特許第6388344号(P6388344)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本電信電話株式会社の特許一覧 ▶ 国立大学法人北海道大学の特許一覧

<>
  • 特許6388344-無線通信システム 図000006
  • 特許6388344-無線通信システム 図000007
  • 特許6388344-無線通信システム 図000008
  • 特許6388344-無線通信システム 図000009
  • 特許6388344-無線通信システム 図000010
  • 特許6388344-無線通信システム 図000011
  • 特許6388344-無線通信システム 図000012
  • 特許6388344-無線通信システム 図000013
  • 特許6388344-無線通信システム 図000014
  • 特許6388344-無線通信システム 図000015
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6388344
(24)【登録日】2018年8月24日
(45)【発行日】2018年9月12日
(54)【発明の名称】無線通信システム
(51)【国際特許分類】
   H04J 99/00 20090101AFI20180903BHJP
   H04W 16/28 20090101ALI20180903BHJP
   H04B 7/0413 20170101ALI20180903BHJP
【FI】
   H04J99/00
   H04W16/28 130
   H04B7/0413
【請求項の数】6
【全頁数】20
(21)【出願番号】特願2015-174948(P2015-174948)
(22)【出願日】2015年9月4日
(65)【公開番号】特開2017-50823(P2017-50823A)
(43)【公開日】2017年3月9日
【審査請求日】2017年6月13日
(73)【特許権者】
【識別番号】000004226
【氏名又は名称】日本電信電話株式会社
(73)【特許権者】
【識別番号】504173471
【氏名又は名称】国立大学法人北海道大学
(74)【代理人】
【識別番号】110001634
【氏名又は名称】特許業務法人 志賀国際特許事務所
(72)【発明者】
【氏名】平賀 健
(72)【発明者】
【氏名】関 智弘
(72)【発明者】
【氏名】野島 俊雄
(72)【発明者】
【氏名】日景 隆
【審査官】 福田 正悟
(56)【参考文献】
【文献】 特開2009−165196(JP,A)
【文献】 特開2013−055604(JP,A)
【文献】 特開2014−131181(JP,A)
【文献】 特開2006−067195(JP,A)
【文献】 特開2014−241510(JP,A)
【文献】 国際公開第2014/085710(WO,A1)
【文献】 特表2009−510918(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H04J 99/00
H04B 7/0413
H04W 16/28
(57)【特許請求の範囲】
【請求項1】
複数のアンテナ素子を有する無線送信装置及び複数のアンテナ素子を有する無線受信装置を備える無線通信システムであって、
前記無線送信装置
自装置が有する前記複数のアンテナ素子を通じて送信する複数の無線周波数信号を前記無線受信装置の前記複数のアンテナ素子が受信する際に、受信する前記複数の無線周波数信号のいくつかが異なる位相となるように前記複数の無線周波数信号に位相差を与える位相調整部を備え
前記複数の無線周波数信号に与える前記位相差の移相量は、前記無線送信装置と前記無線受信装置との間の電波伝搬路の特性を示す伝送路応答行列に前記位相差を与えた際に、受信する前記複数の無線周波数信号のいくつかを異なる位相とする最適化問題を解くことにより算出され、算出される前記移相量が前記位相調整部に設定される、無線通信システム。
【請求項2】
前記受信する前記複数の無線周波数信号のいくつかを異なる位相とする最適化問題を、同一周波数、同一位相、及び同一の最大振幅値を有する正弦波を前記位相調整部に供給する信号として前記伝送路応答行列に前記位相差を与え、前記無線受信装置の前記複数のアンテナ素子で受信する前記正弦波が重ね合わせられた信号について、前記信号の振幅値の和を最小にする、又は、前記信号の振幅値の最大値を最小にする最適化問題とし、前記最適化問題を解くことにより前記移相量が算出され、算出される前記移相量が前記位相調整部に設定される、請求項に記載の無線通信システム。
【請求項3】
前記無線送信装置と前記無線受信装置との間の電波伝搬路が変化した場合に、又は、不定期的もしくは定期的に、前記伝送路応答行列を算出し、算出した前記伝送路応答行列に基づいて前記移相量を算出し、算出した前記移相量を前記位相調整部に設定する移相量算出部をさらに備える、請求項又はに記載の無線通信システム。
【請求項4】
前記無線受信装置は、
トレーニング信号を送信するトレーニング信号送信部を備え、
前記無線送信装置の移相量算出部は、
前記トレーニング信号を受信し、受信した前記トレーニング信号に基づいて前記伝送路応答行列を推定し、推定した前記伝送路応答行列に基づいて、前記移相量を算出して前記位相調整部に当該移相量を設定する、請求項に記載の無線通信システム。
【請求項5】
前記無線送信装置と前記無線受信装置との間の電波伝搬路は、見通し伝搬路であり、
前記無線受信装置は、
自装置の位置の測定に用いられる位置表示部をさらに備え、
前記無線送信装置は、
前記位置表示部を利用して自装置と前記無線受信装置との位置関係を測定する位置関係測定部をさらに備え、
前記無線送信装置の移相量算出部は、
前記位置関係測定部が測定する前記位置関係と、自装置の前記複数のアンテナ素子の配置に関する情報と、前記無線受信装置の前記複数のアンテナ素子の配置に関する情報と、に基づいて、前記伝送路応答行列を推定し、推定した前記伝送路応答行列に基づいて、前記移相量を算出して前記位相調整部に当該移相量を設定する、請求項に記載の無線通信システム。
【請求項6】
複数のアンテナ素子を有する無線送信装置及び複数のアンテナ素子を有する無線受信装置を備える無線通信システムであって、
前記無線送信装置は、
自装置が有する前記複数のアンテナ素子を通じて送信する複数の無線周波数信号を前記無線受信装置の前記複数のアンテナ素子が受信する際に、受信する前記複数の無線周波数信号のいくつかが異なる位相となるように前記複数の無線周波数信号に位相差を与える位相調整部を備え、
前記無線受信装置は、
自装置が有する前記複数のアンテナ素子が受信する前記無線周波数信号の振幅値を測定し、測定した前記振幅値の情報を前記無線送信装置に送信する受信レベルフィードバック部を備え、
前記無線送信装置は、
自装置が有する前記複数のアンテナ素子の各々を通じて同一周波数、同一位相、及び同一の最大振幅値を有する正弦波を送信するピーク振幅検出トレーニング信号送信部と、
