特許第6755497号(P6755497)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 学校法人東京理科大学の特許一覧 ▶ 三菱レイヨン株式会社の特許一覧

特許6755497複合金属酸化物、ナトリウム二次電池正極用複合金属酸化物、及びナトリウム二次電池
<>
  • 特許6755497-複合金属酸化物、ナトリウム二次電池正極用複合金属酸化物、及びナトリウム二次電池 図000003
  • 特許6755497-複合金属酸化物、ナトリウム二次電池正極用複合金属酸化物、及びナトリウム二次電池 図000004
  • 特許6755497-複合金属酸化物、ナトリウム二次電池正極用複合金属酸化物、及びナトリウム二次電池 図000005
  • 特許6755497-複合金属酸化物、ナトリウム二次電池正極用複合金属酸化物、及びナトリウム二次電池 図000006
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6755497
(24)【登録日】2020年8月28日
(45)【発行日】2020年9月16日
(54)【発明の名称】複合金属酸化物、ナトリウム二次電池正極用複合金属酸化物、及びナトリウム二次電池
(51)【国際特許分類】
   H01M 4/505 20100101AFI20200907BHJP
   H01M 4/525 20100101ALI20200907BHJP
   H01M 10/054 20100101ALI20200907BHJP
【FI】
   H01M4/505
   H01M4/525
   H01M10/054
【請求項の数】6
【全頁数】16
(21)【出願番号】特願2015-170674(P2015-170674)
(22)【出願日】2015年8月31日
(65)【公開番号】特開2016-103463(P2016-103463A)
(43)【公開日】2016年6月2日
【審査請求日】2018年5月18日
(31)【優先権主張番号】特願2014-233409(P2014-233409)
(32)【優先日】2014年11月18日
(33)【優先権主張国】JP
【前置審査】
(73)【特許権者】
【識別番号】000125370
【氏名又は名称】学校法人東京理科大学
(73)【特許権者】
【識別番号】000006035
【氏名又は名称】三菱ケミカル株式会社
(74)【代理人】
【識別番号】100126505
【弁理士】
【氏名又は名称】佐貫 伸一
(74)【代理人】
【識別番号】100151596
【弁理士】
【氏名又は名称】下田 俊明
(72)【発明者】
【氏名】駒場 慎一
(72)【発明者】
【氏名】久保田 圭
(72)【発明者】
【氏名】池内 一成
(72)【発明者】
【氏名】原田 隆
【審査官】 鈴木 雅雄
(56)【参考文献】
【文献】 特開2015−176678(JP,A)
【文献】 国際公開第2015/049796(WO,A1)
【文献】 特開2014−160653(JP,A)
【文献】 特開2014−157686(JP,A)
【文献】 特開平11−016571(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 4/505
H01M 4/525
H01M 10/054
(57)【特許請求の範囲】
【請求項1】
P2またはP3型の結晶構造を有し、かつNax11-a2a2(0<x≦2/3)であ
り、M1はMn、Fe、Co、Niから選ばれる少なくとも1種の遷移金属であ
り、M2はZnであり、0<a≦0.3である。)で表され、前記M1として少なくともMnを含み、前記Nax11-a2a2に対して3価のMnの存在比が2モル%以下であるナトリウム二次電池正極用複合金属酸化物。
【請求項2】
対極に金属ナトリウムを使用して電池を作製した時の開回路電圧が、2.5V以上となることを特徴とする、請求項1に記載のナトリウム二次電池正極用複合金属酸化物。
【請求項3】
X線源にCuKα線を用いた粉末X線回折測定において、18°から20°の範囲にピークが観察されないことを特徴とする、請求項1または2に記載のナトリウム二次電池正極用複合金属酸化物。
【請求項4】
請求項1乃至3のいずれか1項に記載の複合金属酸化物を含むナトリウム二次電池用正極を備えたナトリウム二次電池。
【請求項5】
満充電状態における正極の充電電位が4.35V(vs.Na/Na+)以上となるよ
うに設計されていることを特徴とする、請求項4に記載のナトリウム二次電池。
【請求項6】
P2またはP3型の結晶構造を有し、かつNax11-a2a2(0<x≦2/3であり、M1はMn、Fe、Co、Niから選ばれる少なくとも1種の遷移金属であり、M2はZnであり、0<a≦0.3である。)で表され、前記M1として少なくともMnを含み、
前記Nax11-a2a2に対して3価のMnの存在比が2モル%以下である複合金属酸化物。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、複合金属酸化物、ナトリウム二次電池正極用複合金属酸化物、及びナトリウム二次電池に関する。
【背景技術】
【0002】
リチウム二次電池は高エネルギー密度の二次電池であり、携帯電話やノートパソコン等の小型電源として既に実用化されている。また、リチウム二次電池は電気自動車、ハイブリッド自動車等の小型電源として既に実用化されている。また、リチウム二次電池は電気自動車、ハイブリッド自動車等の自動車用電源や分散型電力貯蔵用電源等の大型電源として使用可能であることから、その需要は増大しつつある。
