特表-16117560IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社フジミインコーポレーテッドの特許一覧

再表2016-117560変性コロイダルシリカおよびその製造方法、並びにこれを用いた研磨剤
<>
  • 再表WO2016117560-変性コロイダルシリカおよびその製造方法、並びにこれを用いた研磨剤 図000005
  • 再表WO2016117560-変性コロイダルシリカおよびその製造方法、並びにこれを用いた研磨剤 図000006
  • 再表WO2016117560-変性コロイダルシリカおよびその製造方法、並びにこれを用いた研磨剤 図000007
  • 再表WO2016117560-変性コロイダルシリカおよびその製造方法、並びにこれを用いた研磨剤 図000008
  • 再表WO2016117560-変性コロイダルシリカおよびその製造方法、並びにこれを用いた研磨剤 図000009
  • 再表WO2016117560-変性コロイダルシリカおよびその製造方法、並びにこれを用いた研磨剤 図000010
< >
(19)【発行国】日本国特許庁(JP)
【公報種別】再公表特許(A1)
(11)【国際公開番号】WO/0
(43)【国際公開日】2016年7月28日
【発行日】2017年10月26日
(54)【発明の名称】変性コロイダルシリカおよびその製造方法、並びにこれを用いた研磨剤
(51)【国際特許分類】
   C01B 33/146 20060101AFI20170929BHJP
   C09K 3/14 20060101ALI20170929BHJP
   B24B 37/00 20120101ALI20170929BHJP
   H01L 21/304 20060101ALI20170929BHJP
【FI】
   C01B33/146
   C09K3/14 550D
   B24B37/00 H
   H01L21/304 622D
【審査請求】未請求
【予備審査請求】未請求
【全頁数】22
【出願番号】特願2016-570655(P2016-570655)
(21)【国際出願番号】PCT/0/0
(22)【国際出願日】2016年1月19日
(31)【優先権主張番号】特願2015-8049(P2015-8049)
(32)【優先日】2015年1月19日
(33)【優先権主張国】JP
(81)【指定国】 AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,ST,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,TJ,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,KM,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,ID,IL,IN,IR,IS,JP,KE,KG,KN,KP,KR,KZ,LA,LC,LK,LR,LS,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SA,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN,TR,TT,TZ,UA,UG,US
(71)【出願人】
【識別番号】000236702
【氏名又は名称】株式会社フジミインコーポレーテッド
(74)【代理人】
【識別番号】110000671
【氏名又は名称】八田国際特許業務法人
(72)【発明者】
【氏名】芦▲高▼ 圭史
(72)【発明者】
【氏名】坪田 翔吾
【テーマコード(参考)】
3C158
4G072
5F057
【Fターム(参考)】
3C158AA07
3C158CA01
3C158CA04
3C158CB01
3C158DA02
3C158DA12
3C158DA17
3C158EA11
3C158EB01
3C158ED02
3C158ED10
3C158ED24
3C158ED26
3C158ED28
4G072AA28
4G072CC02
4G072GG01
4G072GG03
4G072HH30
4G072JJ34
4G072PP15
4G072QQ06
4G072RR03
4G072TT02
4G072TT19
4G072UU30
5F057AA28
5F057BA18
5F057BB19
5F057DA03
5F057EA01
5F057EA07
5F057EA16
(57)【要約】
【課題】SiNウェハのように荷電した変性コロイダルシリカが付着しやすい材料を含む研磨対象物を研磨するための研磨用組成物において砥粒として用いられたときに、研磨レートの経時的な安定性を向上させることができる変性コロイダルシリカおよびその製造方法を提供する。
【解決手段】走査型電子顕微鏡を用いた画像解析によるHeywood径(円相当径)に基づく体積平均粒子径の40%以下の粒径を有する微小粒子の個数分布割合が10%以下である原料コロイダルシリカが変性されてなる、変性コロイダルシリカ。
【選択図】図1
【特許請求の範囲】
【請求項1】
走査型電子顕微鏡を用いた画像解析によるHeywood径(円相当径)に基づく体積平均粒子径の40%以下の粒径を有する微小粒子の個数分布割合が10%以下である原料コロイダルシリカが変性されてなる、変性コロイダルシリカ。
【請求項2】
アニオン変性されてなる、請求項1に記載の変性コロイダルシリカ。
【請求項3】
スルホン酸基により変性されてなる、請求項2に記載の変性コロイダルシリカ。
【請求項4】
有機溶媒濃度が1質量%以上であるコロイダルシリカ中の残留有機溶媒濃度が1質量%未満となるように、コロイダルシリカと共存している有機溶媒をpH7以上の条件下で留去して原料コロイダルシリカを得る有機溶媒留去工程と、
前記原料コロイダルシリカを変性して変性コロイダルシリカを得る変性工程と、
を含む、変性コロイダルシリカの製造方法。
【請求項5】
前記変性工程が、
化学的にスルホン酸基に変換できる官能基を有するシランカップリング剤の存在下で前記原料コロイダルシリカを加熱して反応物を得る第1反応工程と、
前記反応物を処理することにより前記官能基をスルホン酸基へと変換する第2反応工程と、
を含む、請求項4に記載の変性コロイダルシリカの製造方法。
【請求項6】
前記官能基がメルカプト基である、請求項5に記載の変性コロイダルシリカの製造方法。
【請求項7】
前記処理が酸化剤を用いた酸化処理である、請求項5または6に記載の変性コロイダルシリカの製造方法。
【請求項8】
前記酸化処理における前記酸化剤の添加量が、前記シランカップリング剤の添加量に対して3〜5モル倍であり、得られた変性コロイダルシリカ中の残留酸化剤濃度が1000質量ppm以下である、請求項7に記載の変性コロイダルシリカの製造方法。
【請求項9】
前記酸化剤が過酸化水素である、請求項7または8に記載の変性コロイダルシリカの製造方法。
【請求項10】
前記第1反応工程を、90℃以上の温度条件を30分間以上継続させる条件で実施する、請求項5〜9のいずれか1項に記載のコロイダルシリカの製造方法。
【請求項11】
前記変性工程の前に、前記原料コロイダルシリカにアルカリ溶液または有機溶媒を添加することにより、前記原料コロイダルシリカの粘度を低下させる工程をさらに含む、請求項5〜10のいずれか1項に記載のコロイダルシリカの製造方法。
