特表-13145890IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 住友精化株式会社の特許一覧

再表2013-145890電気化学デバイス用電解液、アルミニウム電解コンデンサ及び電気二重層コンデンサ
<>
< >
(19)【発行国】日本国特許庁(JP)
【公報種別】再公表特許(A1)
(11)【国際公開番号】WO/0
(43)【国際公開日】2013年10月3日
【発行日】2015年12月10日
(54)【発明の名称】電気化学デバイス用電解液、アルミニウム電解コンデンサ及び電気二重層コンデンサ
(51)【国際特許分類】
   H01G 9/035 20060101AFI20151113BHJP
   H01G 11/60 20130101ALI20151113BHJP
   H01M 10/0569 20100101ALI20151113BHJP
   H01M 10/052 20100101ALI20151113BHJP
   H01M 6/16 20060101ALI20151113BHJP
【FI】
   H01G9/02 311
   H01G11/60
   H01M10/0569
   H01M10/052
   H01M6/16 A
【審査請求】未請求
【予備審査請求】未請求
【全頁数】14
【出願番号】特願2014-507498(P2014-507498)
(21)【国際出願番号】PCT/0/0
(22)【国際出願日】2013年2月8日
(31)【優先権主張番号】特願2012-75920(P2012-75920)
(32)【優先日】2012年3月29日
(33)【優先権主張国】JP
(81)【指定国】 AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,TJ,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,ID,IL,IN,IS,JP,KE,KG,KM,KN,KP,KR,KZ,LA,LC,LK,LR,LS,LT,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN,TR,TT,TZ,UA,UG,US,UZ,VC
(71)【出願人】
【識別番号】000195661
【氏名又は名称】住友精化株式会社
(74)【代理人】
【識別番号】110000914
【氏名又は名称】特許業務法人 安富国際特許事務所
(72)【発明者】
【氏名】大山 俊治
(72)【発明者】
【氏名】山本 紀子
(72)【発明者】
【氏名】平林 尚佳
【テーマコード(参考)】
5E078
5H024
5H029
【Fターム(参考)】
5E078AA04
5E078AA09
5E078DA04
5E078DA19
5H024FF14
5H024FF15
5H024FF16
5H024FF18
5H024FF19
5H024HH02
5H029AJ07
5H029AM03
5H029AM04
5H029AM05
5H029AM07
5H029HJ01
5H029HJ02
(57)【要約】
本発明は、熱的安定性に優れ、高い分解電圧特性を有し、かつ、高温時に蒸散量が少ない電気化学デバイス用電解液を提供することを目的とする。また、本発明は、該電気化学デバイス用電解液を用いて製造されたアルミニウム電解コンデンサ及び電気二重層コンデンサを提供することを目的とする。
本発明は、溶媒と電解質とを含有する電気化学デバイス用電解液であって、前記溶媒は、下記式(1)で表されるスルホン化合物を含有する電気化学デバイス用電解液である。
式(1)中、Rは、炭素数1〜6のアルキル基を示す。
[化1]
【特許請求の範囲】
【請求項1】
溶媒と電解質とを含有する電気化学デバイス用電解液であって、
前記溶媒は、下記式(1)で表されるスルホン化合物を含有することを特徴とする電気化学デバイス用電解液。
【化1】
式(1)中、Rは、炭素数1〜6のアルキル基を示す。
【請求項2】
式(1)において、Rは、メチル基、エチル基、n−プロピル基、又は、イソプロピル基であることを特徴とする請求項1記載の電気化学デバイス用電解液。
