電粒子ビーム検査システムの一部(例えば、コントローラ109又はシステム199内に実装され得る1つ又は複数の部品又はモジュールを含む)であり得る。いくつかの実施形態では、クラスタ化部品320は、荷電粒子ビーム検査システムとは別個のそしてそれへ通信可能に結合されるコンピューティングデバイス内に含まれ得る。
【0055】
[0069] いくつかの実施形態では、システム300は、クラスタ化部品320から取得されたグループ化済みパターンを更に処理するように構成された第2レベルグループ化部品340を含み得る。第2レベルグループ化部品340は、パターン類似性に基づき更にマージ又は分割するためにパターンのそれぞれのグループ又はクラスタ内のそしてその間のパターンを解析し得る(例えば図4C)。いくつかの実施形態では、類似性標準規格はユーザによりカスタム化され得る。いくつかの実施形態では、第2レベルグループ化部品340は図7を参照して開示されるように1つ又は複数の工程を行うように構成され得る。いくつかの実施形態では、第2レベルグループ化部品340は荷電粒子ビーム検査システムの一部(例えば、コントローラ109又はシステム199内に実装され得る1つ又は複数の部品又はモジュールを含む)であり得る。いくつかの実施形態では、第2レベルグループ化部品340は、荷電粒子ビーム検査システムとは別個のそしてそれへ通信可能に結合されるコンピューティングデバイス内に含まれ得る。
【0056】
[0070] いくつかの実施形態では、システム300は、検査中に使用されるパターン群又はクラスタを、例えばウェーハ又はダイ上の座標などの指示子を使用することにより出力し得る。いくつかの実施形態では、出力部品345は荷電粒子ビーム検査システムの一部(例えば、コントローラ109又はシステム199内に実装され得る1つ又は複数の部品又はモジュールを含む)であり得る。いくつかの実施形態では、出力部品345は、荷電粒子ビーム検査システムとは別個のそしてそれへ通信可能に結合されるコンピューティングデバイス内に含まれ得る。
【0057】
[0071] 図4Aは、本開示のいくつかの実施形態に一致する複数の代表的パターン404を取得するために基準データ内の複数のパターン402(例えばGDS画像の一部分に対応する)に対し第1レベルグループ化プロセス400を行う例示的プロセスである。いくつかの実施形態では、複数のパターン402は、ウェーハの一部分(ダイなど)を区分化するために使用されるマスク上のパターンに対応する。いくつかの実施形態では、複数のパターン402は、リソグラフィプロセスを介しウェーハの一部分(例えばダイ)上へ印刷されるパターンに対応する。
【0058】
[0072] いくつかの実施形態では、第1レベルグループ化プロセス400は複数のパターン402間の幾何学的形状の比較に基づき行われる。例えば、複数のパターン402内の各対のパターンが比較され、そしてこの比較結果に基づき、複数のパターン402は複数のグループへ分離される。いくつかの実施形態では、第1のグループ化プロセス400の結果、グループ内のパターンは、互いに幾何学的に同一であり、そして1つのビン内に置かれる。いくつかの実施形態では、それぞれの代表的パターン404は第1レベルグループ化プロセスから取得された対応グループ内の同一パターンを表わす。
【0059】
[0073] 図4Bは、本開示のいくつかの実施形態に一致する図4Aに示すような第1のグループ化プロセス400から取得されたグループ化結果に対しクラスタ化プロセス420を行う例示的プロセスである。いくつかの実施形態では、クラスタ化プロセス420は、それぞれのグループの代表的パターン404により表わされる基準データ内のグループ化済みパターンに対し行われる。いくつかの実施形態では、図4Aのプロセスから取得された2つのビンのパターンが比較され、そしてその類似性は、任意の好適なクラスタ化アルゴリズムを使用することにより定量化及び計算され得る。例えば、クラスタ化プロセス420はdensity-based spatial clustering of applications with noise(DBSCAN)アルゴリズムを使用し得る。いくつかの実施形態では、2つの代表的パターン間の類似性が所定閾値の上にあれば、2つのビン(例えば新しいグループ(又はビン)422又は424に示すような)がマージされる。そうでなければ、代表的パターン426により表わされるグループはマージされないままである。いくつかの実施形態では、クラスタ化プロセス420はすべてのビンが評価されるまで実行する。
【0060】
[0074] 図4Cは、本開示のいくつかの実施形態に一致する図4Bに示すようなクラスタ化プロセス420から取得されたクラスタ化結果に対し第2レベルグループ化プロセス440を行う例示的プロセスである。いくつかの実施形態では、図4Bのプロセス420において取得されたそれぞれのビンからのパターンは様々なクラス(図4Cのクラス442、444、446及び448など)のパターンを取得するために更に解析される。いくつかの実施形態では、互いにより類似するパターンはクラスへ分類化される一方で、互いにあまり類似しないパターンは更に様々なクラス(クラス442及び444へ分割されたビン422など)へ分割される。いくつかの実施形態では、プロセス440内のパターンを分類するための類似性標準規格はユーザによりカスタム化され得る。第2レベルグループ化プロセスは、パターン間の類似性を比較するための第1レベルグループ化プロセスとは異なる標準規格を使用し得る。例えば、第1レベルグループ化では、互いに同一であるパターンが同一グループ(又はビン)内に置かれる一方で、第2レベルグループ化では、十分に似た(例えば或る閾値未満の差を有する)パターンが同一グループ内に置かれる。いくつかの実施形態では、第1レベルグループ化又は第2レベルグループ化中にパターンを比較するために使用される標準規格は、パターンの幾何学的形状、サイズ、フィーチャタイプ、密度、フィーチャ点間の距離、等々に関連付けられ得る。いくつかの実施形態では、パターンは第2レベルグループ化又は第1レベルグループ化において対で比較され得る。