【請求項12】
アニオン変性されてなる変性コロイダルシリカであって、
pH2の条件下でSiNウェハに浸漬処理を施し、次いで純水で洗浄したときに、前記SiNウェハの表面に付着する体積平均粒子径の40%未満の粒径を有する粒子の個数が、同様に付着する体積平均粒子径の40%以上の粒径を有する粒子の個数に対して50%以下である、変性コロイダルシリカ。
【請求項13】
カチオン変性されてなる変性コロイダルシリカであって、
pH4の条件下でアルミノ珪酸塩ガラスウェハに浸漬処理を施し、次いで純水で洗浄したときに、前記アルミノ珪酸塩ガラスウェハの表面に付着する体積平均粒子径の40%未満の粒径を有する粒子の個数が、同様に付着する体積平均粒子径の40%以上の粒径を有する粒子の個数に対して50%以下である、変性コロイダルシリカ。
【請求項14】
金属不純物の合計含有量が1質量ppm以下である、請求項12または13に記載の変性コロイダルシリカ。
【請求項15】
請求項1〜3および12〜14のいずれか1項に記載の変性コロイダルシリカを含む、研磨剤。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、変性コロイダルシリカおよびその製造方法、並びにこれを用いた研磨剤に関する。
【背景技術】
【0002】
半導体デバイス製造プロセスにおいては、半導体デバイスの性能の向上につれて、配線をより高密度かつ高集積に製造する技術が必要とされている。このような半導体デバイスの製造プロセスにおいてCMP(Chemical Mechanical Polishing:化学機械研磨)は、必須のプロセスとなっている。半導体回路の微細化が進むにつれ、パターンウェハの凹凸に要求される平坦性が高く、CMPによりナノオーダーの高い平滑性を実現することも求められている。CMPにより高い平滑性を実現するためには、パターンウェハの凸部を高い研磨速度で研磨する一方で凹部はあまり研磨しないことが好ましい。
【0003】
ここで、例えば窒化ケイ素膜(SiN膜)からなるパターンウェハを使用する場合、窒化ケイ素膜は通常凹凸を有していることから、このような材料を研磨する際には、凸部だけでなく凹部も一緒に削られてしまい、凹凸が十分に解消されにくい。
【0004】
さらには、半導体ウェハは、回路を形成する多結晶シリコン、絶縁材料である酸化ケイ素、トレンチまたはビアの一部ではない二酸化ケイ素表面をエッチング中の損傷から保護するための窒化ケイ素といった異種材料から構成される。このため、多結晶シリコンや酸化ケイ素などの比較的柔らかく研磨剤と反応しやすい材料が、その周囲の窒化ケイ素等に比べて過度に削られるディッシングといった現象が起こり、段差が残ってしまう。
【0005】
これらのことから硬くて化学的に安定な窒化ケイ素などの材料からなるパターンウェハの研磨工程において段差を十分に解消することが求められている。
【0006】
この要求に応じるための技術として、例えば、特開2012−040671号公報には、窒化ケイ素などの化学反応性に乏しい研磨対象物を高速で研磨可能な研磨用組成物を提供することを目的として、組成物に有機酸を固定化したコロイダルシリカ(スルホン酸基(アニオン)変性コロイダルシリカ)を砥粒として含有させ、pHを6以下とする技術が開示されている。
【0007】
ここで一般に、コロイダルシリカ等のシリカゾルは酸性条件下においてシリカ粒子同士が凝集してしまい不安定であるという問題がある。このような安定性の問題を解決するための技術として、特開2010−269985号公報には、pH2以上の酸性においてゼータ電位が−15mV以下であるスルホン酸修飾水性アニオンゾルが開示されている。そして、特開2010−269985号公報には、かようなアニオンゾルの製造方法として、化学的にスルホン酸基に変換できる官能基(例えば、メルカプト基)を有するシランカップリング剤をコロイダルシリカに添加した後、前記官能基をスルホン酸基に変換する技術が開示されている。ここで、特開2010−269985号公報の実施例では、水とメタノールとを分散媒とするシリカゾルを、アルカリ性・常圧条件下で加熱濃縮した後、メルカプト基含有シランカップリング剤(3−メルカプトプロピルトリメトキシシラン)を添加し、沸点で還流して熱熟成を行っている。次いで、メタノールおよびアンモニアを水置換し、pHが8以下になった時点で室温まで冷却し、過酸化水素水を添加、加熱することによりメルカプト基をスルホン酸基に変換して、表面がスルホン酸基で修飾されたアニオンシリカゾルを得ている。
【0008】
さらに、特開2013−41992号公報には、上記特開2010−269985号公報やJ. Ind. Eng. Chem., Vol. 12, No. 6 (2006) 911−917に言及する形で同様のスルホン酸修飾水性アニオンシリカゾルの製造に関する開示がある。ここで、特開2013−41992号公報の実施例では、上記と同様のメルカプト基含有シランカップリング剤の水溶液(酢酸による酸性条件下)に、水を分散媒とするシリカゾルを添加し、室温にて1時間撹拌後、過酸化水素水を添加し、室温にて48時間放置して、スルホン酸修飾水性アニオンシリカゾルを得ている。
【発明の概要】
【0009】
本発明者らは、特開2012−040671号公報に記載の技術を実施するにあたり、特開2010−269985号公報や特開2013−41992号公報に記載の方法によって製造された変性コロイダルシリカを用いることを試みた。その結果、これらの先行技術に記載された技術を用いて製造されたアニオン変性コロイダルシリカを含む研磨用組成物を用いてSiNウェハを研磨すると、テトラエチルオルトシリケート(TEOS)や多結晶シリコン(poly−Si)に対するSiNの研磨レート比が経時的に変動するという問題があることが判明した。
【0010】
そこで本発明は、SiNウェハのように荷電した変性コロイダルシリカが付着しやすい材料を含む研磨対象物を研磨するための研磨用組成物において砥粒として用いられたときに、研磨レートの経時的な安定性を向上させることができる変性コロイダルシリカおよびその製造方法を提供することを目的とする。
【0011】
上記課題を解決すべく、本発明者らは鋭意研究を積み重ねた。その結果、原料コロイダルシリカに含まれる微小粒子の量を低減させたものを用いて変性処理を行い、変性コロイダルシリカを得ることで、上記課題が解決可能な変性コロイダルシリカが得られることが判明した。そして、本発明者らは、上記知見に基づいて、本発明を完成させるに至った。
【0012】
すなわち、本発明の一形態によれば、走査型電子顕微鏡を用いた画像解析によるHeywood径(円相当径)に基づく体積平均粒子径の40%以下の粒径を有する微小粒子の個数分布割合が10%以下である原料コロイダルシリカが変性されてなる、変性コロイダルシリカが提供される。
【0013】
また、本発明の他の形態によれば、有機溶媒濃度が1質量%以上であるコロイダルシリカ中の残留有機溶媒濃度が1質量%未満となるように、コロイダルシリカと共存している有機溶媒をpH7以上の条件下で留去して原料コロイダルシリカを得る有機溶媒留去工程と、前記原料コロイダルシリカを変性して変性コロイダルシリカを得る変性工程とを含む、変性コロイダルシリカの製造方法もまた、提供される。