【請求項3】
溶媒は、式(1)で表されるスルホン化合物と他の溶媒との混合溶媒であることを特徴とする請求項1又は2記載の電気化学デバイス用電解液。
【請求項4】
他の溶媒は、スルホランであることを特徴とする請求項3記載の電気化学デバイス用電解液。
【請求項5】
溶媒は、式(1)で表されるスルホン化合物の含有割合が10〜70質量%であることを特徴とする請求項1、2、3又は4記載の電気化学デバイス用電解液。
【請求項6】
請求項1、2、3、4又は5記載の電気化学デバイス用電解液を用いて製造されたことを特徴とするアルミニウム電解コンデンサ。
【請求項7】
請求項1、2、3、4又は5記載の電気化学デバイス用電解液を用いて製造されたことを特徴とする電気二重層コンデンサ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、スルホン化合物を含有する電気化学デバイス用電解液に関する。また本発明は、該電気化学デバイス用電解液を用いて製造されたアルミニウム電解コンデンサ及び電気二重層コンデンサに関する。
【背景技術】
【0002】
電気二重層コンデンサ等の電気化学デバイスに用いられる電解液としては、水系電解液と非水電解液とが知られている。水系電解液の分解電圧が約1.2Vであるのに対し、非水電解液の分解電圧は2〜3Vを有している点で有利である。すなわち、非水電解液は、水系電解液に比べ、耐電圧が高いといった点からも、急速に普及し始めている。
【0003】
スルホン化合物は、抽出溶剤や各種反応溶剤として用いられる一方、誘電率が高いものは、非水電解液に用いる非プロトン性極性溶媒としても用いられる。スルホン化合物の中でも、高い分解電圧を有することから、電気化学デバイス用電解液等に用いられる非水電解液の非プロトン性極性溶媒としてスルホランが広く利用されてきた。
【0004】
スルホラン等のスルホン化合物を電解液用の非プロトン性極性溶媒として用いた電気化学デバイスとしては、例えば、スルホランや3−メチルスルホラン等のスルホラン誘導体を混合した混合液を用いた電気二重層コンデンサやアルミニウム電解コンデンサ(特許文献1、2)、スルホランや3−メチルスルホラン等のスルホラン誘導体と、プロピレンカーボネート等との混合溶媒を用いた電気二重層コンデンサ(特許文献3)、スルホランとベンジルアルコールやその誘導体との混合溶媒を用いたアルミニウム電解コンデンサ(特許文献4)等が開示されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開昭62−237715号公報
【特許文献2】特開平11−243037号公報
【特許文献3】特開昭63−12122号公報
【特許文献4】特開平10−233341号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
電気化学デバイス等の電解液用の溶媒として用いられる非プロトン性極性溶媒には、一般的に融点が低く、熱的安定性に優れていることが求められている。しかしながら、特許文献1及び2に開示されているスルホラン等のスルホン化合物は、融点が比較的高いことから、低温環境において電解液が凝固し、電気化学デバイスとしての性能が著しく低下してしまうという不具合があった。また、特許文献3及び4等で開示されているスルホランと、プロピレンカーボネートやベンジルアルコール等との混合溶媒は、熱的安定性に劣る等の不具合があり、電気化学デバイス等の電解液用の溶媒として用いられる非プロトン性極性溶媒として充分な性能を有するものではなく、改善の余地があった。
更に、スルホランやプロピレンカーボネートを非プロトン性極性溶媒に用いた従来の非水電解液では、酸化電位が充分高いとはいえない。酸化電位が不充分である電解液では、2.5Vを越える高電圧の連続印加時に、ガスが発生したり、電極上に反応生成物が付着したりするおそれがある。その結果、内部抵抗の増加や容量の減少を招くという不具合があるため、より高い電圧での使用に耐える分解電圧特性を有する電解液用の溶媒が求められていた。更に、特許文献4等に記載されている従来のアルミニウム電解コンデンサ用電解液用の溶媒では、高温時に電解液が蒸散し、デバイスとしての性能が低下するおそれがあった。