【0061】
[0075] 次に、本開示のいくつかの実施形態に一致する図4A-4Cに示すようなグループ化又はクラスタ化プロセス中に2つのパターンを比較する一例を示す線図である図4Dが参照される。いくつかの実施形態では、1対のパターン(例えばパターン462、464)の幾何学的形状は、本明細書において開示されるようにDBSCANアルゴリズムのような好適なクラスタ化アルゴリズムを使用することによりクラスタ化プロセス420中に比較される。いくつかの実施形態では、合計数(例えばn)のパターンからの任意の2つのパターンが比較されるので、このプロセスは、n回の比較を要し得、これは時間がかかるプロセスである。更に、図4Dに示すように、2つのパターン画像462、464が、画像間の差を測定するために重ねられる。しかし、この重ねは、2つの同一パターンが互いに対するズレ又は回転に起因して異なるように見え得るという可能性を見過ごし得る。この結果、異なるビン又はクラスが重複パターンを含み得、更に増加検査時間及び無駄な資源消費を生じる。
【0062】
[0076] 図5A-5C及び図6A-6Bは、本開示のいくつかの実施形態に一致するフーリエ変換ベース基準データに基づく例示的階層的クラスタ化プロセスを示す。図5Aは、本開示のいくつかの実施形態に一致する基準データ内の複数のパターン(例えばGDS画像の一部分に対応する)に対しフーリエ変換を行う例示的プロセス500を示す。このパターンは、第1レベルグループ化部品310からのグループ化済みパターンから取得されてもよいし基準データ取得器305からの基準データから取得されてもよい。いくつかの実施形態では、フーリエ変換部品325は、画像512、514に示すように画像を周波数領域において描画するために2Dフーリエ変換をパターン(例えばパターン502、504)に対し適用し得る。
【0063】
[0077] いくつかの実施形態では、周波数領域におけるフーリエ変換ベース基準データのフィーチャ点間の距離が判断され得る。例えば、画像512、514とクラスタ重心との間の2つのフィーチャ点間のユークリッド距離が判断され得る。この距離は、本明細書において開示されるように、2つのパターン512、514に対応するベクトル間の類似性を判断するために使用され得る。
【0064】
[0078] 図5Bは、本開示のいくつかの実施形態に一致するフーリエ変換ベース基準画像(例えばフーリエ変換ベース画像522)をベクトルへ変換する例示的プロセス520を示す。いくつかの実施形態では、画像522のピクセルは、例えば線図524に示すようにそれぞれのピクセルのピクセル値を取得するために解析される。次に、このピクセル情報に基づき、画像522は周波数領域における高次元ベクトル526へ拡張される。この距離はフーリエ変換ベースベクトルに基づき計算され得る。
【0065】
[0079] 図5Cは、本開示のいくつかの実施形態に一致する複数のクラスタを取得するために周波数領域においてフーリエ変換ベースフィーチャを区分化するための例示的階層的クラスタ化プロセス540を示す線図を示す。いくつかの実施形態では、再帰的区分化部品330は、複数のフーリエ変換ベースフィーチャを複数のクラスタへ再帰的に区分化するためにk平均クラスタ化アルゴリズムなどのクラスタ化アルゴリズム、又は他の好適なクラスタ化アルゴリズムを使用する。いくつかの実施形態では、ベクトルとクラスタ重心との間の距離は、ベクトルがこのクラスタ内に含まれるかどうかを判断するための所定閾値と比較される。クラスタ重心に十分に近い(例えば所定閾値内の距離を有する)ベクトルは対応クラスタ内に含まれる。いくつかの実施形態では、クラスタ化アルゴリズムはフーリエ変換ベースフィーチャを区分化する際に所定数のクラスタ(例えば、固定数のクラスタ)を使用する。いくつかの実施形態では、階層的クラスタ化プロセス540は所定数又は固定数のクラスタを設定しない。むしろ、プロセス540は、stopdivide機能などの再帰的区分化を停止するための条件又は閾値を使用する。
【0066】
[0080] いくつかの実施形態では、本明細書において開示される階層的クラスタ化プロセスに関して、再帰的区分化部品330は最初に、データセット全体を複数のサブセットへ区分化する。いくつかの実施形態では、第1のレベルの区分化は、フーリエ変換されたフィーチャベクトルの類似性(例えば、又はクラスタ重心までの距離)に基づき、データセット全体を一定数のサブセット(例えば2つ以上のサブセット)へ区分化するためのk平均アルゴリズムなどの好適なクラスタ化アルゴリズムを使用し得る。例えば、図5Cに示すように、元データセット540は最初に、k平均アルゴリズムを使用することによりサブセット542及び別のサブセット550へ区分化され得、ここで、各サブセット内のフーリエ変換されたフィーチャはクラスタ重心に近い距離を有する。次に、再帰的区分化部品330は、それぞれのサブセット(例えばサブセット550)を次レベルにおける複数のサブセット(例えばサブセット552、554)へ再帰的に区分化する。再帰的区分化を停止するための条件又は閾値が満たされると(例えば、サブセット542に関して)、再帰的区分化は停止される。サブセット552、554はまた、再帰的区分化を停止するための条件又は閾値が満たされるまで更にそれぞれ区分化される。