【0014】
本発明に係る変性コロイダルシリカおよびその製造方法によれば、SiNウェハのように荷電した変性コロイダルシリカが付着しやすい材料を含む研磨対象物を研磨するための研磨用組成物において、上記変性コロイダルシリカを砥粒として用いたときに、研磨レートの経時的な安定性を向上させることが可能となる。
【図面の簡単な説明】
【0015】
図1】実施例1で得られたスルホン酸変性コロイダルシリカを走査型電子顕微鏡(SEM)で観察した写真である(倍率:100000倍)。
図2】実施例1で得られたスルホン酸変性コロイダルシリカを透過型電子顕微鏡(TEM)で観察した写真である(倍率:400000倍)。
図3】比較例1で得られたスルホン酸変性コロイダルシリカを走査型電子顕微鏡(SEM)で観察した写真である(倍率:100000倍)。
図4】比較例1で得られたスルホン酸変性コロイダルシリカを透過型電子顕微鏡(TEM)で観察した写真である(倍率:400000倍)。
図5】比較例2で得られたスルホン酸変性コロイダルシリカを走査型電子顕微鏡(SEM)で観察した写真である(倍率:100000倍)。
図6】比較例2で得られたスルホン酸変性コロイダルシリカを透過型電子顕微鏡(TEM)で観察した写真である(倍率:400000倍)。
【発明を実施するための形態】
【0016】
以下、本発明を実施するための形態について、詳細に説明する。
【0017】
本発明の一形態は、走査型電子顕微鏡を用いた画像解析によるHeywood径(円相当径)に基づく体積平均粒子径の40%以下の粒径を有する微小粒子の個数分布割合が10%以下である原料コロイダルシリカが変性されてなる、変性コロイダルシリカである。なお、本明細書において、「原料コロイダルシリカが変性されてなる」との表現は、原料コロイダルシリカの粒子の表面に変性基が結合した状態を意味するものである。例えば、「原料コロイダルシリカがアニオン変性されてなる」といった場合には、原料コロイダルシリカの粒子の表面にアニオン性基(例えば、スルホン酸基)が結合していることを意味し、「原料コロイダルシリカがカチオン変性されてなる」といった場合には、原料コロイダルシリカの粒子の表面にカチオン性基(例えば、アミノ基または4級カチオン基)が結合していることを意味する。
【0018】
[原料コロイダルシリカ]
原料コロイダルシリカは、例えば、ゾルゲル法によって製造されたものでありうる。ゾルゲル法によって製造された原料コロイダルシリカは、半導体中に拡散性のある金属不純物や塩化物イオン等の腐食性イオンの含有量が少ないため、好ましい。ゾルゲル法による原料コロイダルシリカの製造は、従来公知の手法を用いて行うことができ、具体的には、加水分解可能なケイ素化合物(例えば、アルコキシシランまたはその誘導体)を原料とし、加水分解・縮合反応を行うことにより、原料コロイダルシリカを得ることができる。このケイ素化合物としては、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。また、原料コロイダルシリカは、ゾルゲル法以外の方法によって製造されたものであってもよい。
【0019】
一実施形態において、上記ケイ素化合物は、下記一般式(1)で表されるアルコキシシランまたはその誘導体であることが好ましい。
【0020】
Si(OR) (1)
一般式(1)中、Rはアルキル基であり、好ましくは炭素数1〜8の低級アルキル基であり、より好ましくは炭素数1〜4の低級アルキル基である。ここで、上記Rとしては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基等が例示され、Rがメチル基であるテトラメトキシシラン、Rがエチル基であるテトラエトキシシラン、Rがイソプロピル基であるテトライソプロポキシシランが好ましい。また、アルコキシシランの誘導体としては、アルコキシシランを部分的に加水分解して得られる低縮合物が例示される。本発明では、加水分解速度を制御し易い点、シングルnmの微小シリカ粒子が得られ易い点、未反応物の残留が少ない点でテトラメトキシシランを用いることが好ましい。
【0021】
上記ケイ素化合物は、反応溶媒中で加水分解・縮合されてコロイダルシリカとなる。反応溶媒としては、水または水を含む有機溶媒が用いられうる。有機溶媒としては、メタノール、エタノール、イソプロパノール、n−ブタノール、t−ブタノール、ペンタノール、エチレングリコール、プロピレングリコール、1,4−ブタンジオール等のアルコール類、アセトン、メチルエチルケトン等のケトン類等の親水性有機溶媒が挙げられる。これらの有機溶媒の中でも、特にメタノール、エタノール、イソプロパノール等のアルコール類を使用することが好ましく、反応溶媒の後処理などの観点から、原料のケイ素化合物のアルキル基(R)と同じアルキル基を有するアルコール類(例えば、テトラメトキシシランに対し、メタノール)を使用することがより好ましい。これらの有機溶媒としては、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。有機溶媒の使用量は特に限定されないが、ケイ素化合物1モル当り、5〜50モル程度が好ましい。5モル以上であれば、ケイ素化合物との十分な相溶性が確保され、50モル以下であれば、製造効率の低下が抑制される。有機溶媒に添加される水の量は特に限定されず、ケイ素化合物の加水分解に要する量が存在すればよく、ケイ素化合物1モル当り2〜15モル程度が好ましい。なお、有機溶媒に混合される水の量は、形成されるコロイダルシリカの粒径に大きく影響する。水の添加量を増加させることで、コロイダルシリカの粒径を大きくすることができる。また、水の添加量を減少させることで、コロイダルシリカの粒径を小さくすることができる。よって、水と有機溶媒との混合比率を変化させることによって、製造されるコロイダルシリカの粒径を任意に調整することができる。
【0022】
コロイダルシリカを得るためのケイ素化合物の加水分解縮合反応の反応溶媒には、塩基性触媒を添加して反応溶媒をアルカリ性に調整することが好ましい(Stober法)。これにより反応溶媒は好ましくはpH8〜11、より好ましくはpH8.5〜10.5に調整され、速やかにコロイダルシリカを形成することができる。塩基性触媒としては、不純物の混入を防ぐという観点からは有機アミンやアンモニアが好ましく、特にエチレンジアミン、ジエチレントリアミン、トリエチレンテトラアミン、アンモニア、尿素、エタノールアミン、テトラメチル水酸化アンモニウム等が好ましいものとして挙げられる。
【0023】
反応溶媒中でケイ素化合物を加水分解・縮合させるには、原料であるケイ素化合物を有機溶媒に添加して0〜100℃、好ましくは0〜50℃の温度条件で攪拌すればよい。水を含む有機溶媒中でケイ素化合物を攪拌しながら加水分解・縮合することにより、粒径のそろったコロイダルシリカを得ることができる。
【0024】