前記受信レベルフィードバック部から受信する前記振幅値に基づいて、前記複数の無線周波数信号に与える前記位相差の移相量が適切であるか否かを判定し、適切でないと判定した場合、前記移相量を変更し、変更した前記移相量を前記位相調整部に設定する移相量算出部と、をさらに備える無線通信システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、無線通信システムに関する。
【背景技術】
【0002】
図9は、ブランチ数がM個(すなわち、空間多重化数がM)のMIMO(Multiple-Input and Multiple-Output)無線伝送を行う無線通信システム100を示す。無線通信システム100は、無線送信装置50及び無線受信装置60を備える。無線送信装置50は、複数のアンテナ素子Tx1〜TxM(Mは2以上の整数)を備える。また、無線受信装置60は、複数のアンテナ素子Rx1〜RxMを備える。無線受信装置60のアンテナ素子Rxiには、無線送信装置50の全てのアンテナ素子Tx1〜TxMから送信される無線周波数信号(以下、「RF信号」という。)1〜Mが到達する。このとき、重ね合わせの原理により、一対の送信側アンテナ素子と受信側アンテナ素子の間で送信されるRF信号の何倍もの大きさの振幅を有するRF信号がアンテナ素子Rxiにおいて受信されることになる。
【0003】
MIMO無線伝送の伝送路応答行列の偏角、すなわち送信側のアンテナ素子Tx1〜TxMと受信側のアンテナ素子Rx1〜RxMの各々を結ぶ電波伝搬経路の電気長に起因する位相回転量の関係により、受信側のアンテナ素子Rxiに到達するM個のRF信号列の位相が一致すると重ね合わせにより振幅の最大値が極めて大きくなる。仮に、伝搬損失がなければ、最大振幅はブランチ数をMとした場合、M倍になり、RF信号のPAPR(Peak to Average Power Ratio)が大幅に増大することになる。
【0004】
RF信号の空間伝搬路が見通し伝搬路となっている近距離MIMO無線伝送においては、各送受信アンテナ素子間を結ぶ電波伝搬経路での伝搬損失の差が非常に小さい。そのため、無線受信装置60の各アンテナ素子Rx1〜RxMに到達するRF信号の振幅は、ブランチ数がM個の場合、上記の原理にしたがって約M倍となり、無線受信装置60に要求されるダイナミックレンジが非常に大きくなる。例えば、アナログ−ディジタル変換器(ADC: Analog-Digital Converter)等に要求されるダイナミックレンジが増大する。また、最大振幅の増大は、受信用の低雑音増幅器(LNA:Low Noise Amplifier)の飽和による信号歪みやLNAの破損などを引き起こす可能性もある。さらに、送信ビームフォーミングを行う場合、出力最終段の電力増幅器における所要飽和電力の増大を招き、無線送信装置50のRF回路における消費電力を増大させることにもなる。
【0005】
図10は、近距離MIMO無線伝送において、受信信号の振幅がどれぐらい増大するかを試算した結果をプロットしたグラフである。図10では、簡易的に試算するために送信信号として2値矩形波を想定している。そして、図10では、無線送信装置50から、空間多重化して複数の送信信号(以下、「ストリーム」という。)を無線受信装置60に送信し、無線受信装置60のアンテナ素子Rx1〜RxMにおいて受信するRF信号の振幅の時間確率を試算している。図10では、ブランチ数が16の場合とブランチ数が25の場合の試算結果を示している。図10に示すように、出現確率98%以上のシンボルにおいて、16ブランチの場合、最大振幅が1ストリームの約8倍となり、25ブランチの場合、1ストリームの約16倍となっている。すなわち、出現確率で98%以上のシンボルを正確にAD変換するためには、16ブランチ(16多重)の場合、更に3ビットを追加する必要がある。また、25ブランチ(25多重)の場合、更に4ビットを追加する必要がある。同様に、4多重の場合は2ビット、8多重の場合は3ビットを更に追加する必要がある。
【先行技術文献】
【非特許文献】
【0006】
【非特許文献1】堅岡、他5名、「近距離MIMO伝送における簡易受信復号法の提案」、電子情報通信学会技術研究報告.A・P、アンテナ・伝播 111(376)、2012年1月11日、p. 153-158
【発明の概要】
【発明が解決しようとする課題】
【0007】
上記のような理由から、最大振幅の増大を防ぐことは、近距離MIMO無線伝送を実施する無線通信システムにおける1つの課題となっている。その解決方法として、例えば、非特許文献1に示すような、ダイナミックレンジの制約がない受動回路のみで空間多重化された信号を分離する簡易復号方式がある。
【0008】
しかしながら、非特許文献1に示す方式では、送信する信号の振幅自体には手を加えることなく、受信側に新たに加えたアナログウエイト回路によって上記の課題を解決しようとしていることから、電波伝搬路環境の変動がない場合のみ適用可能であり、適用範囲が限られてしまうという問題がある。
【0009】
本発明は、上記問題を解決すべくなされたもので、その目的は、MIMO無線伝送において、無線受信装置の受信処理に新たな構成を加えることなく、無線受信装置が受信する信号のピーク電力を低減することができる技術の提供を目的としている。
【課題を解決するための手段】
【0010】
本発明の一態様は、複数のアンテナ素子を有する無線送信装置及び複数のアンテナ素子を有する無線受信装置を備える無線通信システムであって、前記無線送信装置が、自装置が有する前記複数のアンテナ素子を通じて送信する複数の無線周波数信号を前記無線受信装置の前記複数のアンテナ素子が受信する際に、受信する前記複数の無線周波数信号のいくつかが異なる位相となるように前記複数の無線周波数信号に位相差を与える位相調整部を備える無線通信システムである。
【0011】
本発明の一態様は、上記の無線通信システムであって、前記複数の無線周波数信号に与える前記位相差の移相量は、前記無線送信装置と前記無線受信装置との間の電波伝搬路の特性を示す伝送路応答行列に前記位相差を与えた際に、受信する前記複数の無線周波数信号のいくつかを異なる位相とする最適化問題を解くことにより算出され、算出される前記移相量が前記位相調整部に設定される。
【0012】
本発明の一態様は、上記の無線通信システムであって、前記受信する前記複数の無線周波数信号のいくつかを異なる位相とする最適化問題を、同一周波数、同一位相、及び同一の最大振幅値を有する正弦波を前記位相調整部に供給する信号として前記伝送路応答行列に前記位相差を与え、前記無線受信装置の前記複数のアンテナ素子で受信する前記正弦波が重ね合わせられた信号について、前記信号の振幅値の和を最小にする、又は、前記信号の振幅値の最大値を最小にする最適化問題とし、前記最適化問題を解くことにより前記移相量が算出され、算出される前記移相量が前記位相調整部に設定される。
【0013】
本発明の一態様は、上記の無線通信システムであって、前記無線送信装置と前記無線受信装置との間の電波伝搬路が変化した場合に、又は、不定期的もしくは定期的に、前記伝送路応答行列を算出し、算出した前記伝送路応答行列に基づいて前記移相量を算出し、算出した前記移相量を前記位相調整部に設定する移相量算出部をさらに備える。