【0067】
[0081] いくつかの実施形態では、この条件又は閾値は、再帰的区分化を停止すべきかどうかを判断するためにサブセット内のフーリエ変換済みフィーチャベクトルの類似性と比較するために使用される類似性閾値に関連付けられ得る。いくつかの実施形態では、この条件又は閾値は、階層的クラスタ化プロセスの階層の最大レベルに関連付けられ得る。例えば、再帰的区分化はサブセットのレベルが閾値の最大レベル(又は最も深いレベル)に達すると停止する。いくつかの実施形態では、この条件又は閾値は、さらなる区分化の前に、サブセット内に含まれるベクトルの最小数に関連付けられ得る。例えば、再帰的区分化は、一サブセット内のベクトルの数が最小数閾値より小さいとこのサブセット内で停止する。
【0068】
[0082] いくつかの実施形態では、図3の凝集性試験部品335はStopDivide機能内の凝集性試験を使用し得る。例えば、凝集性試験は、どのようにベクトルが一体化するか又はデータ点がサブセット内でどれだけ凝集性かを測定するために使用され得る。いくつかの実施形態では、図6Aに示すように、凝集性試験は、クラスタ又はサブセット内のベクトルのすべての次元の成分が正規分布(又は別の好適な分布関数)に従うという仮定の元にカイ二乗分布凝集性試験を含み得る。図6A内の各データ点は、フーリエ変換ベースフィーチャ画像に対応する周波数領域内のフィーチャベクトルを表わす。いくつかの実施形態では、クラスタのデータセットVを所与として、クラスタ重心cが判断され得、そして、データセットVの平均(average)距離r(例えば平均(mean)距離)がクラスタ内のベクトルとクラスタ重心cとの間のそれぞれの距離に基づき判断され得る。次に、既知の分布関数(例えば、正規分布、又はデータセットに適合する別の関数)に基づき、r90(例えば一例として90パーセント条件(credition)の半径)を使用する試験円の半径rが計算され得、ここで、r90は、クラスタのデータ点の90%がr90の半径を有するcに中心がある円内に含まれるという期待値に対応する。次に、下の図6B-6Cにおいて開示されるように、凝集度(例えば試験円(例えば、r90の半径rを有するcを中心とする)内に含まれるデータ点の実際の数とデータセットV内のデータ点の合計数との比)が計算され得る。この比は、このようなデータセットが十分に凝集性かどうかと再帰的区分化を停止すべきか又は継続すべきかとを判断するための所定閾値(例えば90%)と比較される。
【0069】
[0083] いくつかの実施形態では、カイ二乗分布凝集性試験は、大量のデータ点を含むクラスタとよりうまく働き得る。更に、カイ二乗分布凝集性試験は、ベクトルとクラスタ重心との間の距離を考慮するが、ベクトル間の距離を考慮しなくてもよい。例えば、クラスタ内のベクトルが正規分布に従うが、受容可能閾値より大きい分散を有すれば(例えば、ベクトル間の距離が十分に近くなければ、又はパターンが実際には十分に似ていなければ)、カイ二乗凝集性試験はこのような問題を効果的に識別し得ない。カイ二乗凝集性試験は再帰的区分化を誤って停止し、その結果劣悪なクラスタ化品質を生じ得る。
【0070】
[0084] いくつかの実施形態では、図6Aにも示すように、凝集性試験は上記問題に対処するために変形凝集性試験を含み得る。例えば、変形凝集性試験は、カイ二乗分布凝集性試験において使用される固定半径(例えばr’=θr)の代わりに、計算された半径(例えば本明細書に開示されるr90など)を調節するために0.1~1.0間のユーザ選択係数(θ)に基づき試験円を定義するためのユーザカスタム化可能半径(r’)を提供する。例えば、ユーザは、試験円の半径rをより大きく又はより小さく調節するための係数θ(10進0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9又は1.0など)を選択又は入力し得、ここで、試験円は、以下に開示されるように再帰的区分化を停止するために試験円内に十分なデータ点があるかどうか(例えば、データセットVは分布関数に従って十分に凝集性かどうか)を判断するために使用される。変形凝集性試験は、いつ再帰的区分化プロセスを停止すべきかを判断するために使用される1つ又は複数のパラメータ(例えば、どれだけベクトルがクラスタ内で似ているか)をカスタム化するためのユーザ自由度及び便宜を提供し得る。いくつかの実施形態では、ユーザはまた、ユーザがクラスタ内に含みたいベクトルの最大値が何であるかを選択し得る。
【0071】
[0085] 試験円を定義する半径を判断した後、凝集度が、判断され、そして再帰的区分化を停止すべきかどうかを判断するための閾値と比較される。いくつかの実施形態では、凝集度は、試験円内のデータ点(例えばフーリエ変換ベースフィーチャベクトルに対応する)の数とサブセット(例えば、クラスタ)内のデータ点(例えばベクトル)の合計数との比である。いくつかの実施形態では、閾値は90%、85%又は80%などの所定値であり得る。閾値は試験半径(例えばr90に対応する90%)に対応し得る。閾値はまた、ユーザにより選択又は調節されてもよいしシステムにより予め設定されてもよい。
【0072】