上述したように、本形態に係る変性コロイダルシリカもまた、特開2010−269985号公報に記載の技術と同様に、上記のようにしてゾルゲル法により製造された原料コロイダルシリカに対して変性処理を施すことにより得られるが、その際の原料コロイダルシリカとして微小粒子の量が低減されたものを用いる点で、特開2010−269985号公報に記載の技術に対して改良が施されている。具体的に、本形態に係る変性コロイダルシリカは、走査型電子顕微鏡を用いた画像解析によるHeywood径(円相当径)に基づく体積平均粒子径の40%以下の粒径を有する微小粒子(以下、単に「微小粒子」とも称する)の個数分布割合が10%以下である原料コロイダルシリカが変性されてなる点に特徴がある。この個数分布割合は、好ましくは5%以下であり、より好ましくは2%以下であり、さらに好ましくは1%以下であり、いっそう好ましくは0.5%以下であり、特に好ましくは0.3%以下であり、最も好ましくは0.2%以下である。本発明の作用効果を得るという観点からは、微小粒子の個数分布割合は小さいほど好ましいため、個数分布割合の下限値には特に制限はないが、例えば0.001%以上である。なお、この個数分布割合の測定方法は、後述する実施例の記載に従うものとする。
【0025】
原料コロイダルシリカに含まれる微小粒子の個数分布割合を10%以下とするための具体的な手法について特に制限はなく、従来公知の知見が適宜参照されうる。かような手法の一例として、上記の加水分解・縮合反応(ゾルゲル法)により製造されたコロイダルシリカにおける有機溶媒濃度が1質量%以上である場合には、コロイダルシリカ中の残留有機溶媒濃度が1質量%未満となるように、コロイダルシリカと共存している有機溶媒を除去する方法が例示される。ここで、「コロイダルシリカ中の残留有機溶媒濃度が1質量%未満となっているか否か」は、後述する実施例に記載のガスクロマトグラフィーを用いた有機溶媒濃度(実施例ではメタノール濃度)の測定方法において「コロイダルシリカ中に有機溶媒が検出されるか否か」と同義である。つまり、上述した「コロイダルシリカ中の残留有機溶媒濃度が1質量%未満となるように」は「実施例に記載のガスクロマトグラフィーを用いた測定方法によって測定されるコロイダルシリカ中の有機溶媒が検出限界以下となるように」と言い換えることもできる。
【0026】
このようにコロイダルシリカに含まれる有機溶媒の濃度を低下させることで、原料コロイダルシリカに含まれる微小粒子の量を低減させることが可能となる。この際、コロイダルシリカに含まれる有機溶媒の量を低減させるほど、原料コロイダルシリカに含まれる微小粒子の量を低減させることが可能となる。なお、上述したStober法によって得られたコロイダルシリカにおける有機溶媒濃度は通常、1質量%超である。よって、本発明の他の形態によれば、Stober法によって得られたコロイダルシリカのように残留有機溶媒濃度が1質量%以上であるコロイダルシリカ中の残留有機溶媒濃度が1質量%以下となるように、コロイダルシリカと共存している有機溶媒を除去する工程を経て原料コロイダルシリカを得た後、当該原料コロイダルシリカを変性して変性コロイダルシリカを得る、変性コロイダルシリカの製造方法もまた、提供される。
【0027】
コロイダルシリカと共存している有機溶媒を除去するための手法としては、コロイダルシリカの分散液(シリカゾル)を加熱し、有機溶媒を留去する方法が挙げられる。この際、除去される有機溶媒を水に置換することで、コロイダルシリカの分散液の液量を維持することができる。また、有機溶媒を留去する際のコロイダルシリカの分散液のpHについては、pH7以上とすることが好ましい。これにより、有機溶媒の留去と併せて、コロイダルシリカのメイン粒子の表面に微小粒子をオストワルド成長により取り込ませることもでき、微小粒子の量をよりいっそう低減させることが可能となるという利点がある。
【0028】
なお、上記では原料コロイダルシリカに含まれる微小粒子の個数分布割合を10%以下とするための手法として、コロイダルシリカと共存している有機溶媒を除去する方法を例に挙げて詳細に説明したが、これとは異なる手法により原料コロイダルシリカに含まれる微小粒子の個数分布割合を10%以下としてもよい。かような手法としては、例えば、原料にオリゴマーを使う、合成時の組成を最適化する、合成後に高温・加圧処理を行う、合成後に遠心分離を行うなどの手法が挙げられるが、これら以外の手法が用いられてももちろんよい。
【0029】
[変性処理]
上述したように、本形態に係る変性コロイダルシリカは、ゾルゲル法により製造された原料コロイダルシリカに対して変性処理を施すことにより得られるが、変性処理の具体的な形態については特に制限はなく、従来公知のコロイダルシリカの変性処理のうち、コロイダルシリカをアニオン変性またはカチオン変性させることが可能な処理が適宜用いられうる。
【0030】
(アニオン変性コロイダルシリカ)
以下では、変性処理の好ましい一実施形態として、原料コロイダルシリカをスルホン酸基により変性させることでアニオン変性された変性コロイダルシリカを得るための手法の一例を説明する。この手法において、変性工程は、化学的にスルホン酸基に変換できる官能基を有するシランカップリング剤の存在下で前記原料コロイダルシリカを加熱して反応物を得る第1反応工程と、前記反応物を処理することにより前記官能基をスルホン酸基へと変換する第2反応工程とを含む。
【0031】
(第1反応工程)
第1反応工程では、原料コロイダルシリカを、化学的にスルホン酸基に変換できる官能基を有するシランカップリング剤の存在下で加熱する。これにより、反応物(化学的にスルホン酸基に変換できる官能基を有するシランカップリング剤がシリカ粒子の表面に結合したもの)が得られる。
【0032】
ここで、必要に応じて、第1反応工程の前に、上記で得られた原料コロイダルシリカに対して各種の処理工程を施してもよい。かような処理工程としては、例えば、原料コロイダルシリカの粘度を低減させる工程が例示される。原料コロイダルシリカの粘度を低減させる工程は、例えば、原料コロイダルシリカにアルカリ溶液(アンモニア水等の各種塩基の水溶液)または有機溶媒を添加する工程が挙げられる。この際に添加されるアルカリ溶液または有機溶媒の量については特に制限はなく、添加後に得られる原料コロイダルシリカの粘度を考慮して適宜設定すればよい。このように、原料コロイダルシリカの粘度を低下させる工程を実施することで、カップリング剤のコロイダルシリカへの初期分散性の向上やシリカ同士の凝集を抑制できるという利点がある。
【0033】
第1反応工程では、上記のように微小粒子の含有量の少ない原料コロイダルシリカを、化学的にスルホン酸基に変換できる官能基を有するシランカップリング剤の存在下で加熱する。これにより、反応物が得られる。このように、スルホン酸基とは異なる官能基を有するシランカップリング剤と原料コロイダルシリカとを反応させた後に上記官能基をスルホン酸基へと変換させる(後述の第2反応工程)ようにしているのは、一般的にスルホン酸基を置換した形のシランカップリング剤が安定して得られにくいためである。
【0034】
化学的にスルホン酸基に変換できる官能基を有するシランカップリング剤としては、例えば、1)加水分解によりスルホン酸基に変換できるスルホン酸エステル基を有するシランカップリング剤、2)酸化によりスルホン酸基に変換できるメルカプト基および/またはスルフィド基を有するシランカップリング剤が挙げられる。なお、コロイダルシリカ表面のスルホン酸修飾は溶液中で行われるため、修飾効率を高めるためには、後者のメルカプト基および/またはスルフィド基を有するカップリング剤を用いることが好ましい。
【0035】