本発明は、熱的安定性に優れ、高い分解電圧特性を有し、かつ、高温時に蒸散量が少ない電気化学デバイス用電解液を提供することを目的とする。また、本発明は、該電気化学デバイス用電解液を用いて製造されたアルミニウム電解コンデンサ及び電気二重層コンデンサを提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明は、溶媒と電解質とを含有する電気化学デバイス用電解液であって、前記溶媒は、下記式(1)で表されるスルホン化合物を含有する電気化学デバイス用電解液である。
【0008】
【化1】
【0009】
式(1)中、Rは、炭素数1〜6のアルキル基を示す。
以下、本発明について詳述する。
【0010】
本発明者らは鋭意検討した結果、特定の構造を有するスルホン化合物を含有する溶媒に電解質を溶解させることにより、熱的安定性に優れ、高い分解電圧特性を有し、かつ、高温時に蒸散量が少ない電気化学デバイス用電解液が得られることを見出し、本発明を完成させるに至った。
【0011】
本発明の電気化学デバイス用電解液は、溶媒を含有する。
前記溶媒は、前記式(1)で表されるスルホン化合物を含有する。前記式(1)で表されるスルホン化合物は融点が低く、蒸気圧が低いものであるため、本発明の電気化学デバイス用電解液は、低温においても充分な導電性を有し、かつ、高温時に蒸散量が少ないものとなる。更に、前記式(1)で表されるスルホン化合物を含有することにより、本発明の電気化学デバイス用電解液は、電位窓が広く、高い分解電圧特性を有するものとなる。
【0012】
前記式(1)中、Rは、炭素数1〜6のアルキル基を示す。
前記Rで示される炭素数1〜6のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、イソブチル基、tert−ブチル基等が挙げられる。なかでも、熱的安定性に優れ、高い分解電圧特性を有すること等から、メチル基、エチル基、n−プロピル基、イソプロピル基が好ましく、n−プロピル基、イソプロピル基がより好ましい。
【0013】
前記式(1)で表されるスルホン化合物としては、例えば、3−メトキシスルホラン、3−エトキシスルホラン、3−n−プロポキシスルホラン、3−イソプロポキシスルホラン、3−tert−ブトキシスルホラン、3−n−ブトキシスルホラン、3−イソブトキシスルホラン等が挙げられる。なかでも、熱的安定性に優れ、高い分解電圧特性を有することから、3−メトキシスルホラン、3−エトキシスルホラン、3−n−プロポキシスルホラン、3−イソプロポキシスルホランが好ましい。
【0014】
前記式(1)で表されるスルホン化合物を製造する方法としては、例えば、Journal of Organic Chemistry,26(11),4394−4399,(1961)に記載の方法等により製造することができる。具体的には、3−スルホレンを、アルカリの存在下にて、加熱、撹拌しながら下記式(2)で表されるアルコールと反応させることによって製造することができる。
【0015】
【化2】
【0016】
式(2)中、Rは、式(1)におけるRと同じ基を示し、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、イソブチル基、tert−ブチル基等が挙げられる。なかでも、メチル基、エチル基、n−プロピル基、イソプロピル基が好ましく、n−プロピル基、イソプロピル基がより好ましい。
なお、前記式(2)で表されるアルコールは市販のものを用いることができる。
【0017】
前記式(2)で表されるアルコールの使用割合は、3−スルホレン1モルに対して好ましい下限が0.8モル、好ましい上限が5.0モルであり、より好ましい下限が1.0、より好ましい上限が3.5モルである。なお、前記アルコールを同時に溶媒としても用いる場合にはこれを超える量であってもよく、本発明においては、反応溶媒をかねて使用するのが好ましい。
【0018】