[0086] いくつかの実施形態では、図6Bに示すように、凝集度が或る閾値を越えていなければ(例えば、十分でないデータ点が、半径rにより定義された試験円内に存在すれば)、現在のクラスタ(又は現在のサブセット)の再帰的区分化が継続する。図6Cに示すように、いくつかの実施形態では、再帰的区分化は凝集度が或る閾値(例えば90パーセント:フィーチャベクトルを表すデータ点の大部分がクラスタ重心に十分に近いということを指示する)より大きければ停止する。
【0073】
[0087] いくつかの実施形態では、図5A-5C及び図6A-6Bに開示された階層的クラスタ化プロセスは、他のグループ化(図4A、4Cにおいて開示されるような第1レベルグループ化又は第2レベルグループ化など)又はクラスタ化プロセスとは独立に又はそれと組み合わせて行われ得る。
【0074】
[0088] 本明細書において開示されるように、クラスタ化アルゴリズムにおいて使用される再帰的区分化はデータ点の各対及びあらゆる対を比較する必要がない。その代わりに、階層的クラスタ化プロセスは最初に、データセット全体を複数のサブセットへ区分化する。次に、サブセットは、再帰的区分化を停止するための条件が満たされるまで後続レベルにおけるサブセットへそれぞれ再帰的に区分化される。従って、階層的クラスタ化プロセスは余り時間がかからない可能性がある。例えば、図4Dにおいて行われる比較のN時間と比較して、本明細書において開示される階層的クラスタ化プロセスの時間複雑性はNlog(N)である。
【0075】
[0089] 更に、ベクトルを比較する際にパターン間の配向偏差(並進ズレ又は回転等々)を考慮し得るクラスタ化アルゴリズムは、周波数領域におけるフーリエ変換ベースフィーチャ(例えば画像又はベクトル)に関連付けられた距離などの特性に基づく。従って、同一パターンを様々なクラスタへ区分化することが回避され得、従ってクラスタ化プロセスはより正確且つ効率的であり得る。
【0076】
[0090] 加えて、ユーザは、例えば再帰的区分化を停止すべきかどうかを評価するために使用されるパラメータ(例えば試験円を定義するための半径)を調節又は選択することによりクラスタ化プロセスを制御又はカスタム化し得る。半径の影響を間接的又は直接的に介し、ユーザは、再帰的区分化に関連付けられた1つ又は複数のパラメータ(パターンがクラスタ内でどれだけ似得るか、クラスタ内に含まれるベクトルの最大値、クラスタの最大値、又は区分化の階層の最大レベル等々)をカスタム化し得る。本明細書において開示されるように、ユーザは、再帰的区分化プロセスのこれらのパラメータの1つ又は複数をチューニングするための試験円の半径を便宜的に選択し得る。
【0077】
[0091] 図7は、本開示のいくつかの実施形態に一致する基準データを処理する(例えば基準データから抽出されたパターンをグループ化する)ための例示的方法700を表すプロセスフローチャートである。いくつかの実施形態では、1つ又は複数の工程は、図3の装置300の1若しくは複数の部品、図2のコントローラ109若しくはシステム199、又は図1のシステム100により行われる。いくつかの実施形態では、方法700は、ウェーハの一部分(例えばダイ)をパターニングするためにマスク上の複数のパターンに対し行われる。いくつかの実施形態では、方法700はまた、ウェーハの一部分(例えばダイ)上に印刷された(例えばリソグラフィを介し)複数のパターンに対し行われ得る。
【0078】
[0092] 図7に示すように、工程710では、複数のパターンを含む画像データ(基準画像データなど)が受信される。例えば、画像データは図3の基準データ取得器305又は図2の基準データ取得器160により取得され得る。基準データは図2のストレージ130又は他の好適なICレイアウト設計データベースから取得され得る。画像データは、本明細書において開示されるように任意の好適なデータフォーマット(ウェーハ(例えばウェーハ208)上の複数の階層的層上に形成されるIC設計アーキテクチャに対応するGDSデータファイルなど)であり得る。画像データは、ウェーハの少なくとも一部分(ダイなど)上にフィーチャを形成するために使用されるマスク上のパターンを含み得る。画像はまた、ウェーハ上に印刷されたフィーチャに対し行われた検査から取得されるパターンを含み得る。
【0079】
[0093] いくつかの実施形態では、フーリエ変換部品325は、フーリエ変換を、周波数領域における複数のフーリエ変換ベース画像(例えば図5Aの画像512、514)を取得するために複数のパターン(例えば図5Aのパターン502、504)に対し行い得る。いくつかの実施形態では、フーリエ変換部品325は図5Bに示すようにフーリエ変換ベース画像を高次元ベクトルへ更に変換し得る。パターン間の類似性がパターンをグループ化するために評価され得る。いくつかの実施形態では、距離は、フーリエ変換後のパターンに対応するそれぞれのベクトルに関して計算され得、そしてこの距離はそれぞれのベクトルとクラスタ重心との間のユークリッド距離であり得る。いくつかの実施形態では、クラスタ重心に十分に近いベクトルを表すデータ点は同じクラスタ内に含まれ得る。
【0080】
[0094] 工程720では、複数のパターンは、フーリエ変換及びベクトル化を行った後、複数組のパターン(例えば、例えば図5Cのサブセット542、550)へ分離される。いくつかの実施形態では、フーリエ変換ベース画像はk平均アルゴリズムを使用することにより分離され、ここでは、各サブセット内のフーリエ変換されたフィーチャはクラスタ重心に近い距離を有する。
【0081】