【0014】
本発明の一態様は、上記の無線通信システムであって、前記無線受信装置は、トレーニング信号を送信するトレーニング信号送信部を備え、前記無線送信装置の移相量算出部は、前記トレーニング信号を受信し、受信した前記トレーニング信号に基づいて前記伝送路応答行列を推定し、推定した前記伝送路応答行列に基づいて、前記移相量を算出して前記位相調整部に当該移相量を設定する。
【0015】
本発明の一態様は、上記の無線通信システムであって、前記無線送信装置と前記無線受信装置との間の電波伝搬路は、見通し伝搬路であり、前記無線受信装置は、自装置の位置の測定に用いられる位置表示部をさらに備え、前記無線送信装置は、前記位置表示部を利用して自装置と前記無線受信装置との位置関係を測定する位置関係測定部をさらに備え、前記無線送信装置の移相量算出部は、前記位置関係測定部が測定する前記位置関係と、自装置の前記複数のアンテナ素子の配置に関する情報と、前記無線受信装置の前記複数のアンテナ素子の配置に関する情報と、に基づいて、前記伝送路応答行列を推定し、推定した前記伝送路応答行列に基づいて、前記移相量を算出して前記位相調整部に前記移相量を設定する。
【0016】
本発明の一態様は、上記の無線通信システムであって、前記無線受信装置は、前記複数のアンテナ素子が受信する前記無線周波数信号の振幅値を測定し、測定した前記振幅値の情報を前記無線送信装置に送信する受信レベルフィードバック部を備え、前記無線送信装置は、前記複数のアンテナ素子の各々を通じて同一周波数、同一位相、及び同一の最大振幅値を有する正弦波を送信するピーク振幅検出トレーニング信号送信部と、前記受信レベルフィードバック部から受信する前記振幅値に基づいて、前記移相量が適切であるか否かを判定し、適切でないと判定した場合、前記移相量を変更し、変更した前記移相量を前記位相調整部に設定する移相量算出部と、をさらに備える。
【発明の効果】
【0017】
この発明によれば、MIMO無線伝送において、無線受信装置の受信処理に新たな構成を加えることなく、無線受信装置が受信する信号のピーク電力を低減することが可能となる。
【図面の簡単な説明】
【0018】
図1】本発明の第1実施形態による無線通信システムの構成を示すブロック図である。
図2】同実施形態の無線通信システムによるRF信号の送信状態を説明する図である。
図3】同実施形態の効果を従来技術と比較して説明する図である。
図4】第2実施形態による無線通信システムの構成を示すブロック図である。
図5】同実施形態による処理を示すシーケンス図である。
図6】第3実施形態による無線通信システムの構成を示すブロック図である。
図7】第4実施形態による無線通信システムの構成を示すブロック図である。
図8】同実施形態による処理を示すシーケンス図である。
図9】近接MIMO無線伝送の方式を示すブロック図である。
図10】近接MIMO無線伝送による受信信号振幅の増大を説明する図である。
【発明を実施するための形態】
【0019】
以下、本発明の実施形態について図面を参照して説明する。
(第1実施形態)
図1は、本発明の第1実施形態による無線通信システム1の構成を示すブロック図である。無線通信システム1は、例えば、見通し伝搬路におけるMIMO無線伝送、すなわち近距離MIMO無線伝送を行う。ここで、見通し伝搬路とは、例えば、送信側のアンテナと受信側のアンテナの間の空間に電波を遮蔽する物体が存在しない伝搬路のことをいう。無線通信システム1は、無線送信装置10と無線受信装置20とを備える。
【0020】
無線送信装置10は、情報信号入力部11、情報信号分配部12、局部発振器13、変調部14、位相調整部15及びアンテナ素子16−1〜16−Mを備える。
情報信号入力部11は、送信する情報を無線送信装置10に入力する。
情報信号分配部12は、情報信号入力部11が入力した情報をM個に分配する。情報信号分配部12によってM個に分配された情報を、情報信号1〜Mとする。情報信号分配部12は、情報信号1〜Mそれぞれを、変調器14−1〜14−Mそれぞれに出力する。
局部発振器13は、無線周波数の正弦波の周波数信号を出力する。
【0021】
変調部14は、M個の変調器14−1〜14−Mを備える。各変調器14−1〜14−Mは、RF周波数への周波数変換器を含んでいる。各変調器14−1〜14−Mは、局部発振器13から供給される周波数信号に基づいて、情報信号をRF周波数へアップコンバートして変調を行う。変調部14が用いる変調手法は、振幅変調である。
位相調整部15は、M個の位相調整器15−1〜15−Mを備える。各々の位相調整器15−1〜15−Mには、予め算出される移相量φi(i=1〜M、以下同様)が予め設定され、当該移相量φiに基づいて、変調された情報信号1〜Mに位相差を与える。アンテナ素子16−1〜16−Mは、変調部14で変調され、位相調整部15において移相量φiに基づいて位相差が与えられたRF信号を無線受信装置20に送信する。
【0022】
無線受信装置20は、アンテナ素子21−1〜21−M、通信制御部22、情報信号出力部23を備える。
アンテナ素子21−1〜21−Mは、無線送信装置10のアンテナ素子16−1〜16−Mから送信され、空間を伝搬して到達するRF信号を受信する。
通信制御部22は、アンテナ素子21−1〜21−Mが受信したM個の信号を復調し、復調した信号と、伝送路応答行列Hとに基づくマトリックス処理によるMIMO無線伝送信号の検出を行い空間多重化された複数の情報信号を分離して情報信号を復調する。
情報信号出力部23は、通信制御部22において復調された情報信号を出力する。
【0023】
図2は、無線送信装置10のM個のアンテナ素子16−1〜16−Mから送信されるRF信号が、無線受信装置20のアンテナ素子21−iにおいて重ね合わせられる状況を概念的に示す図である。
無線通信システム1の送受信の処理の流れとしては、まず、無線送信装置10の情報信号入力部11が、送信する情報を情報信号分配部12に出力する。情報信号分配部12は、当該情報をM個の情報信号1〜Mに分配して変調器14−1〜14−Mに出力する。変調器14−1〜14−Mは、それぞれ局部発振器13から供給される無線周波数信号により、情報信号1〜Mに対してアップコンバートを行い、変調して、対応する位相調整器15−1〜15−Mに出力する。位相調整器15−1〜15−Mは、予め設定される移相量φiに基づいて変調された信号に位相差を与え、アンテナ素子16−1〜16−Mを通じて空間にRF信号出力する。
【0024】
無線受信装置20のアンテナ素子21−1〜21−Mの各々は、図2に示すようにM個の重ね合わせられたRF信号を受信する。無線受信装置20の通信制御部22は、アンテナ素子21−1〜21−Mにおいて受信したRF信号をダウンコンバートして復調し、復調した信号と、伝送路応答行列Hとに基づくマトリックス処理によるMIMO信号の検出を行い空間多重化された複数の情報信号を分離して情報信号を復調する。情報信号出力部23は、通信制御部22において復調された情報信号を出力する。