メルカプト基を有するシランカップリング剤としては、例えば、3−メルカプトプロピルトリメトキシシラン、2−メルカプトプロピルトリエトキシシラン、2−メルカプトエチルトリメトキシシラン、2−メルカプトエチルトリエトキシシラン等が挙げられる。また、スルフィド基を有するカップリング剤としては、例えば、ビス(3−トリエトキシシリルプロピル)ジスルフィド等が挙げられる。
【0036】
また、シランカップリング剤を酸であらかじめ加水分解させておいてから、原料コロイダルシリカへ縮合反応させてもよい。
【0037】
上述したように、原料コロイダルシリカに含まれる微小粒子の個数分布割合を10%以下とするための手法として、コロイダルシリカと共存している有機溶媒を除去する方法を採用した場合、原料コロイダルシリカは有機溶媒を実質的に含んでおらず、原料コロイダルシリカの分散媒は実質的に水からなっている。一方、シランカップリング剤は水に溶解しにくいことから、シランカップリング剤を溶解させる目的で、一定量以上の有機溶媒(親水性溶媒)を用いることが好ましい。かような有機溶媒(親水性溶媒)としては、例えば、メタノール、エタノール、イソプロパノール等の上述した有機溶媒が例示される。なかでも、上述したケイ素化合物の加水分解により生成するアルコールと同種のアルコールを用いることが好ましい。これは、ケイ素化合物の加水分解により生成するアルコールと同種のアルコールを用いることにより、溶媒の回収、再利用を容易化できるためである。なお、このような有機溶媒(親水性溶媒)は、原料コロイダルシリカに対して添加されてもよいし、シランカップリング剤を予め当該有機溶媒(親水性溶媒)と混合して混合液を得ておき、当該混合液を原料コロイダルシリカに添加することとしてもよいが、後者の方法がより好ましい。なお、特開2010−269985号公報には、「カップリング剤の溶解性を考えるとコロイダルシリカに親水性有機溶媒を含むことが好ましい。この点、アルコキシシランを塩基性触媒によりアルコール−水溶媒中で加水分解・縮合するストーバー法によってコロイダルシリカを得た場合にはアルコールが反応液中に含まれるので更に親水性有機溶媒を添加する必要はない。」と記載されている。しかしながら、本発明の好ましい実施形態では、Stober法によって得られる原料コロイダルシリカに含まれている有機溶媒の量をいったん検出限界以下にまで低減させた後、シランカップリング剤を添加するという一見迂遠な構成を採用している。本発明の好ましい実施形態によれば、このように迂遠な構成を採用したとしても、本発明に係る課題を解決することができることが判明したのである。したがって、上述のように従来の技術常識に反する構成を採用しているにもかかわらず当業者が予測できなかったと思われる作用効果を奏することが見出された本発明は、特に特開2010−269985号公報の記載に接した当業者であっても容易に発明をすることができたものではないといえる。
【0038】
なお、第1反応工程において用いられるシランカップリング剤の添加量について特に制限はないが、原料コロイダルシリカに含まれるシリカ粒子100質量%に対して、好ましくは0.5〜10質量%であり、より好ましくは1〜5質量%であり、さらに好ましくは1〜3質量%である。シランカップリング剤の添加量が0.5質量%以上であれば、シリカ粒子の表面を十分にアニオン化させることができ、研磨剤(研磨用組成物における砥粒)として用いられた場合に優れた性能を発揮させることが可能となる。一方、シランカップリング剤の添加量が10質量%以下であれば、得られる反応物(変性コロイダルシリカ)の経時的なゲル化が防止されうる。また、シランカップリング剤を溶解させるのに用いられる有機溶媒(親水性溶媒)の量は、シランカップリング剤の量100質量%に対して、好ましくは500〜10000質量%程度であり、より好ましくは1000〜5000質量%である。
【0039】
シランカップリング剤を添加する際の温度は限定されないが、常温(約20℃)から反応溶媒の沸点までの範囲が好ましい。反応時間も限定されないが、10分〜10時間が好ましく、30分〜5時間がより好ましい。ただし、カップリング剤の加水分解を終了させるという観点から、第1反応工程は、90℃以上の温度条件を30分間以上継続させる条件で実施されることが好ましい。添加時のpHも限定されないが、7以上11以下が好ましい。
【0040】
(第2反応工程)
第2反応工程では、上記第1反応工程で得られた反応物(化学的にスルホン酸基に変換できる官能基を有するシランカップリング剤がシリカ粒子の表面に結合したもの)を処理する。これにより、上記シランカップリング剤の有する「化学的にスルホン酸基に変換できる官能基」をスルホン酸基へと変換する。
【0041】
上記シランカップリング剤の有する「化学的にスルホン酸基に変換できる官能基」をスルホン酸基へと変換するために行う上記「処理」の具体的な形態について特に制限はなく、用いられるシランカップリング剤の構造に応じて適宜選択されうる。例えば、第1反応工程において上記1)加水分解によりスルホン酸基に変換できるスルホン酸エステル基を有するシランカップリング剤を用いた場合には、上記反応物に対して加水分解処理を施すことで、シランカップリング剤の有する官能基(スルホン酸エステル基)を加水分解することができる。これにより、当該スルホン酸エステル基はスルホン酸基へと変換される。
【0042】
また、第1反応工程において上記2)酸化によりスルホン酸基に変換できるメルカプト基および/またはスルフィド基を有するシランカップリング剤を用いた場合には、上記反応物に対して酸化処理を施すことで、シランカップリング剤の有する官能基(メルカプト基および/またはスルフィド基)を酸化することができる。これにより、当該メルカプト基またはスルフィド基はスルホン酸基へと変換される。
【0043】
上記反応物に対して酸化処理を施すには、例えば、上記反応物を酸化剤と反応させればよい。酸化剤としては、例えば、硝酸、過酸化水素、酸素、オゾン、有機過酸(過カルボン酸)、臭素、次亜塩素酸塩、過マンガン酸カリウム、クロム酸等が挙げられる。これらの酸化剤の中でも過酸化水素および有機過酸(過酢酸、過安息香酸類)が比較的取り扱いが容易で酸化収率も良好である点で好ましい。なお、反応で副生する物質を考慮すれば、過酸化水素を用いることが最も好ましい。反応に必要な量を確保し、残留する酸化剤を低減させるという観点から、酸化剤の添加量は、シランカップリング剤の3〜5モル倍が好ましい。酸化剤の添加量をかような範囲内の値とすることで、得られる変性コロイダルシリカ中の残留酸化剤濃度を最小限に抑えることが可能となる。得られる変性コロイダルシリカ中の残留酸化剤濃度の具体的な数値について特に制限はないが、好ましくは1000質量ppm以下であり、より好ましくは700質量ppm以下であり、特に好ましくは500質量ppm以下である。ここで、得られる変性コロイダルシリカ中の残留酸化剤濃度が1000質量ppmを超えると、変性コロイダルシリカ自体や当該変性コロイダルシリカが研磨剤(砥粒)として添加されてなる研磨用組成物が密閉容器中に封入された状態で保管・輸送された際に過酸化水素等の酸化剤が分解して酸素等のガスが発生し、容器の内圧が上昇する可能性がある。一方、上述のように、得られる変性コロイダルシリカ中の残留酸化剤濃度が低減されることで、かような内圧の上昇の虞が低減されるため、好ましい。また、研磨用組成物として用いられた場合に、多量の酸化剤を含有するときに生じうるウェハディッシングといった問題の発生も抑制されうるという利点もある。なお、コロイダルシリカおよびシランカップリング剤については、スルホン酸基に酸化(変換)される官能基以外は酸化反応において安定な構造を有するので、副生成物は存在しない。