[0095] 工程730では、再帰的区分化部品330は、それぞれの組のパターンに関連付けられたフィーチャを再帰的に評価することにより複数のサブセットのパターンを取得するために階層的クラスタ化をそれぞれの組のパターンに対し行う。いくつかの実施形態では、図5Cに示すように、区分化部品330は、それぞれの階層レベルにおいてフィーチャを再帰的に評価した結果に基づき再帰的区分化をそれぞれの組のパターンに対し行う。フィーチャは、それぞれの組のパターンのパターン間の類似性(それぞれの組のパターン内のパターンが十分に似ているかどうかに基づき判断される凝集度など)に関係し得る。
【0082】
[0096] いくつかの実施形態では、凝集性試験部品335は図6A-6Cに示すようにフィーチャを評価するための凝集性試験を行い得る。凝集性試験部品335はそれぞれの組のパターンの凝集度を判断し得る。例えば、凝集度は、試験円の内部のデータ点の数とデータ点の合計数との比として判断され得る(例えば図6A)。凝集度は、再帰的区分化(例えば図6B-6C)を停止すべきか又は継続すべきかを判断するために閾値と比較され得る。例えば、凝集度(例えば比)が図6Bに示すように所定閾値より大きくないと判断されれば、現在のクラスタ(又は現在のサブセット)の再帰的区分化は継続する。凝集度が図6Cに示すように所定閾値より大きいと判断されれば、現在のクラスタ(又は現在のサブセット)の再帰的区分化は停止する。
【0083】
[0097] いくつかの実施形態では、試験円の半径(r90など)は図6Aに示すようにカイ二乗凝集性試験を使用することにより判断され得る。いくつかの実施形態では、試験円の半径(ユーザカスタム化可能半径)は図6Aに示すように変形凝集性試験を使用することにより判断され得る。
【0084】
[0098] いくつかの実施形態では、変形凝集性試験を介し、ユーザは試験円の半径をより大きい又はより小さくなるように調節し得る。本明細書において開示されるように、ユーザは、再帰的区分化プロセスをいつ停止すべきかを判断するために使用される他のパラメータを選択又は調節するための任意選択子を提供され得る。このようなパラメータは、半径のサイズ、ベクトルがクラスタ内でどれだけ似ているか、クラスタ内に含まれるベクトルの最大値、再帰的区分化の階層の最大レベル、又はさらなる区分化の前にサブセット内に含まれるベクトルの最小数等々を含むがこれらに制限されない。いくつかの実施形態では、基準データをグループ化することに関する本明細書において開示されるプロセス及びアルゴリズムはまた、ウェーハ表面の走査後に検査画像データを解析及びグループ化するために使用され得る。
【0085】
[0099] 図8は、本開示のいくつかの実施形態に一致する基準データ(例えば基準データから抽出されたグループ化パターンを含む画像データ)を処理するための例示的方法800を表すプロセスフローチャートである。いくつかの実施形態では、1つ又は複数の工程が、図3の装置300の1若しくは複数の部品、図2のコントローラ109若しくはシステム199、又は図1のシステム100により行われる。いくつかの実施形態では、方法800は、ウェーハの一部分(例えばダイ)をパターニングするためにマスク上の複数のパターンに対し行われる。いくつかの実施形態では、方法800はまた、ウェーハの一部分(例えばダイ)上に印刷された(例えばリソグラフィを介し)複数のパターンに対し行われ得る。
【0086】
[00100] 図8に示すように、工程810では、複数のパターンを含む画像データ(基準画像データなど)が受信される。例えば、画像データは図3の基準データ取得器305又は図2の基準データ取得器160により取得され得る。基準データは図2のストレージ130又は他の好適なICレイアウト設計データベースから取得され得る。画像データは、本明細書において開示されるように任意の好適なデータフォーマット(ウェーハ(例えばウェーハ208)上の複数の階層的層上に形成されるIC設計アーキテクチャに対応するGDSデータファイルなど)であり得る。画像データは、ウェーハのダイなどの少なくとも一部分上にフィーチャを形成するために使用されるマスク上のパターンを含み得る。画像はまた、ウェーハ上に印刷されたフィーチャに対し行われる検査から取得されるパターンを含み得る。
【0087】
[00101] いくつかの実施形態では、フーリエ変換部品325は、複数の周波数領域フィーチャ(フーリエ変換ベース画像(例えば図5Aの画像512、514)又は図5Bに示すような高次元ベクトルなど)を取得するために、フーリエ変換を複数のパターン(例えば、図5Aのパターン502、504)に対し行い得る。パターン間の類似性がパターンをグループ化するために評価され得る。いくつかの実施形態では、距離は、フーリエ変換後のパターンに対応するそれぞれのベクトルに関して計算され得、そしてこの距離はそれぞれのベクトルとクラスタ重心との間のユークリッド距離であり得る。いくつかの実施形態では、クラスタ重心に十分に近いベクトルを表すデータ点は同じクラスタ内に含まれ得る。いくつかの実施形態では、複数の周波数領域フィーチャは複数の第1レベルの組のパターン(例えば、例えば図5Cのサブセット542、550)へ分離される。いくつかの実施形態では、フーリエ変換ベース画像などの周波数領域フィーチャはk平均アルゴリズムを使用することにより分離され、ここでは、各サブセット内のフーリエ変換されたフィーチャはクラスタ重心に近い距離を有する。
【0088】