【0025】
ここで、前述した各々の位相調整器15−1〜15−Mに対して予め設定される移相量φiが、アンテナ素子21−iにおいて受信されるM個のRF信号の位相ができるだけ一致しないような移相量になっていれば、M個のRF信号が重なって生成される振幅の最大値(以下、ピークともいう)の増大を抑えることが可能となる。
【0026】
特に、非接触伝送等の近距離無線伝送では、伝送距離が短いため、信号対雑音電力比(SNR:Signal to Noise Ratio)が大きく、また、無線サービスが提供されるエリアも非常に狭いエリアに限定されるため、広い帯域を利用可能である。そのため、変復調装置の構成を簡易にして信号処理コストを低減する場合、振幅変調を利用することが想定される。振幅変調を行う場合、送信時のRF信号の位相が、受信時にも保存されるため、送信する各々のRF信号に対して、できるだけ位相が一致しないような位相差を与えておけば、ピーク振幅の低減を行うことが可能となる。以下、このような位相差となるような移相量φiを算出する手法の一例について説明する。
【0027】
(移相量φiの算出手法:第1の手法)
MIMO無線伝送の伝送路応答行列を行列H、移相量ベクトルをφ=[φ1,φ2,・・・,φM]とする。実際に無線送信装置10のアンテナ素子16−1〜16−Mから空間へ放射されるRF信号のベクトルt’(要素数M)は、送信するRF信号tに位相調整部15の各々の位相調整器15−1〜15−Mに設定される移相量φをアダマール積として乗算することによって、次式(1)のように表される。
【0028】
【数1】
【0029】
移相量ベクトルを伝送路応答行列の一部とするには、行列Hの第i列成分の全てに対してφi位相をずらすことになる。数学的には、行列Hの第i列成分に対してexp(φi)を乗算することになる。こうして得られた伝送路応答行列を行列H_pとする。
なお、上記の伝送路応答行列の行列H、移相量ベクトルφ、行列H_pは、いずれも行列またはベクトルであるため、数式において記載される際にはボールド体(太字)で記載されることもあるが、本明細書においては、「行列X」、「ベクトルX」等のように、「行列」や「ベクトル」の用語を付加して示す。
【0030】
すべての無線受信装置20のアンテナ素子21−1〜21−Mにおいて、受信するRF信号の位相を可能な限り一致させないためには、例えば、行列H_pの全ての行において、その行内にあるM個の要素の偏角をできるだけ一致させないようにすればよい。このような行列H_pは、例えば、M個の要素の偏角の分散のM行分の総和を最大とするような最適化の問題として求めることができる。
【0031】
(移相量φiの算出手法:第2の手法)
第2の手法として、第1の手法より計算量は多くなるが、実際に、無線受信装置20のアンテナ素子21−1〜21−Mにおいて受信するRF信号のピークとなる振幅を計算により推定して、高い精度で可能な限り一致しない移相量φiを算出する手法がある。まず、行列H_pを用いてアンテナ素子21−1〜21−Mにおいて受信する、重ね合わされた正弦波信号の振幅の最大値を算出する。そして、算出された振幅の最大値の中で最も大きい値を評価関数として、最適化アルゴリズムを用いて移相量ベクトルφの値を最適化する。最適化アルゴリズムとしては、最急降下法などのアルゴリズムが用いられてもよい。なお、最適化アルゴリズムとしては、全探索であってもよい。無線送信装置10から同一周波数、同一位相、同一の最大振幅値を有する正弦波を送信する場合、位相調整器15−1〜15−Mの入力端子に供給される信号Tは、次式(2)として表される。
【0032】
【数2】
【0033】
各々の位相調整器15−1〜15−Mに予め設定される移相量による位相の変更は、次式(3)により表される。
【0034】
【数3】
【0035】
次式(3)による位相の変更が行われた後、電波伝搬路を通過して無線受信装置20の各アンテナ素子21−1〜21−Mにおいて受信されるため、M個のアンテナ素子21−1〜21−Mが受信する受信波形R(t)は、電波伝搬路の伝送路応答行列Hを用いて表すと次式(4)のように時間波形数がM本のベクトルとして表される。
【0036】
【数4】
【0037】
式(4)において、R(t)のM本の各波形は同一周波数で同一の最大振幅値を有する正弦波を位相をずらして重ね合わせた正弦波となるため、各波形の振幅は容易に算出することができる。無線伝送中に伝送路応答行列Hが時間的に変動しない場合、行列Hが定数となるため、R(t)のM本の波形の各波形のピークの振幅を要素とするベクトルRPは、時間に依存しない、ベクトルΦのみによって定められる要素数Mのベクトルとなる。ここで、ベクトルΦを最適化する手法としては、例えば、「(1)ベクトルRPの全要素の和が最小になるベクトルΦの値を探索する。(2)ベクトルRPの最大値が最小となるΦの値を探索する。」等の手法を適用することができる。探索の手法としては、全探索を行う手法を用いてもよいが、最適化の問題となるため、最急降下法などのアルゴリズムが適用されることになる。
【0038】
なお、上記の第1の手法及び第2の手法によって求められる移相量φiは、伝送路の変動がない場合には、前述したように、伝送路応答行列Hが変わらないため、時間によって変化しない定数となる。これに対して、伝送路が変動する場合、伝送路応答行列Hも変わることになるため、後述する実施形態などの手段により伝送路応答行列Hを再度求めて、移相量φiを再計算する必要がある。
【0039】
上記の第1実施形態の構成により、位相調整部15を備えたことで、無線送信装置10において各アンテナ素子16−1〜16−Mを通じて送信するRF信号の位相を位相調整器15−1〜15−Mにより変えることが可能となる。アンテナ素子16−1〜16−Mとアンテナ素子21−1〜21−Mの伝搬経路差に基づく情報となる伝送路応答行列Hを算出して推定し、推定した伝送路応答行列Hを用いて、無線受信装置20のアンテナ素子21−1〜21−MにRF信号が到達する場合に、できるだけ異なる位相を有する移相量φiを予め算出する。そして、算出した移相量φiを位相調整器15−1〜15−Mに設定しておく。これにより、無線受信装置20のアンテナ素子21−1〜21−Mの各々でM個のRF信号を受信した場合に、M個のRF信号の位相が可能な限り異なった位相となっているため、重ね合わせられたRF信号のピークの振幅の増大を抑えることが可能となる。したがって、MIMO無線伝送において、無線受信装置の受信処理に新たな構成を加えることなく、無線受信装置が受信する信号のピーク電力を低減することが可能となる。言うまでもなく、M個のRF信号の位相が全て同相ではない場合に、重ね合わせられたRF信号のピークの振幅を最も低減させることが可能となるため、最大の効果が得られることになる。
【0040】