【0044】
上記の方法に従って得られた変性コロイダルシリカが水以外の溶媒を含んでいる場合には、当該変性コロイダルシリカの長期保存安定性を高めるために、必要に応じて、反応溶媒を主とする分散媒を水で置換してもよい。なお、この水置換は、シランカップリング剤を添加後、酸化剤を添加する前に行ってもよい。水以外の溶媒を水で置換する方法は特に限定されず、例えば、当該変性コロイダルシリカを加熱しながら水を一定量ずつ滴下する方法が挙げられる。また、当該変性コロイダルシリカを沈殿・分離、遠心分離等により水以外の溶媒と分離した後に、水に再分散させる方法も挙げられる。
【0045】
(カチオン変性コロイダルシリカ)
以上、変性コロイダルシリカがスルホン酸基によってアニオン変性されたものである実施形態を例に挙げて本発明を詳細に説明したが、本発明に係る変性コロイダルシリカは、カチオン変性されたもの(カチオン変性コロイダルシリカ)であってもよい。カチオン変性された変性コロイダルシリカを得るには、上記と同様にして微小粒子の含有量が低減された原料コロイダルシリカに対して、アミノ基または4級カチオン基を有するシランカップリング剤を、上記第1反応工程と同様の条件で作用させればよい。
【0046】
この際に用いられるシランカップリング剤としては、例えば、N−(β−アミノエチル)−γ−アミノプロピルメチルジメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−トリエトキシシリル−N−(α,γ−ジメチル−ブチリデン)プロピルアミン、N−フェニル−γ−アミノプロピルトリメトキシシラン、N−(ビニルベンジル)−β−アミノエチル−γ−アミノプロピルトリエトキシシランの塩酸塩、オクタデシルジメチル−(γ−トリメトキシシリルプロピル)−アンモニウムクロライド等が挙げられる。なかでも、コロイダルシリカとの反応性が良好であることから、N−(β−アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシランが好ましく用いられる。なお、本発明において、シランカップリング剤は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。
【0047】
本発明に係る変性コロイダルシリカは、表面が変性(アニオン変性またはカチオン変性)されたシリカ粒子からなる微小粒子の含有量が少ない。これを定量的に表現すると、本発明によれば、変性処理の種別に応じて、以下の2つの形態がさらに提供される。
・アニオン変性されてなる変性コロイダルシリカであって、pH2の条件下でSiNウェハに浸漬処理を施し、次いで純水で洗浄したときに、前記SiNウェハの表面に付着する体積平均粒子径の40%未満の粒径を有する粒子の個数が、同様に付着する体積平均粒子径の40%以上の粒径を有する粒子の個数に対して50%以下である、変性コロイダルシリカ;
・カチオン変性されてなる変性コロイダルシリカであって、pH4の条件下でアルミノ珪酸塩ガラスウェハに浸漬処理を施し、次いで純水で洗浄したときに、前記アルミノ珪酸塩ガラスウェハの表面に付着する体積平均粒子径の40%未満の粒径を有する粒子の個数が、同様に付着する体積平均粒子径の40%以上の粒径を有する粒子の個数に対して50%以下である、変性コロイダルシリカ。
【0048】
上記割合は、好ましくは30%以下であり、より好ましくは10%以下であり、さらに好ましくは5%以下である。一方、この割合の下限値について特に制限はないが、例えば0.1%以上である。なお、この割合の測定方法は、以下の通りである(アニオン変性された変性コロイダルシリカについては、実施例の欄にも「条件8」として記載した)。
【0049】
(アニオン変性コロイダルシリカについてのSiNウェハの付着性観察試験)
装置:走査型電子顕微鏡 SU8000(株式会社日立ハイテクノロジーズ製)
手順:得られたアニオン変性コロイダルシリカをシリカ濃度14質量%に希釈してpH調整剤でpH2とする。SiNウェハを10秒間浸漬させたのち、純水中で30秒間揺浴させる。その後Nガスで完全に乾燥させたのち、走査型電子顕微鏡SU8000を用いて、倍率100000倍にて10視野観察を行う。
【0050】
(カチオン変性コロイダルシリカについてのアルミノ珪酸塩ガラスウェハの付着性観察試験)
装置:走査型電子顕微鏡 SU8000(株式会社日立ハイテクノロジーズ製)
手順:得られたカチオン変性コロイダルシリカをシリカ濃度1質量%に希釈してpH調整剤でpH4とする。アルミノ珪酸塩ガラスウェハを10秒間浸漬させたのち、純水中で30秒間揺浴させる。その後Nガスで完全に乾燥させたのち、走査型電子顕微鏡SU8000を用いて、倍率100000倍にて10視野観察を行う。
【0051】
なお、上述した付着性観察試験において、付着粒子の間隔はシリカ粒子の粒子径により異なることから、当該試験を実施する際には、観察を行いやすいようにコロイダルシリカ中のシリカ濃度を任意に変更することができ、このように変更しても測定結果に影響はない。
【0052】
さらに、本発明の製造方法により得られる変性コロイダルシリカは、金属不純物の含有量が低減されているという点でも好ましいものである。ここで、金属不純物としては、例えば、ナトリウム、カリウム等のアルカリ金属、カルシウム、マグネシウム等のアルカリ土類金属、アルミニウム、鉄、チタン、ニッケル、クロム、銅、亜鉛、鉛、銀、マンガン、コバルト等の重金属および軽金属などが挙げられる。本発明の好ましい実施形態に係る変性コロイダルシリカでは、金属不純物の合計含有量が、1質量ppm以下とされる。この合計含有量は、好ましくは0.5質量ppm以下である。なお、この金属不純物の合計含有量の測定方法は、後述する実施例の記載に従うものとする。また、上記変性コロイダルシリカは、腐食性を有する塩素、臭素等のハロゲン元素をも含有しないため、好ましい。
【0053】
本発明に係る変性コロイダルシリカに含まれるシリカ粒子の粒子径について特に制限はなく、例えば1000nm以下であり、好ましくは5〜500nmであり、より好ましくは10〜300nmである。なお、シリカ粒子の粒子径は、後述する実施例に記載の手法により測定されるHeywood径(円相当径)に基づく体積平均粒子径を意味するものとする。
【0054】
本発明に係る変性コロイダルシリカは、幅広いpH領域において長期間の分散安定性に優れる。シリカゾルの安定性は、シリカゾルのゼータ電位を測定することで評価することができる。ゼータ電位とは、互いに接している固体と液体とが相対運動を行なったときの両者の界面に生じる電位差のことであり、ゼータ電位の絶対値が増加すれば、粒子間の反発が強く粒子の安定性は高くなり、ゼータ電位の絶対値がゼロに近づくほど、粒子は凝集し易くなる。
【0055】