前記アルカリとしては、水酸化ナトリウム、水酸化カリウム等が挙げられる。なかでも、操作性の観点等から水酸化カリウムが好適に用いられる。
【0019】
前記アルカリの使用割合は、3−スルホレン1モルに対して好ましい下限が0.01モル、好ましい上限が1.0モルであり、より好ましい下限が0.08、より好ましい上限が0.12モルである。
【0020】
3−スルホレンと式(2)で表されるアルコールとの反応における反応温度は、30〜60℃であることが好ましい。反応時間は通常12〜48時間である。
【0021】
かくして得られる前記式(1)で表されるスルホン化合物は、必要に応じて水洗、分液した後、蒸留することにより単離することができる。
【0022】
前記式(1)で表されるスルホン化合物は、電気化学デバイスの低温での安定動作を保証するため、融点が30℃以下であることが好ましい。
【0023】
前記式(1)で表されるスルホン化合物は、得られる電気化学デバイス用電解液が熱的安定性に優れるものとなるため、発熱開始温度が100℃以上であることが好ましい。
【0024】
前記式(1)で表されるスルホン化合物は、得られる電気化学デバイス用電解液が高温時に蒸散量の少ないものとなるため、100℃での蒸気圧が20Pa以下であることが好ましい。
【0025】
本発明の電気化学デバイス用電解液は、溶媒として前記式(1)で表されるスルホン化合物を単独で用いてもよいし、他の溶媒との混合溶媒であってもよい。
前記他の溶媒としては、例えば、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、1,3−ジオキソラン、アセトニトリル、プロピオニトリル、ブチロニトリル、ジメチルホルムアミド、1,2−ジメトキシエタン、エチルメチルスルホン、エチルイソプロピルスルホン、プロピルイソブチルスルホン、プロピルsec−ブチルスルホン、プロピルtert−ブチルスルホン、イソプロピルブチルスルホン、イソプロピルイソブチルスルホン、イソプロピルsec−ブチルスルホン、イソプロピルtert−ブチルスルホン、ブチルイソブチルスルホン、ブチルsec−ブチルスルホン、イソブチルtert−ブチルスルホン、sec−ブチルtert−ブチルスルホン、ブチルtert−ブチルスルホン、sec−ブチルイソブチルスルホン、プロピルイソペンチルスルホン、イソプロピルイソペンチルスルホン、プロピルイソヘキシルスルホン、イソプロピルイソヘキシルスルホン、スルホラン等が挙げられる。なかでも、高い分解電圧特性を有することから、プロピレンカーボネート、γ−ブチロラクトン、エチルメチルスルホン、エチルイソプロピルスルホン、及び、スルホランが好適に用いられる。
【0026】
本発明の電気化学デバイス用電解液の溶媒として、前記式(1)で表されるスルホン化合物を他の溶媒と混合して用いる場合、前記式(1)で表されるスルホン化合物の含有割合は、溶媒全体に対して、好ましい下限が10質量%、好ましい上限が70質量%である。前記式(1)で表されるスルホン化合物の含有割合が10質量%未満であると、得られる電気化学デバイス用電解液が低温で凝固し、電気化学デバイスとして使用できなくなるおそれがある。また、得られる電気化学デバイス用電解液の分解電圧特性が向上する等の観点から、前記式(1)で表されるスルホン化合物の含有割合が70質量%以下であることが好ましい。前記式(1)で表されるスルホン化合物の含有割合のより好ましい下限は25質量%、より好ましい上限は50質量%、更に好ましい上限は35質量%である。
【0027】
本発明の電気化学デバイス用電解液は、電解質を含有する。
前記電解質としては、例えば、リチウム等のアルカリ金属の六フッ化リン酸塩、四フッ化ホウ酸塩、過塩素酸塩、及び、トリフルオロアルキルスルホン酸塩や、テトラアルキルアンモニウム等の六フッ化リン酸塩、四フッ化ホウ酸塩、過塩酸塩、及び、トリフルオロアルキルスルホン酸塩や、テトラホスホニウム塩の六フッ化リン酸塩、四フッ化ホウ酸塩、過塩素酸塩、及び、トリフルオロアルキルスルホン酸塩等が挙げられる。前記電解質のなかでも、リチウムの六フッ化リン酸塩(LiPF)、テトラアルキルアンモニウムの四フッ化ホウ酸塩(TEA−BF)が好適に用いられる。