図3に示すように、従来の無線通信システム100においては、RF信号1とRF信号2の2つのRF信号の重ね合わせで約3dBピークの電力が上昇していたのが、第1実施形態の無線通信システム1においては、前述の通り、ピーク電力の上昇を低減することが可能となる。それにより、PAPRの低減、送信増幅器飽和レベル低減、受信側LNAの飽和レベル低減、ADCのダイナミックレンジの低減を行うことが可能となり、また、ディジタル信号処理量の低減による消費電力の低減も行うことが可能となる。さらに、受信側LNAの破損等を防ぐことも可能となる。
【0041】
(第2実施形態)
図4は、本発明の第2実施形態による無線通信システム1aの構成を示すブロック図である。図4において、第1実施形態の無線通信システム1と同一の構成については同一の符号を付して説明を省略する。以下、第1実施形態の無線通信システム1と異なる構成について説明する。
無線通信システム1aは、無線送信装置10aと無線受信装置20aとを備える。
第2実施形態における無線通信システム1aでは、無線受信装置20aが無線送信装置10aに対してトレーニング信号を送信し、無線送信装置10aが当該トレーニング信号に基づいて伝送路応答行列Hを算出する。
【0042】
無線送信装置10aは、情報信号入力部11、情報信号分配部12、局部発振器13、変復調部14a、位相調整部15a、アンテナ素子16−1〜16−M及び移相量算出部17を備える。
変復調部14aは、変復調器14a−1〜14a−Mを備える。各変復調器14a−1〜14a−Mは、局部発振器13から供給される無線周波数の正弦波の周波数信号を受けて、情報信号1〜Mに対してアップコンバートして、変調を行って位相調整部15aに出力する。また、各変復調器14a−1〜14a−Mは、局部発振器13から供給される周波数信号を受けて、位相調整部15aから出力される受信信号に対して、ダウンコンバートして、復調を行い、移相量算出部17に出力する。変復調部14aが用いる変調手法は、振幅変調である。
【0043】
位相調整部15aは、位相調整器15a−1〜15a−Mを備える。各位相調整器15a−1〜15a−Mは、各位相調整器15a−1〜15a−Mごとに移相量算出部17から出力される移相量φiの情報を受けて内部に設定する。また、各位相調整器15a−1〜15a−Mは、当該移相量φiに基づいて、変調された情報信号1〜Mに位相差を与える。各位相調整器15a−1〜15a−Mは、アンテナ素子16−1〜16−Mから受信信号が出力されると、出力される受信信号を、各々に対応する変復調器14a−1〜14a−Mに出力する。
【0044】
移相量算出部17は、変復調部14aから出力される復調されたトレーニング信号に基づいて、伝送路応答行列Hを推定する。また、移相量算出部17は、推定した伝送路応答行列Hと、第1実施形態において説明した移相量φiの算出手法(第1の手法及び第2の手法)とに基づいて、移相量φiを算出して、位相調整部15aの各位相調整器15a−1〜15a−Mに出力して内部に設定させる。移相量とは、位相を変化させるために用いられる量を表す。また、移相量算出部17は、算出した移相量φiの各位相調整器15a−1〜15a−Mに出力した後に、MIMO無線伝送が開始できる通知を情報信号入力部11に出力する。
【0045】
無線受信装置20aは、アンテナ素子21−1〜21−M、通信制御部22a、情報信号出力部23及びトレーニング信号送信部24を備える。
トレーニング信号送信部24は、予め定められるトレーニング信号、例えば、IEEE802.1nの無線LAN(Local Area Network)方式におけるHT−LTF(High-Throughput Long Training Field)などの直交するM個の信号を生成する。
通信制御部22aは、トレーニング信号送信部24によって生成されたトレーニング信号をアンテナ素子21−1〜21−Mを通じて無線送信装置10に送信する。
【0046】
図5は、第2実施形態による無線通信システム1aの処理の流れを示すシーケンス図である。
まず、無線受信装置20aのトレーニング信号送信部24は、トレーニング信号を生成し、生成したトレーニング信号を、通信制御部22a及びアンテナ素子21−1〜21−Mを通じて無線送信装置10aに送信する(ステップS101)。
無線送信装置10aのアンテナ素子16−1〜16−Mは、トレーニング信号を受信し、受信したトレーニング信号を対応する位相調整器15a−1〜15a−Mに出力する。各位相調整器15a−1〜15a−Mは、対応する変復調器14a−1〜14a−Mにトレーニング信号を出力する。変復調器14a−1〜14a−Mは、トレーニング信号を復調して、移相量算出部17に出力する。移相量算出部17は、トレーニング信号から伝送路応答行列Hを推定する(ステップS102)。
【0047】
移相量算出部17は、推定した伝送路応答行列Hと、第1実施形態において説明した移相量φiの算出手法(第1の手法及び第2の手法)とに基づいて、移相量φiを算出する(ステップS103)。移相量算出部17は、算出した移相量φiを、対応する各位相調整器15a−1〜15a−Mに出力する。各位相調整器15a−1〜15a−Mは、移相量算出部17から出力された移相量φiを内部に設定する。また、移相量算出部17は、MIMO無線伝送が開始できる通知を情報信号入力部11に出力する(ステップS104)。
【0048】
無線送信装置10aの情報信号入力部11は、MIMO無線伝送が開始できる通知を移相量算出部17から受けると、送信する情報を情報信号分配部12に出力する。情報信号分配部12は、当該情報をM個に分配し、情報信号1〜Mとして変復調器14a−1〜14a−Mに出力する。変復調器14a−1〜14a−Mは、局部発振器13から供給される周波数信号に基づいて、情報信号1〜Mを変調して対応する各位相調整器15a−1〜15a−Mに出力する。各位相調整器15a−1〜15a−Mは、各々に設定されている移相量φiに基づいて変調された情報信号1〜Mに位相差を与え、アンテナ素子16−1〜16−Mを通じて、位相差が与えられた情報信号1〜Mを無線受信装置送信する20aに送信する(ステップS105)。
無線受信装置20aは、アンテナ素子21−1〜21−Mを通じて、無線送信装置10から送信された信号を受信し、通信制御部22aにおいて復調し、情報信号出力部23に出力する(ステップS106)。
【0049】
上記の第2実施形態の構成により、無線通信システム1aは、無線受信装置20aからトレーニング信号を送信し、無線送信装置10aにおいて、当該トレーニング信号に基づいて伝送路応答行列Hを算出する。これにより、第1実施形態の構成より得られる効果に加えて、伝送路の環境が変動し、伝送路応答行列Hが変動する場合であっても、当該変動する伝送路応答行列Hを推定し、推定した伝送路応答行列Hに基づく、精度の高い移相量φiを算出することが可能となる。
【0050】
(第3実施形態)
図6は、本発明の第3実施形態による無線通信システム1bの構成を示すブロック図である。図6において、第1実施形態の無線通信システム1及び第2実施形態の無線通信システム1aと同一の構成については同一の符号を付して説明を省略する。以下、第1実施形態の無線通信システム1及び第2実施形態の無線通信システム1aのいずれかと異なる構成について説明する。
【0051】