特に、本発明に係る変性コロイダルシリカのうち、アニオン変性された変性コロイダルシリカは酸性領域において高い安定性を有する。アニオン変性された変性コロイダルシリカを得る際には変性剤としてアニオン性基を有するカップリング剤を用いるため、分散媒がpH2以上の酸性のときのゼータ電位は負電位(−15mV以下)であり、分散媒が酸性であっても高い分散安定性を有する。このようにゼータ電位の絶対値が大きいため高い分散安定性を有し、これに伴い変性コロイダルシリカの動粘度も小さい。
【0056】
本発明に係る変性コロイダルシリカは、研磨用組成物に含まれる研磨剤(砥粒)、紙のコーティング剤などの様々な用途に使用することができ、広いpH範囲で長期間安定分散可能である。上述したように、ウェハに付着する微小粒子の割合が低く抑えられている本発明に係る変性コロイダルシリカは、特に半導体ウェハのCMP研磨用の研磨剤(砥粒)として用いられると、研磨レートの経時的な変動が最小限に抑えられる(経時的な安定性に優れる)ことから、当該用途にきわめて好適に用いられ、微細化に伴う高度性能要求に対しても十分に対応することが可能となる。
【実施例】
【0057】
本発明を、以下の実施例および比較例を用いてさらに詳細に説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。
【0058】
[実施例1]
フラスコ内でメタノール4080g、水610g、29質量%アンモニア水溶液168gを混合して液温を20℃に保ち、そこにメタノール135gとテトラメトキシシラン(TMOS)508gとの混合液を滴下時間25分で滴下した。その後、pH7以上の条件下で熱濃縮水置換を行い、19.5質量%のシリカゾルを1000g得た。このときのメタノール濃度は1質量%未満(検出限界以下)であることを、ガスクロマトグラフィー(下記条件1)にて確認した。
【0059】
(条件1:ガスクロマトグラフィーを用いたメタノール濃度の測定条件)
装置:ガスクロマトグラフィー GC−14B(株式会社島津製作所製)
測定:10μLシリンジを用いてサンプルを4μL抜取り、本装置に注入する。測定で得られた水分量とメタノール量とからメタノール濃度を算出する。
【0060】
一方、上記で得られたシリカゾルを走査型電子顕微鏡(SEM)(下記条件2)で観察し(図1)、SEM写真に基づき画像解析ソフト(下記条件3)を用いて粒度分布の解析を行ったところ、SEM画像解析体積平均粒子径の40%以下のサイズの微小粒子個数分布割合は1%未満であった。また、シリカ粒子の表面状態を透過型電子顕微鏡(TEM)(下記条件4)で観察したところ、シリカ粒子の表面は滑らかな状態を示していた(図2)。
【0061】
(条件2:SEM観察の条件)
装置:走査型電子顕微鏡 S4700(株式会社日立ハイテクノロジーズ製)
手順:シリカゾルを有機溶媒中で分散させ、試料台上で乾固させたものを本体に設置し、本装置で12kVにて電子線照射を行い、倍率100000倍にて10視野を観察;
(条件3:SEM写真に基づく画像解析の条件)
装置:画像解析ソフト MacView Ver.4(株式会社マウンテック製)
手順:撮影されたSEM写真を用いて、本装置にて粒子数500個をカウント。その後、Heywood径(円相当径)に基づく体積平均粒子径を算出し、個数割合での粒度分布を算出した;
(条件4:TEM観察の条件)
装置:透過型電子顕微鏡 HD−2700(株式会社日立ハイテクノロジーズ製)
手順:シリカゾルを有機溶媒中で分散させ、専用Cuメッシュ表面上に滴下したのち乾固させ、本装置で200kVにて電子線照射を行い、倍率400000倍にて10視野観察した。
【0062】
続いて、上記で得られたシリカゾル1000gに29質量%アンモニア水1.7gを投入して粘度を低下させ、別途メタノール22.5gと混合した3−メルカプトプロピルトリメトキシシラン(製品名:KBM−803、信越化学工業株式会社製)2.5gを流速5mL/minで滴下してその後加熱し、沸騰後6時間水置換を行った。このときのメタノール濃度は検出外の数値となっていることを上記と同様の手法(ガスクロマトグラフィー法)により確認した。
【0063】
次いで、反応液を一旦25℃まで冷却後、31質量%過酸化水素水4.2gを投入して再び沸騰させた。沸騰後4時間水置換を行った後、室温まで冷却して、本実施例のスルホン酸(アニオン)変性コロイダルシリカを得た。
【0064】
このようにして得られた変性コロイダルシリカ中の13種の金属元素不純物量を誘導結合プラズマ(ICP)発光分析装置による金属不純物濃度測定(下記条件5)により行い、併せて、得られた変性コロイダルシリカ中の上澄みSi量を誘導結合プラズマ(ICP)発光分析装置による上澄みSi濃度測定(下記条件6)により行った。なお、上澄みSi濃度は、変性コロイダルシリカを遠心分離した上澄み液を誘導結合プラズマ(ICP)発光分析装置で測定することにより得られる値であり、この値が経時的に変化するということは、微小粒子量が凝集や大粒子への取り込みが起きて物性が変化したことを意味する。
【0065】
さらに、300mmCMP片面研磨装置(株式会社荏原製作所製)にてSiN研磨速度の試験を行った(下記条件7)。
【0066】
また、SiNウェハへの付着性試験も行い、付着させたウェハを走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製)を用いて観察した(下記条件8)。そして、SEM写真からの小粒子の個数割合の解析を行った(上記条件3)。
【0067】
なお、走査型電子顕微鏡(SEM)でのSEM写真からの粒度分布解析、並びに透過型電子顕微鏡(TEM)での高倍率での表面形状観察により、完成品の物性面の検証を行った。TEMでの表面形状観察の結果から、第1および第2反応工程の実施によってもシリカ粒子の表面性状に変化は見られなかった。
【0068】
(条件5:ICP発光分析装置による金属不純物濃度測定の条件)
測定装置:
Ni,Cu:Agilent 7500cs ICP−MS(アジレント・テクノロジー株式会社製)
Ni,Cu以外:ICPS−8100(株式会社島津製作所製)
手順:試料10mlを採取し、硝酸3ml、フッ化水素酸10mlを加え、蒸発乾固させる。乾固後、硝酸0.5ml、超純水約20mlを加え蒸気がでるまで加熱した。全量を回収し、超純水で50gに合わせ、上記装置それぞれを用いて測定を行った。
【0069】
(条件6:ICP発光分析装置による上澄みSi濃度測定の条件)
遠心装置:高機能高速冷却遠心分離機 Avanti HP−30I(ベックマン・コールター社製)
ICP測定装置:ICP−AES SPS3510(株式会社日立ハイテクサイエンス製)
手順:専用樹脂製チューブに変性コロイダルシリカを入れ、26000rpmにて2時間遠心分離を行う。続いて、ICP−AESにて0、25、50、75ppmのSi標準試料にて検量線を引き、上記遠心分離を行った上澄み液を1g採取し、超純水で20倍希釈した後、本装置で測定を行う;
(条件7:300mmCMP片面研磨装置によるSiN研磨速度の試験条件)
装置:300mmCMP片面研磨装置(株式会社荏原製作所製)
研磨パッド:発泡ポリウレタン
研磨ウェハ:300mmSiNベアウェハ
回転数:60rpm
圧力:70hPa
スラリー流速:300mL/min
研磨時間:60Sec
研磨速度[Å/min]=1分間研磨した時の膜厚の変化量
光干渉式膜厚測定装置を用いて測定される研磨前後の各ウェハ厚み差を研磨時間で除することにより算出した。
(条件8:SiNウェハの付着性観察試験)