これらの電解質は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
【0028】
前記テトラアルキルアンモニウムとしては、例えば、トリエチルメチルアンモニウム、テトラエチルアンモニウム、テトラブチルアンモニウム、ジエチルジメチルアンモニウム、エチルトリメチルアンモニウム、ジメチルピロリジニウム、ジエチルピロリジニウム、エチルメチルピロリジニウム、スピロ−(1,1’)−ピロリジニウム、N−メチル−N−スピロピロリジニウム、ジエチルピペリジニウム、スピロ−(1,1’)−ピペリジニウム等が挙げられる。
【0029】
本発明の電気化学デバイス用電解液中の前記電解質の濃度の好ましい下限は0.1モル/L、好ましい上限は2.0モル/Lである。前記電解質の濃度が0.1モル/L未満であると、得られる電気化学デバイス用電解液が、導電性等を充分に確保することができず、電気化学デバイスとしての電気特性が悪くなるおそれがある。前記電解質の濃度が2.0モル/Lを超えると、得られる電気化学デバイス用電解液の粘度が増大し、電気化学デバイスとしての電気特性が悪くなるおそれがある。前記電解質の濃度のより好ましい下限は0.6モル/L、より好ましい上限は1.2モル/Lである。
【0030】
本発明の電気化学デバイス用電解液は、電気化学的性能を改良する等の目的で、安定化剤等の各種添加剤を含有してもよい。
【0031】
本発明の電気化学デバイス用電解液は、粘度が低いほど電気化学デバイスの内部抵抗を低くすることができるため、20℃において、ディジタル粘度計DVH−EII(トキメック社製)を用いて測定した粘度が20mPa・s以下であることが好ましい。
【0032】
本発明の電気化学デバイス用電解液を用いて製造される電気化学デバイスとしては、例えば、アルミニウム電解コンデンサ、リチウム一次電池、リチウム二次電池、リチウムイオン電池、燃料電池、太陽電池、電気二重層コンデンサ等が挙げられる。なかでも、アルミニウム電解コンデンサ、電気二重層コンデンサに好適に用いられる。
本発明の電気化学デバイス用電解液を用いて製造されたアルミニウム電解コンデンサ及び電気二重層コンデンサもそれぞれ本発明の1つである。
【0033】
前記アルミニウム電解コンデンサとしては特に限定されない。例えば、帯状に形成された高純度のアルミニウム箔を化学的又は電気化学的にエッチングを行って拡面処理するとともに、拡面処理したアルミニウム箔をホウ酸アンモニウム水溶液等の化成液中にて化成処理することによりアルミニウム箔の表面に酸化皮膜層を形成させた陽極箔と、同じく高純度のアルミニウム箔を拡面処理した陰極箔とを、セパレータを介在させて捲回し、コンデンサ素子とし、これを本発明の電気化学デバイス用電解液に含浸させ、有底筒状のアルミニウムケースに収納した後、アルミニウムケースの開口部を封口剤で密閉させたもの等が挙げられる。
【0034】
前記電気二重層コンデンサとしては特に限定されず、例えば、負極、正極、及び、本発明の電気化学デバイス用電解液を基本構成要素として構成されるもの等が挙げられる。好ましい形態としては、対向配置した正極及び負極からなる電極素子に、上記電解液を含ませたものである。
【発明の効果】
【0035】
本発明によれば、熱的安定性に優れ、高い分解電圧特性を有し、かつ、高温時に蒸散量が少ない電気化学デバイス用電解液を提供することができる。また、本発明によれば、該電気化学デバイス用電解液を用いて製造されたアルミニウム電解コンデンサ及び電気二重層コンデンサを提供することができる。
【発明を実施するための形態】
【0036】
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。
【0037】
[3−メトキシスルホラン(MOSN)の製造]