無線通信システム1bは、無線送信装置10bと無線受信装置20bとを備える。無線通信システム1bは、電波伝搬路が見通し伝搬路となっている、いわゆる近距離MIMO無線伝送の伝送路となっている場合に適用される。見通し伝搬路とは、上述したように、送信側のアンテナと受信側のアンテナの間の空間に電波を遮蔽する物体が存在しない伝搬路であり、本実施形態では、例えば、レーザ光等が到達可能な伝搬路や写真撮影が可能な伝搬路である。
【0052】
無線送信装置10bは、情報信号入力部11、情報信号分配部12、局部発振器13、変調部14、位相調整部15a、アンテナ素子16−1〜16−M、移相量算出部17b及び位置関係測定部18を備える。
位置関係測定部18は、無線送信装置10bと無線受信装置20bとの位置関係を示す情報、例えば、三次元空間における各々の装置の位置情報を測定する。位置関係測定部18は、例えば、レーザ光を使用して位置関係を示す情報の測定を行う場合、内部に備えるレーザ光照射装置から、レーザ光を無線受信装置20bの位置表示部25に向かって照射し、その反射光を受光素子で受光して位置関係を示す情報を測定する。また、位置関係測定部18は、例えば、画像により位置関係を示す情報の測定を行う場合、内部に備えるカメラを用いて無線受信装置20bの位置表示部25を撮影し、撮影により得られた位置表示部25を含む画像情報を解析して、位置関係を示す情報を測定する。また、位置関係測定部18は、測定した位置関係を示す情報を移相量算出部17bに出力する。
【0053】
移相量算出部17bは、予め送信側のアンテナ素子16−1〜16−M及び受信側のアンテナ素子21−1〜21−Mの各々が構成するアレーアンテナの配置に関する情報を内部に記憶している。アレーアンテナの配置に関する情報とは、例えば、無線送信装置10bにおけるアンテナ素子16−1〜16−Mの配置の情報、及び無線受信装置20bのアンテナ素子21−1〜21−Mの配置の情報である。これらのアレーアンテナの配置の情報を利用することで、位置関係測定部18により測定された無線送信装置10bと無線受信装置20bの位置関係を示す情報に基づいて、三次元空間におけるアンテナ素子16−1〜16−Mの位置情報と、アンテナ素子21−1〜21−Mの位置情報が得られる。また、移相量算出部17bは、位置関係測定部18が測定した位置関係を示す情報と、当該アレーアンテナの配置に関する情報とに基づいて、見通し(LOS: Line of Sight)電波伝搬路の環境における各電波伝搬路の位相回転量を算出する。また、移相量算出部17bは、算出した位相回転量に基づいて、伝送路応答行列Hを算出して推定する。また、移相量算出部17bは、推定した伝送路応答行列Hと、第1実施形態において説明した移相量φiの算出手法(第1の手法及び第2の手法)とに基づいて、移相量φiを算出して、位相調整部15aの各位相調整器15a−1〜15a−Mに出力して内部に設定させる。
【0054】
無線受信装置20bは、アンテナ素子21−1〜21−M、通信制御部22、情報信号出力部23及び位置表示部25を備える。
位置表示部25は、例えば、後述する位置関係の測定にレーザを使用する場合は、レーザ光の的等であり、カメラを使用する場合は、写真によって撮影されるマーク等の被写体である。
【0055】
第3実施形態の無線通信システム1bによる処理の流れについて説明する。
まず、無線送信装置10bの位置関係測定部18は、無線受信装置20bの位置表示部25を利用して、無線送信装置10bと無線受信装置20bとの位置関係を示す情報を測定する。位置関係測定部18は、測定結果を移相量算出部17bに出力する。移相量算出部17bは、予め記憶している送信側のアンテナ素子16−1〜16−M及び受信側のアンテナ素子21−1〜21−Mの各々が構成するアレーアンテナの配置に関する情報と、当該位置関係を示す情報とに基づいて、電波伝搬路の位相回転量を算出し、算出した位相回転量から伝送路応答行列Hを算出して推定する。次に、移相量算出部17bは、推定した伝送路応答行列Hと、第1実施形態において説明した移相量φiの算出手法(第1の手法及び第2の手法)とに基づいて、移相量φiを算出して、位相調整部15aの各位相調整器15a−1〜15a−Mに出力して内部に設定させる。移相量算出部17bは、MIMO無線伝送が開始できる通知を情報信号入力部11に出力する。これ以降の送信の処理は、第1実施形態と同様の処理となる。
【0056】
なお、位置関係測定部18は、送信中に無線送信装置10bと、無線受信装置20bとの位置関係が変動する場合には、伝送路応答行列Hも変動するため、不定期的もしくは定期的、または、位置関係が変動するごとに、送信側のアンテナ素子16−1〜16−Mと、受信側のアンテナ素子21−1〜21−Mとの位置関係を測定するようにしてもよい。その場合、移相量算出部17bは、新たに測定された位置関係を示す情報に基づいて伝送路応答行列Hを再計算し、再計算した伝送路応答行列Hを用いて、位相調整器15a−1〜15a―Mのそれぞれに設定する移相量φiを算出することになる。
【0057】
上記の第3実施形態の構成により、位置関係測定部18と位置表示部25とにより、無線送信装置10bと無線受信装置20bの位置関係を示す情報を測定し、測定した位置関係を示す情報に基づいて伝送路応答行列Hを算出する。これにより、第1実施形態の構成により得られる効果に加えて、伝送路の環境が変動し、伝送路応答行列Hが変動する場合であっても、当該変動する伝送路応答行列Hを推定し、推定した伝送路応答行列Hに基づく、精度の高い移相量φiを算出することが可能となる。
【0058】
(第4実施形態)
図7は、本発明の第4実施形態による無線通信システム1cの構成を示すブロック図である。図7において、第1実施形態の無線通信システム1、第2実施形態の無線通信システム1a及び第3実施形態の無線通信システム1bと同一の構成については同一の符号を付して説明を省略する。以下、第1実施形態の無線通信システム1、第2実施形態の無線通信システム1a及び第3実施形態の無線通信システム1bのいずれかと異なる構成について説明する。
【0059】
無線通信システム1cは、無線送信装置10cと無線受信装置20cとを備える。無線通信システム1cでは、無線送信装置10cのアンテナ素子16−1〜16−Mの全てから最大振幅のトレーニング用のRF信号を送信し、無線受信装置20cの各アンテナ素子21−1〜21−Mにおいて受信するRF信号の振幅の中で最大値となる振幅の値を測定する。そして、測定した振幅の最大値を示す情報(以下、ピーク振幅情報ともいう)を無線送信装置10cにフィードバックして、移相量φiを算出する構成となっている。
【0060】
無線送信装置10cは、情報信号入力部11、情報信号分配部12、局部発振器13、変復調部14a、位相調整部15a、アンテナ素子16−1〜16−M、移相量算出部17c及びピーク振幅検出トレーニング信号送信部19を備える。