[00102] 工程820では、再帰的区分化部品330は、階層的クラスタ化を、複数のパターンからそれぞれ変換された複数の周波数領域フィーチャに対し行う。いくつかの実施形態では、再帰的区分化部品330は複数の周波数領域フィーチャを再帰的に区分化する。いくつかの実施形態では、パラメータのユーザ選択が受信される。パラメータは再帰的区分化中に複数のパターンの評価に関係し得る。例えば、本明細書において開示されるように、ユーザは、試験円の半径を変形凝集性試験を介しより大きく又はより小さくなるように調節し得る。ユーザは、再帰的区分化プロセスを継続すべきかどうかを判断するために使用される1つ又は複数のパラメータを選択又は調節するための任意選択子を提供され得る。
【0089】
[00103] いくつかの実施形態では、図5Cに示すように、区分化部品330は、それぞれの階層レベルにおいてフィーチャを再帰的に評価した結果に基づきそれぞれの組のパターンに対し再帰的区分化を行う。フィーチャは、それぞれの組のパターンのパターン間の類似性(それぞれの組のパターン内のパターンが十分に似ているかどうかに基づき判断される凝集度など)に関係し得る。
【0090】
[00104] いくつかの実施形態では、図6A-6Cに示すように、凝集性試験部品335は一組のパターンの凝集度を判断し得る。例えば、凝集度は、試験円の内部のデータ点の数とデータ点の合計数との比として判断され得る(例えば図6A)。凝集度は、再帰的区分化(例えば図6B-6C)を停止すべきか又は継続すべきかを判断するために閾値と比較され得る。いくつかの実施形態では、試験円の半径(r90など)は、図6Aに示すようにカイ二乗凝集性試験を使用することにより判断され得る。いくつかの実施形態では、試験円の半径は、図6Aに示すように変形凝集性試験を使用することにより判断され得、ここでは、半径はユーザカスタム化可能半径である。
【0091】
[00105] コントローラ(例えば図1-2のコントローラ109)のプロセッサがとりわけ画像検査、画像取得、ステージ位置決め、ビーム集束、電界調節、ビーム曲げ、集光レンズ調節、荷電粒子源の活性化、ビーム偏向を実行するための指令、及び方法700に関して上に説明したような基準データを処理するための指令を格納する非一時的コンピュータ可読媒体が提供され得る。非一時的メディアの一般形式は、例えばフロッピーディスク、フレキシブルディスク、ハードディスク、ソリッドステートドライブ、磁気テープ、又は任意の他の磁気データストレージ媒体、コンパクトディスク読み出し専用メモリ(CD-ROM)、任意の他の光学データストレージ媒体、穴のパターンを有する任意の物理的媒体、ランダムアクセスメモリ(RAM)、プログラマブルROM(PROM)、及び消去可能プログラマブルROM(EPROM)、FLASH-EPROM又は任意の他のフラッシュメモリ、不揮発性ランダムアクセスメモリ(NVRAM)、キャッシュ、レジスタ、任意の他のメモリチップ又はカートリッジ及びそのネットワーク化バージョンを含む。
【0092】
[00106] 実施形態は更に、以下の条項を使用することにより説明され得る:
1.画像データから抽出された複数のパターンをグループ化する方法であって、ウェーハの一部分上に形成されるフィーチャを表わす複数のパターンを含む画像データを受信すること;フーリエ変換後の複数のパターンを複数組のパターンに分離すること;及びそれぞれの組のパターン内のパターン間の類似性に関係するフィーチャを再帰的に評価することにより複数のサブセットのパターンを取得するために階層的クラスタ化をそれぞれの組のパターンに対し行うことを含む方法。
2.周波数領域において複数のフーリエ変換ベース画像をそれぞれ取得するためにフーリエ変換を複数のパターンに対し行うこと;及び複数のフーリエ変換ベース画像それぞれに基づき複数のベクトルを取得することを更に含む、条項1に記載の方法。
3.複数のベクトルの距離フィーチャに基づき複数のパターンの類似性を評価することを更に含む、条項2に記載の方法。
4.フーリエ変換後の複数のパターンは、距離フィーチャに基づきk平均アルゴリズムを使用することにより複数組のパターンへ分離される、条項1~3のいずれか一項に記載の方法。
5.階層的クラスタ化を行うことは:それぞれの階層レベルにおいてフィーチャを再帰的に評価した結果に基づきそれぞれの組のパターンに対し再帰的区分化を行うことを含む、条項1~4のいずれか一項に記載の方法。
6.フィーチャを評価するための凝集性試験を行うことを更に含む条項1~5のいずれか一項に記載の方法であって、評価結果を取得するためにそれぞれの組のパターンの凝集度を評価すること;及び再帰的区分化を一時停止すべきかどうかを評価結果に従って判断することを更に含む方法。
7.凝集度を評価することに関連付けられたパラメータを指示するユーザ入力を受信することを更に含む、条項6に記載の方法。
8.画像データは、グラフィックデータベースシステム(GDS)フォーマット、グラフィックデータベースシステムII(GDSII)フォーマット、オープンアートワークシステム交換標準(OASIS:Open Artwork System Interchange Standard)フォーマット、又はCaltech中間フォーマット(CIF:Caltech Intermediate Format)などのものである、条項1~7のいずれか一項に記載の方法。
9.画像データから抽出された複数のパターンをグループ化するシステムであって、本システムに:ウェーハの一部分上に形成されるフィーチャを表わす複数のパターンを含む画像データを受信すること;フーリエ変換後の複数のパターンを複数組のパターンに分離すること;及びそれぞれの組のパターン内のパターン間の類似性に関係するフィーチャを再帰的に評価することにより複数のサブセットのパターンを取得するために階層的クラスタ化をそれぞれの組のパターンに対し行うことを行わせるように構成された回路構成を含むシステム。