撹拌機、温度計、滴下ロート、及び、冷却器を備え付けた100mL容の四つ口フラスコに、窒素雰囲気下で、メタノール14.0g(0.44モル)及び水酸化カリウム1.23g(0.02モル)を仕込み、室温で30分撹拌した後、3−スルホレン25.9g(0.22モル)を添加し、40℃まで昇温し、40〜50℃で48時間撹拌した。室温まで冷却した後、35質量%塩酸水溶液を用いて中和した。減圧蒸留によってメタノールを除去した後に、トルエン13.1gと飽和塩化ナトリウム水溶液89.4gを添加して分液した。減圧蒸留によって有機層よりトルエン及び水を除去し、3−メトキシスルホラン15.8gを取得した。得られた3−メトキシスルホランの収率は、3−スルホレンに対して53%であり、ガスクロマトグラフィーによる純度は、99.0%であった。
なお、得られた3−メトキシスルホランは、下記の物性を有することから同定できた。
H−NMR(400MHz、溶媒:CDCl):4.20(tt,J=4.0Hz,4.0Hz,1H)、3.36(s,3H)、3.23〜3.20(m,3H)、3.12〜3.01(m,1H)、2.42〜2.37(m,2H)
13C−NMR(400MHz、溶媒:CDCl):76.7、56.9、56.3、49.5、29.0
【0038】
[3−エトキシスルホラン(EOSN)の製造]
撹拌機、温度計、滴下ロート、及び、冷却器を備え付けた200mL容の四つ口フラスコに、窒素雰囲気下で、エタノール74.6g(1.62モル)及び水酸化カリウム4.89g(0.09モル)を仕込み、室温で30分撹拌した後、3−スルホレン94.8g(0.80モル)を添加し、40℃まで昇温し、40〜50℃で48時間撹拌した。室温まで冷却した後、35質量%塩酸水溶液を用いて中和した。減圧蒸留によってエタノールを除去した後に、トルエン50.7gと飽和塩化ナトリウム水溶液121.0gを添加して分液した。減圧蒸留によって有機層よりトルエン及び水を除去し、3−エトキシスルホラン96.8gを取得した。得られた3−エトキシスルホランの収率は、3−スルホレンに対して74%であり、ガスクロマトグラフィーによる純度は、99.6%であった。
なお、得られた3−エトキシスルホランは、下記の物性を有することから同定できた。
H−NMR(400MHz、溶媒:CDCl):4.30(tt,J=3.6Hz,4.0Hz,1H)、3.51(q,J=7.2Hz,6.8Hz,7.2Hz,2H)、3.26〜3.07(m,4H)、2.39〜2.37(m,2H)、1.22(s,J=6.8Hz,3H)
13C−NMR(400MHz、溶媒:CDCl):74.8、64.8、56.7、49.7、29.5、15.3
【0039】
[3−イソプロポキシスルホラン(IPOS)の製造]
撹拌機、温度計、滴下ロート、及び、冷却器を備え付けた200mL容の四つ口フラスコに、窒素雰囲気下で、イソプロパノール109.0g(1.94モル)及び水酸化カリウム5.10g(0.09モル)を仕込み、室温で30分撹拌した後、3−スルホレン107.2g(0.91モル)を添加し、40℃まで昇温し、40〜50℃で48時間撹拌した。室温まで冷却した後、35質量%塩酸水溶液を用いて中和した。減圧蒸留によってイソプロパノールを除去した後に、トルエン50.3gと飽和塩化ナトリウム水溶液105.0gを添加して分液した。減圧蒸留によって有機層よりトルエン及び水を除去し、3−イソプロポキシスルホラン131.7gを取得した。得られた3−イソプロポキシスルホランの収率は、3−スルホレンに対して82%であり、ガスクロマトグラフィーによる純度は、96.6%であった。
なお、得られた3−イソプロポキシスルホランは、下記の物性を有することから同定することができた。
H−NMR(400MHz、溶媒:CDCl):4.38(tt,J=4.0Hz,4.4Hz,1H)、3.66(sep,J=6.0Hz,1H)、3.28〜3.23(m,2H)、3.13〜3.06(m,2H)、2.34〜2.33(m,2H)、1.17(d,J=6.0Hz,6H)
13C−NMR(400MHz、溶媒:CDCl):72.2、70.4、57.3、49.9、30.2、22.7、22.2
【0040】
得られた3−メトキシスルホラン(MOSN)、3−エトキシスルホラン(EOSN)、及び、3−イソプロポキシスルホラン(IPOS)の融点及び発熱開始温度について、窒素雰囲気下にて、示差走査熱量計を用いて測定した。