ピーク振幅検出トレーニング信号送信部19は、全てのアンテナ素子16−1〜16−Mからトレーニング用のRF信号を送信させるための情報を情報信号入力部11に対して出力する。ここで、送信するトレーニング用のRF信号は、例えば、位相調整器15a−1〜15a−Mによって位相差が与えられる前の状態において同一周波数、同一位相、及び同一の最大振幅値を有する正弦波である。
【0061】
移相量算出部17cは、予め定められる初期値の移相量φiを各位相調整器15a−1〜15a−Mに設定する。また、移相量算出部17cは、無線受信装置20cの各アンテナ素子21−1〜21−Mにおいてトレーニング用のRF信号を受信した際の受信信号の振幅情報に基づいて、位相調整器15a−1〜15a−Mに設定している移相量φiが適切な値であるか否かを判定する。また、移相量算出部17cは、内部にカウンタを有しており、位相を変更した回数を記憶しており、位相を変更する回数が、予め定められる上限回数に達しているか否かを、上記の判定処理を行うと共に判定する。
【0062】
無線受信装置20cは、アンテナ素子21−1〜21−M、通信制御部22c、情報信号出力部23及び受信レベルフィードバック部26を備える。
受信レベルフィードバック部26は、各アンテナ素子21−1〜21−Mにおいて受信するトレーニング用のRF信号のピーク振幅情報を測定する。例えば、受信レベルフィードバック部26によるピーク振幅情報の測定は、RF信号が振幅変調されている場合には、受信レベルフィードバック部26が無線周波数において検波ができる整流器を備え、包絡線電圧を実測することにより測定する。振幅変調ではない場合には、ディジタル信号処理によりトレーニング用のRF信号のピーク振幅情報を測定するようにしてもよい。また、受信レベルフィードバック部26は、測定したピーク振幅情報を通信制御部22cに出力する。
通信制御部22cは、当該ピーク振幅情報をアンテナ素子21−1〜21−Mを通じて無線送信装置10cに送信する。なお、当該送信は、必ずしもMIMO無線伝送である必要はなく、SISO(Single-Input Single-Output)無線伝送でもよいし、他の周波数を用いた無線送信(光による送信も含む)であってもよい。
【0063】
図8は、第4実施形態による無線通信システム1cの処理の流れを示すシーケンス図である。
まず、移相量算出部17cは、予め記憶している初期値となる移相量φiをそれぞれの位相調整器15a−1〜15a−Mに設定する(ステップS201)。ピーク振幅検出トレーニング信号送信部19は、情報信号入力部11に対してトレーニング用のRF信号、すなわち同一周波数、同一位相、及び同一の最大振幅値を有する正弦波となるM個の情報信号を送信させる情報を出力する。情報信号入力部11は、ピーク振幅検出トレーニング信号送信部19から出力される情報を情報信号分配部12に出力する。情報信号分配部12は、情報信号入力部11から出力される情報をM個に分配して情報信号1〜Mを出力する。変復調器14a−1〜14a−Mは、情報信号1〜Mを局部発振器13から供給される周波数信号に基づいてRF信号にアップコンバートして変調を行う。
【0064】
位相調整器15a−1〜15a−Mは、移相量算出部17cによって設定された移相量φiに基づいてRF信号に位相差を与える。アンテナ素子16−1〜16−Mは、位相差が与えられたRF信号を無線受信装置20cに対して送信する(ステップS202)。
無線受信装置20cの受信レベルフィードバック部26は、各アンテナ素子21−1〜21−Mが受信したトレーニング用のRF信号の中で最大値の振幅値を示すピーク振幅情報を測定し、測定結果(最大値の振幅値を示すピーク振幅情報)を通信制御部22cに出力する(ステップS203)。通信制御部22cは、受信レベルフィードバック部26が出力したピーク振幅情報を無線送信装置10cに送信する(ステップS204)。
【0065】
無線送信装置10cの変復調器14a−1〜14a−Mは、アンテナ素子16−1〜16−M及び位相調整器15a−1〜15a−Mを通じて受信したピーク振幅情報を含むRF信号をダウンコンバートして復調し、移相量算出部17cに出力する。移相量算出部17cは、アンテナ素子21−1〜21−Mごとのピーク振幅情報を読み出し、読み出したピーク振幅情報に基づいて、移相量φiが適切でなく、かつ、予め定められる位相調整の上限回数に達していないか否かを判定する(ステップS205)。
【0066】
移相量φiが適切であるか否かの判定は、例えば、ピーク振幅情報が示す振幅の最大値と、予め定められる閾値とを比較し、振幅の最大値が、当該閾値以上であるか否かを判定することによって行う。すなわち、振幅の最大値が、当該閾値以上の場合は、移相量φiが適切でないと判定し、振幅の最大値が、当該閾値を超えていない場合は、移相量φiが適切であると判定する。ここで、閾値としては、例えば、トレーニング用のRF信号の最大振幅値をM倍した値よりも小さい値などを適用することができる。
【0067】
移相量算出部17cは、移相量φiが適切でなく、かつ、内部のカウンタを参照して予め定められる位相調整の上限回数に達していないと判定した場合(ステップS205−YES)、予め定められる増量分または減少分の固定値で移相量φiを変更して位相調整器15a−1〜15a−Mに設定する(ステップS206)。ここで、移相量φiが変更される位相調整器は、位相調整器15a−1〜15a−M全てである。移相量算出部17cは、内部のカウンタの値に1を加えてカウンタの値を更新し、ピーク振幅検出トレーニング信号送信部19にステップS202からの処理を繰り返させる指示信号を出力する。当該指示信号を受けたピーク振幅検出トレーニング信号送信部19は、ステップS202の処理を行う。
【0068】
移相量算出部17cは、移相量φiが適切であると判定した場合、または、移相量φiを変更した回数が、予め定められる上限回数に達していると判定した場合(ステップS205−NO)、その時点で位相調整器15a−1〜15a−Mに設定している移相量φiを正式な移相量φiとし、MIMO無線伝送が開始できる通知を情報信号入力部11に出力する(ステップS207)。情報信号入力部11は、MIMOによる空間多重化伝送でM個の情報信号を送信する(ステップS208)。
無線受信装置20cの通信制御部22cは、アンテナ素子21−1〜21−Mを通じてMIMO信号を受信すると、伝送路応答行列Hを算出して推定し(ステップS209)、推定した伝送路応答行列Hに基づいて受信信号の復調を行い、情報信号出力部23に出力する(ステップS210)。
【0069】
上記の第4実施形態の構成により、無線送信装置10cから実際に送信するトレーニング用の同一周波数、同一位相、及び同一の最大振幅値を有する信号を用いて、無線受信装置20cで受信するトレーニング用のRF信号が重ね合わせられた信号の振幅値の最大値と、予め定められる閾値とに基づいて、繰り返し移相量φiを変更して、適切な移相量φiを求めることが可能となる。これにより、送信するRF信号の位相をできるだけ異なる位相とすることができ、無線受信装置20cのアンテナ素子21−1〜21−Mにおいて重ね合わせられたRF信号を受信した際に、RF信号の最大の振幅値を低減させることが可能となる。したがって、MIMO無線伝送において、無線受信装置の受信処理に新たな構成を加えることなく、無線受信装置が受信する信号のピーク電力を低減することが可能となる。