装置:走査型電子顕微鏡 SU8000(株式会社日立ハイテクノロジーズ製)
手順:得られた変性コロイダルシリカをシリカ濃度14質量%に希釈してpH調整剤でpH2とする。SiNウェハを10秒間浸漬させたのち、純水中で30秒間揺浴させる。その後N2ガスで完全に乾燥させたのち、走査型電子顕微鏡SU8000を用いて、倍率100000倍にて10視野観察を行った。
【0070】
[比較例1:特開2010−269985号公報の実施例1に相当]
フラスコ内の純水551.5g、26質量%アンモニア水550.2g、メタノール9047gの混合液に、テトラメトキシシラン(TMOS)1065.5gとメタノール289.1gとの混合液を、液温を35℃に保ちつつ55分かけて滴下し、水およびメタノールを分散媒とするシリカゾルを得た。
【0071】
上記で得られたシリカゾルを常圧下で3500mLまで加熱濃縮した。この混合液のメタノール濃度を上記と同様に測定したところ、71質量%であった。また、上記で得られたシリカゾルを上記と同様に走査型電子顕微鏡(SEM)で観察し(図3)、SEM写真に基づき画像解析ソフトを用いて粒度分布の解析を行ったところ、SEM画像解析体積平均粒子径の40%以下のサイズの微小粒子個数分布割合は47.6%であった。また、上記と同様にしてシリカ粒子の表面状態を透過型電子顕微鏡(TEM)で観察したところ、シリカ粒子の表面には凹凸状態の存在が確認された(図4)。
【0072】
続いて、上記で得られたシリカゾル3500mLに3−メルカプトプロピルトリメトキシシラン(製品名:KBM−803、信越化学工業株式会社製)24.2gを加え、沸点で還流して熱熟成を行った。その後、容量を一定に保つために純水を追加しながらメタノールおよびアンモニアを水置換し、pHが8以下になった時点で一旦シリカゾルの液温を室温に下げた。次いで、35質量%過酸化水素水を37.5g添加して再び加熱し、8時間反応を続け、室温まで冷却後、本比較例の変性コロイダルシリカを得た。
【0073】
このようにして得られた変性コロイダルシリカについて、上記と同様に、13種の金属元素不純物量を誘導結合プラズマ(ICP)発光分析装置による金属不純物濃度測定により行い、併せて、得られた変性コロイダルシリカ中の上澄みSi量を誘導結合プラズマ(ICP)発光分析装置による上澄みSi濃度測定により行った。
【0074】
さらに、上記と同様にして300mmCMP片面研磨装置(株式会社荏原製作所製)にてSiN研磨速度の試験を行った。
【0075】
続いて、SiNウェハへの付着性試験も行い、付着させたウェハを走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製)にて観察を行った。そして、SEM写真からの小粒子の個数割合の解析を行った。
【0076】
なお、上記と同様にして、走査型電子顕微鏡(SEM)でのSEM写真からの粒度分布解析、並びに透過型電子顕微鏡(TEM)での表面観察により、完成品の物性面の検証を行った。TEMでの表面観察の結果から、第1および第2反応工程の実施によってもシリカ粒子の表面性状に変化は見られなかった。
【0077】
[比較例2]
純水133g、29質量%アンモニア水64.8g、メタノール1223gの混合液に、テトラメトキシシラン(TMOS)1015gとメタノール76gとの混合液および純水239gを、液温を35℃に保ちつつ150分かけて同時滴下し、水およびメタノールを分散媒とするシリカゾルを得た。この混合液のメタノール濃度を上記と同様に測定したところ、65質量%であった。また、上記で得られたシリカゾルを走査型電子顕微鏡(SEM)で観察し(図5)、SEM写真に基づき画像解析ソフトを用いて粒度分布の解析を行ったところ、SEM画像解析体積平均粒子径の40%以下のサイズの微小粒子個数分布割合は83.9%であった。また、上記と同様にしてシリカ粒子の表面状態を透過型電子顕微鏡(TEM)で観察したところ、シリカ粒子の表面には凹凸状態の存在が確認された(図6)。
【0078】
続いて、上記で得られたシリカゾル(19.5質量%換算で約2000g)に、メタノール45.0gと混合した3−メルカプトプロピルトリメトキシシラン(製品名:KBM−803、信越化学工業株式会社製)5.0gを流速5mL/minで滴下してその後加熱し、容量を一定に保つために純水を追加しながらメタノールおよびアンモニアを水置換し、pHが8以下になった時点で一旦シリカゾルの液温を室温に下げた。室温まで冷却した後、31質量%過酸化水素水を8.4g投入して再び沸騰させた。沸騰後、4時間水置換を行い、室温まで冷却して、本比較例の変性コロイダルシリカを得た。
【0079】
このようにして得られた変性コロイダルシリカについて、上記と同様にして、13種の金属元素不純物量を誘導結合プラズマ(ICP)発光分析装置による金属不純物濃度測定により行い、併せて、得られた変性コロイダルシリカ中の上澄みSi量を誘導結合プラズマ(ICP)発光分析装置による上澄みSi濃度測定により行った。
【0080】
さらに、上記と同様にして300mmCMP片面研磨装置(株式会社荏原製作所製)にてSiN研磨速度の試験を行った。
【0081】
続いて、SiNウェハへの付着性試験も行い、付着させたウェハを走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製)にて観察を行った。そして、SEM写真からの小粒子の個数割合の解析を行った。
【0082】
なお、上記と同様にして、走査型電子顕微鏡(SEM)でのSEM写真からの粒度分布解析、並びに透過型電子顕微鏡(TEM)での表面観察により、完成品の物性面の検証を行った。TEMでの表面観察の結果から、第1および第2反応工程の実施によってもシリカ粒子の表面性状に変化は見られなかった。
【0083】
【表1】
【0084】
表1に示す結果から、本発明に係る製造方法によって製造された実施例1の変性コロイダルシリカは、滑らかなシリカ粒子の表面形状を示し、また、SiNウェハに付着する微小粒子の量も大幅に低減されていた。さらに、得られた変性コロイダルシリカ中に含まれる上澄みSi量(微小粒子の量に依存する)も低減されており、さらにこの上澄みSi量は経時的にも変化しなかった。その結果、SiN研磨レート比も経時的に変化せず、きわめて経時的な安定性に優れる変性コロイダルシリカであることが確認された。
【0085】
一方、比較例1〜2の製造方法によって製造された変性コロイダルシリカは、シリカ粒子の表面に凹凸を有しており、SiNウェハに付着する微小粒子の量も多量であった。そして、得られた変性コロイダルシリカ中に含まれる上澄みSi量も多く、しかもこの上澄みSi量は経時的に変化した。その結果、SiN研磨レート比も経時的に大きく変動してしまい、経時的な安定性に劣るものであることが確認された。
【0086】
なお、上述した金属不純物量の測定結果を、下記の表2に示す。
【0087】
【表2】
【0088】
表2に示す結果から、本発明に係る変性コロイダルシリカは、金属不純物の含有量もきわめて小さいものであることがわかる。
【0089】
本出願は、2015年1月19日に出願された日本特許出願番号2015−008049号に基づいており、その開示内容は、参照により全体として組み入れられている。
図1
図2
図3
図4
図5
図6
【国際調査報告】