それぞれの融点、発熱開始温度、及び100℃での蒸気圧の測定結果を、プロピレンカーボネート(PC)、スルホラン(SN)とともに表1に示す。
【0041】
【表1】
【0042】
表1の結果から、式(1)で表されるスルホン化合物である、3−メトキシスルホラン(MOSN)、3−エトキシスルホラン(EOSN)、及び、3−イソプロポキシスルホラン(IPOS)は、スルホラン(SN)と比較して融点が低く、プロピレンカーボネート(PC)と比較して熱的安定性に優れていることがわかる。更に、式(1)で表されるスルホン化合物である、3−メトキシスルホラン(MOSN)、3−エトキシスルホラン(EOSN)、及び、3−イソプロポキシスルホラン(IPOS)は、スルホラン(SN)、及び、プロピレンカーボネート(PC)と比較して、100℃における蒸気圧が低いことから高温時の蒸散量が少ないことがわかる。
【0043】
(実施例1〜7、比較例1、2)
表2に示した材料及び配合量にて溶媒を調製し、得られた溶媒に表2に示した濃度となるように電解質を溶解させ、電気化学デバイス用電解液を得た。
【0044】
<評価>
(比抵抗)
各実施例及び各比較例で得られた電気化学デバイス用電解液について、LCRハイテスタ3532−50(日置電機社製)を用いて、比抵抗を測定した。結果を表2に示した。
【0045】
【表2】
【0046】
表2より、実施例1〜7で得られた電気化学デバイス用電解液は、スルホランを単独で用いた比較例1、2で得られた電気化学デバイス用電解液が−20℃では凝固して、比抵抗値を示さないのに対して、比抵抗値を示している。これは、スルホラン等の、単体では低温側で導電性を有しない溶媒に対して、式(1)で表されるスルホン化合物を混合することで低温側でも充分な導電性を与えるという効果を示している。
更に、式(1)で表されるスルホン化合物の含有割合が30質量%である実施例3の電気化学デバイス用電解液は、−20℃でも充分に低い比抵抗値を示すうえに、20℃の比抵抗値も、比較例1の電気化学デバイス用電解液と比較して同等であり、良好な値を示している。
すなわち、式(1)で表されるスルホン化合物を含有する本発明の電気化学デバイス用電解液は、広い温度範囲で充分な導電性を有している。
【0047】
(電位窓)
各実施例及び各比較例で得られた電気化学デバイス用電解液について、酸化電位と還元電位とを測定し、電位窓を求めた。
測定装置としてポテンショガルバノスタット(BAS社製)を用い、作用電極として電極外径6mm、電極サイズ1.6mmのグラッシーカーボン電極と、カウンター電極として長さ5.7cm、白金直径0.5mmの白金電極とを用いた。溶媒系参照電極として内部溶液がアセトニトリル/テトラブチルアンモニウム過塩素酸塩の銀/銀イオンの電極を備えたセルに、各実施例及び各比較例で得られた電気化学デバイス用電解液を仕込み、電位走査速度5mV/sの条件でリニアスウィープボルタンメトリー(LSV)により酸化電位と還元電位(電位窓の判断基準は1000μA/cm)を測定した。結果を表3に示した。
【0048】
【表3】
【0049】
表3の結果から、実施例1〜7で得られた電気化学デバイス用電解液は、比較例1、2で得られた電気化学デバイス用電解液と比較して、酸化電位が高く、なおかつ還元電位は同等の電位を示しており、酸化電位から還元電位までの電位差(電位窓)が広いことから、高い分解電圧特性を有していることがわかる。特に、実施例2、3及び実施例5〜7で得られた電気化学デバイス用電解液は、比較例1、2で得られた電気化学デバイス用電解液と比較して酸化電位が極めて高いことがわかる。したがって、実施例2、3及び実施例5〜7で得られた電気化学デバイス用電解液は、より高い電圧での使用に耐えることができる。
【産業上の利用可能性】
【0050】
本発明によれば、熱的安定性に優れ、高い分解電圧特性を有し、かつ、高温時に蒸散量が少ない電気化学デバイス用電解液を提供することができる。また、本発明によれば、該電気化学デバイス用電解液を用いて製造されたアルミニウム電解コンデンサ及び電気二重層コンデンサを提供することができる。
【国際調査報告】