10.回路構成は更に、システムに:周波数領域において複数のフーリエ変換ベース画像をそれぞれ取得するためにフーリエ変換を複数のパターンに対し行うこと;及び複数のフーリエ変換ベース画像それぞれに基づき複数のベクトルを取得することを行わせるように構成される、条項9に記載のシステム。
11.回路構成は更に、システムに複数のベクトルの距離フィーチャに基づき複数のパターンの類似性を評価することを行わせるように構成される、条項10に記載のシステム。
12.フーリエ変換後の複数のパターンは距離フィーチャに基づきk平均アルゴリズムを使用することにより複数組のパターンへ分離される、条項9~11のいずれか一項に記載のシステム。
13.階層的クラスタ化を行うことは:それぞれの階層レベルにおいてフィーチャを再帰的に評価した結果に基づきそれぞれの組のパターンに対し再帰的区分化を行うことを含む、条項9~12のいずれか一項に記載のシステム。
14.回路構成は更に、システムにフィーチャを評価するための凝集性試験を行うことを行わせるように構成され、凝集性試験は:評価結果を取得するためにそれぞれの組のパターンの凝集度を評価すること;及び再帰的区分化を一時停止すべきかどうかを評価結果に従って判断することを含む、条項9~13のいずれか一項に記載のシステム。
15.回路構成は更に、システムに凝集度を評価することに関連付けられたパラメータを指示するユーザ入力を受信することを行わせるように構成される、条項14に記載のシステム。
16.画像データは、グラフィックデータベースシステム(GDS)フォーマット、グラフィックデータベースシステムII(GDSII)フォーマット、オープンアートワークシステム交換標準(OASIS)フォーマット、又はCaltech中間フォーマット(CIF)のものである、条項9~15のいずれか一項に記載のシステム。
17.画像データから抽出された複数のパターンをグループ化する方法をシステムに行わせるためにシステムの少なくとも1つのプロセッサにより実行可能である一組の指令を格納する非一時的コンピュータ可読媒体であって、本方法は、ウェーハの一部分上に形成されるフィーチャを表わす複数のパターンを含む画像データを受信すること;フーリエ変換後の複数のパターンを複数組のパターンに分離すること;及びそれぞれの組のパターン内のパターン間の類似性に関係するフィーチャを再帰的に評価することにより複数のサブセットのパターンを取得するために階層的クラスタ化をそれぞれの組のパターンに対し行うことを含む、非一時的コンピュータ可読媒体。
18.コンピューティングデバイスの少なくとも1つのプロセッサにより実行可能である一組の指令は、コンピューティングデバイスに更に:周波数領域において複数のフーリエ変換ベース画像をそれぞれ取得するためにフーリエ変換を複数のパターンに対し行うこと;及び複数のフーリエ変換ベース画像それぞれに基づき複数のベクトルを取得することを行わせる、条項17に記載の非一時的コンピュータ可読媒体。
19.コンピューティングデバイスの少なくとも1つのプロセッサにより実行可能である一組の指令は、コンピューティングデバイスに更に:複数のベクトルの距離フィーチャに基づき複数のパターンの類似性を評価することを行わせる、条項18に記載の非一時的コンピュータ可読媒体。
20.フーリエ変換後の複数のパターンは、距離フィーチャに基づきk平均アルゴリズムを使用することにより複数組のパターンへ分離される、条項17~19のいずれか一項に記載の非一時的コンピュータ可読媒体。
21.階層的クラスタ化を行うことは:それぞれの階層レベルにおいてフィーチャを再帰的に評価した結果に基づきそれぞれの組のパターンに対し再帰的区分化を行うことを含む、条項17~20のいずれか一項に記載の非一時的コンピュータ可読媒体。
22.コンピューティングデバイスの少なくとも1つのプロセッサにより実行可能である一組の指令は、コンピューティングデバイスに更に:フィーチャを評価するための凝集性試験を行うことを含み、凝集性試験は:評価結果を取得するためにそれぞれの組のパターンの凝集度を評価すること;及び再帰的区分化を一時停止すべきかどうかを評価結果に従って判断することを含む、条項17~21のいずれか一項に記載の非一時的コンピュータ可読媒体。
23.コンピューティングデバイスの少なくとも1つのプロセッサにより実行可能である一組の指令は、コンピューティングデバイスに更に:凝集度を評価することに関連付けられたパラメータを指示するユーザ入力を受信することを行わせる、条項22に記載の非一時的コンピュータ可読媒体。
24.画像データは、グラフィックデータベースシステム(GDS)フォーマット、グラフィックデータベースシステムII(GDSII)フォーマット、オープンアートワークシステム交換標準(OASIS)フォーマット、又はCaltech中間フォーマット(CIF)のものである、条項17~23のいずれか一項に記載の非一時的コンピュータ可読媒体。
25.複数のパターンをグループ化する方法であって、本方法は、ウェーハの一部分上に形成されるフィーチャを表わす複数のパターンを含む画像データを受信すること;複数のパターンのそれぞれから変換された複数の周波数領域フィーチャに対し階層的クラスタ化を行うことを含み、階層的クラスタ化を行うことは、パラメータのユーザ選択を受信すること;及びそれぞれの階層レベルにおいて対応組のパターンを区分化することを継続すべきかどうかをパラメータに基づき再帰的に評価することを行うことにより複数の周波数領域フィーチャを再帰的に区分化することを含む、方法。