【0070】
また、第4実施形態では、前述した第1から第3実施形態のように移相量φiを第1実施形態で説明した伝送路応答行列Hを推定して算出する算出手法(第1の手法及び第2の手法)によらず、実際に送信側から送信するトレーニング用のRF信号に基づいて移相量φiを求めていることから、より精度の高い移相量φiを求めることが可能である。
また、第2及び第3実施形態と同じく、無線送信装置10cから送信するトレーニング信号を用いて最終的に移相量φiを求めているため、電波伝搬路の環境の変動があっても、適切な移相量φiを求めることが可能である。
また、上記の第4実施形態では、移相量φiを変更する上限回数を定めているため、無限に処理が行われることを防ぐことが可能となる。
【0071】
なお、上記の第4実施形態において、移相量算出部17cが、ステップS201において初期値となる移相量φiを位相調整器15a−1〜15a−Mに出力しているが、初期値となる移相量φiは、どのような値でもよい。例えば、ゼロ、すなわち位相差を与えない設定であってもよく、また、初期状態での伝送路応答行列を推定し、第1実施形態において説明した移相量φiの算出手法(第1の手法及び第2の手法)によって求められる位相差を初期値としてもよい。このようにすることで、適切な移相量φiを求めるのに要する移相量φiを変更する回数を低減させることも可能である。
【0072】
また、上記の第4実施形態において、受信レベルフィードバック部26は、各アンテナ素子21−1〜21−Mが受信したトレーニング信号の中で最大値の振幅値を示すピーク振幅情報を測定して無線送信装置10cにフィードバックするようにしているが、本発明の構成は、当該実施の形態に限られない。
例えば、受信レベルフィードバック部26が、各アンテナ素子21−1〜21−Mが受信したトレーニング信号の振幅値のそれぞれを無線送信装置10cにフィードバックして無線送信装置10cの移相量算出部17cが、アンテナ素子21−1〜21−Mごとの振幅値の中から最大の振幅値を選択して閾値と比較するようにしてもよい。
【0073】
また、例えば、受信レベルフィードバック部26が、各アンテナ素子21−1〜21−Mが受信したトレーニング信号の振幅値のそれぞれを無線送信装置10cにフィードバックする。そして、無線送信装置10cの移相量算出部17cが、振幅値の合計値を算出し、算出した合計値が、予め定められる閾値以上であるか否かによって、移相量φiが適切であるか否かを判定するようにしてもよい。かかる場合の閾値としては、例えば、トレーニング用のRF信号の最大振幅値に対して、送信側のアンテナ素子16−1〜16−Mの本数Mと、受信側のアンテナ素子21−1〜21−Mの本数Mとを乗算した最大振幅値×M×Mの値より小さい値などを適用してもよい。
【0074】
なお、当該振幅値の合計値は、受信レベルフィードバック部26が算出し、算出した振幅値の合計値を無線送信装置10cにフィードバックするようにしてもよい。
なお、当該判定処理や、上述したステップS205における判定処理において、閾値以上であるか否か、上限回数に達しているか否かの判定基準は一例であり、例えば、閾値以上であるか否かに変えて、閾値を超えているか否かという判定基準としてもよいし、上限回数に達しているか否かに変えて、上限回数を超えているか否かという判定基準としてもよい。
【0075】
また、上記の第4実施形態において、ステップS205の処理において、移相量φiが適切でないと判定した場合、予め定められる増量分または減少分の値で移相量φiを変更するとしているが、本発明の構成は、当該実施の形態に限られない。例えば、判定に用いたピーク振幅情報に対応するアンテナ素子21−1〜21−Mを識別できる情報を取得しておき、当該アンテナ素子21−1〜21−Mの位置に応じて、各々の移相量φiの増加分と減少分を定めるようにしてもよい。
【0076】
なお、上記の第1から第4実施形態の構成では、M個の変調器14−1〜14−M、またはM個の変復調器14a−1〜14a−Mに対して、同一の局部発振器13から無線周波数信号を供給するようにしているため、M個のRF信号の位相関係が時間に対して保存されているが、本発明の構成は、当該実施の形態に限られない。M個のRF信号の位相関係が時間に対して保存されればよく、例えば、M個の局部発振器をM個の変調器14−1〜14−M、またはM個の変復調器14a−1〜14a−Mの各々に接続し、これらM個の局部発振器が、例えば、無線周波数の周波数信号を生成する元となる10MHz信号を出力する、1つの信号源となる源発振器に接続される構成であってもよい。
【0077】
また、上記の第1、第2、及び第3実施形態においては、受信側で復調の際に使用する伝送路応答行列Hは、送信側で推定した伝送路応答行列Hを無線通信により送信側から受信側に送信して使用するようにしてもよいし、第4実施形態と同じく受信側において推定するようにしてもよい。
【0078】
また、上記の第1実施形態では、移相量φiは、予め算出されて位相調整器15−1〜15−Mに設定されるとしているが、無線送信装置10の内部に演算部を設けて、当該演算部によって算出し、当該演算器が算出した移相量φiを位相調整器15−1〜15−Mに設定するようにしてもよい。また、当該演算部は、無線送信装置10に備えられていてもよいし、外部から無線送信装置10に接続するような形態であってもよい。
【0079】
なお、無線送信装置10、10a、10b、10c及び無線受信装置20、20a、20b、20cの全部又は一部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各部の処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。
【0080】
また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。
【0081】
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
【符号の説明】
【0082】
1、1a、1b、1c…無線通信システム,10、10a、10b、10c…無線送信装置,11…情報信号入力部,12…情報信号分配部,13…局部発振器,14…変調部,14a…変復調部,14−1〜14−M…変調器,14a−1〜14a−M…変復調器,15、15a…位相調整部,15−1〜15−M、15a−1〜15a−M…位相調整器,16−1〜16−M…アンテナ素子,17、17b、17c…移相量算出部,18…位置関係測定部,19…ピーク振幅検出トレーニング信号送信部,20、20a、20b、20c…無線受信装置,21−1〜21−M…アンテナ素子,22、22a、22c…通信制御部,23…情報信号出力部,24…トレーニング信号送信部,25…位置表示部,26…受信レベルフィードバック部
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10