26.対応階層レベルにおいて一組のパターンを区分化することを継続すべきかどうかを評価することは:一組のパターン内のパターンの類似性を評価することを含む、条項25に記載の方法。
27.試験円の半径のユーザ選択を受信すること;一組のパターンの凝集度を判断することであって、凝集度は試験円内に含まれるパターンに対応するデータ点の数に関係付けられる、判断すること;及び凝集度と所定閾値との比較に基づき一組のパターンを区分化することを継続すべきかどうかを判断することを更に含む、条項25~26のいずれか一項に記載の方法。
28.階層的クラスタ化を行う前に、本方法は更に:複数のパターンを複数の周波数領域フィーチャへ変換すること;及び複数の周波数領域フィーチャを複数の第1レベルの組のパターンへ分離することを含む、条項25~27のいずれか一項に記載の方法。
29.複数のパターンをグループ化するためのシステムであって、本システムは、システムに:ウェーハの一部分上に形成されるフィーチャを表わす複数のパターンを含む画像データを受信すること;複数のパターンのそれぞれから変換された複数の周波数領域フィーチャに対し階層的クラスタ化を行うことを行わせるように構成された回路構成を含むコントローラを含み、階層的クラスタ化を行うことは:パラメータのユーザ選択を受信すること;及びそれぞれの階層レベルにおいて対応組のパターンを区分化することを継続すべきかどうかをパラメータに基づき再帰的に評価することを行うことにより複数の周波数領域フィーチャを再帰的に区分化することを含む、システム。
30.対応階層レベルにおいて一組のパターンを区分化することを継続すべきかどうかを評価することは:一組のパターン内のパターンの類似性を評価することを含む、条項29に記載のシステム。
31.回路構成は更に、システムに:試験円の半径のユーザ選択を受信すること;一組のパターンの凝集度を判断することであって、凝集度は試験円内に含まれているパターンに対応するデータ点の数に関係付けられる、判断すること;及び凝集度と所定閾値との比較に基づき一組のパターンを区分化することを継続すべきかどうかを判断することを行わせるように構成される、条項29~30のいずれか一項に記載のシステム。
32.回路構成は更に、システムに:階層的クラスタ化を行う前に、複数のパターンを複数の周波数領域フィーチャへ変換すること;及び複数の周波数領域フィーチャを複数の第1レベルの組のパターンへ分離することを行わせるように構成される、条項29~31のいずれか一項に記載のシステム。
33.複数のパターンをグループ化する方法をシステムに行わせるためにシステムの少なくとも1つのプロセッサにより実行可能である一組の指令を格納する非一時的コンピュータ可読媒体であって、本方法は、ウェーハの一部分上に形成されるフィーチャを表わす複数のパターンを含む画像データを受信すること;複数のパターンのそれぞれから変換された複数の周波数領域フィーチャに対し階層的クラスタ化を行うことを含み、階層的クラスタ化を行うことは、パラメータのユーザ選択を受信すること;それぞれの階層レベルにおいて対応組のパターンを区分化することを継続すべきかどうかをパラメータに基づき再帰的に評価することにより複数の周波数領域フィーチャを再帰的に区分化することを含む、
非一時的コンピュータ可読媒体。
34.対応階層レベルにおいて一組のパターンを区分化することを継続すべきかどうかを評価することは:一組のパターン内のパターンの類似性を評価することを含む、条項33に記載の非一時的コンピュータ可読媒体。
35.コンピューティングデバイスの少なくとも1つのプロセッサにより実行可能である一組の指令は、コンピューティングデバイスに更に:試験円の半径のユーザ選択を受信すること;一組のパターンの凝集度を判断することであって、凝集度は試験円内に含まれているパターンに対応するデータ点の数に関係付けられる、判断すること;及び凝集度と所定閾値との比較に基づき一組のパターンを区分化することを継続すべきかどうかを判断することを行わせる、条項33~34のいずれか一項に記載の非一時的コンピュータ可読媒体。
36.階層的クラスタ化を行う前に、コンピューティングデバイスの少なくとも1つのプロセッサにより実行可能である一組の指令は、コンピューティングデバイスに更に:複数のパターンを複数の周波数領域フィーチャへ変換すること;及び複数の周波数領域フィーチャを複数の第1レベルの組のパターンへ分離することを行わせる、条項33~35のいずれか一項に記載の非一時的コンピュータ可読媒体。
【0093】
[00107] 本開示の実施形態は、上記で説明し、添付の図面に図示した通りの構成に限定されるものではなく、また、本発明の範囲から逸脱することなく様々な修正及び変更を加えることができることを理解されたい。本開示は様々な実施形態に関連して説明されたが、本発明の他の実施形態は本明細書の考察と本明細書において開示された本発明の実行から当業者にとって明白となる。本明細書及び例は例示的にすぎないと考えられ、本発明の真の範囲と精神は以下の特許請求の範囲により指示されるということが意図されている。
【0094】
[00108] 上記説明は例示的であるように意図されており、制限するようには意図されていない。従って、以下に記載される特許請求の範囲から逸脱すること無く修正が説明されたように行われ得るということが当業者に明らかになる。
図1
図2
図3
図4A
図4B
図4C
図4D
図5A
図5B
図5C
図6A
図6B
図6C
図7
図8
【国際調査報告】