【0003】
しかし、リチウム二次電池にはリチウム等の稀少金属元素が使用されているため、リチウム二次電池の需要が増大した場合に、上記稀少金属元素の供給不安定が懸念される。
【0004】
上記の供給懸念の問題を解決するために、ナトリウム二次電池の研究が進められている。ナトリウム二次電池用の正極活物質には、高価なリチウムではなく、資源量が豊富でしかも安価なナトリウムが使用される。したがって、ナトリウム二次電池を実用化することができれば、上記供給不安定の問題は解消される。
【0005】
ところで、ナトリウム二次電池用の正極活物質としては、NaとCr、Mn、Fe、Co、Ni等の遷移金属の複合酸化物が使用されている。これらの複合金属酸化物の中でも稀少金属元素であるCoを含まないものは、ナトリウム二次電池の生産コストの削減に寄与するとともに、ナトリウム二次電池の需要増大にも対応することができる。特に、これら複合金属酸化物の中でも、結晶構造としてP2またはP3型構造をもつものは、二次電池として用いた時の電気化学的な安定性が高いことから、工業的実用価値が高いと考えられ、これまでに特許文献1〜3が公知技術として知られている。
【0006】
また、充放電を繰り返した時の放電容量を大きくする効果を発現する発明として、アルカリ土類金属元素を導入する特許文献4が公知技術として知られているが、結晶構造としてP2型構造をもつものではないため、電気化学特性が不十分であるという問題を抱えている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2007−287661号公報
【特許文献2】特開2012−182087号公報
【特許文献3】特開2012−201588号公報
【特許文献4】特開2010−235434号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
特許文献1〜3に開示されるP2型構造を有する複合金属酸化物から構成される正極活物質を用いたナトリウム二次電池の性能は、特に充放電サイクル特性の観点で現在実用化されているリチウム二次電池の性能と比較して十分とは言えない。さらに安定して充放電を繰り返すことができるナトリウム二次電池が求められている。また、層状構造のナトリウム含有複合金属酸化物は、大気中の水分と反応して変質する傾向があるため、電池製造
まで厳密に水分管理された環境下での取扱いが求められ、工程性および生産性に劣るものであった。
【0009】
本発明は、上記課題を解決するためになされたものであり、その目的は、安定して充放電を繰り返すことができるナトリウム二次電池、とりわけ高電圧耐久性の高いナトリウム二次電池を実現するための複合金属酸化物、当該複合金属酸化物により構成される正極活物質を用いて作製した正極を備えるナトリウム二次電池を提供することにある。さらには、水と反応しにくく、大気中あるいは水溶液中でも取り扱え、工程性に優れるナトリウム含有複合金属酸化物を提供することにある。
【課題を解決するための手段】
【0010】
本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、好ましくはP2またはP3型の結晶構造を有し、遷移金属の一部を、Znで置換した複合金属酸化物であって、当該複合金属酸化物を水に分散させた後の分散液のpHが12以下である材料を用いれば、上記課題を解決できることを見出し、本発明を完成するに至った。より具体的には、本発明は以下のものを提供する。
【0011】
(1)NaMO(MはMn、Fe、Co、Niから選ばれる少なくとも1種の遷移金属であり、かつ0<x≦1である。)で表され、前記Mの一部がZnで置換されているナトリウム二次電池正極用複合金属酸化物であって、複合金属酸化物粉末1gに対して20ccの割合で純水を加え、室温で5分以上撹拌した後の分散液のpHが12以下であることを特徴とする、ナトリウム二次電池正極用複合金属酸化物。
(2)P2またはP3型の結晶構造を有し、かつNa1−a(0<x≦1であり、MはMn、Fe、Co、Niから選ばれる少なくとも1種の遷移金属であり、MはZnであり、0<a≦0.3である。)で表されるナトリウム二次電池正極用複合金属酸化物。
(3)x≦2/3であることを特徴とする、(1)または(2)に記載のナトリウム二次電池正極用複合金属酸化物。
(4)前記MとしてMnを含み、前記Na1−aOに対して3価のMnの存在比が2モル%以下であることを特徴とする、(2)または(3)に記載のナトリウム二次電池正極用複合金属酸化物。
(5)対極に金属ナトリウムを使用して電池を作製した時の開回路電圧が、2.5V以上となることを特徴とする、(1)乃至(4)のいずれかに記載のナトリウム二次電池正極用複合金属酸化物。
(6)X線源にCuKα線を用いた粉末X線回折測定において、18°から20°の範囲にピークが観察されないことを特徴とする、(1)乃至(5)のいずれかに記載のナトリウム二次電池正極用複合金属酸化物。
(7) (1)乃至(6)のいずれかに記載の複合金属酸化物を含むナトリウム二次電池用正極を備えたナトリウム二次電池。
(8) 満充電状態における正極の充電電位が4.35V(vs.Na/Na)以上となるように設計されていることを特徴とする、(7)に記載のナトリウム二次電池。
(9) NaMO(MはMn、Fe、Co、Niから選ばれる少なくとも1種の遷移金属であり、かつ0<x≦1である。)で表され、Mの一部がZnで置換されている複合金属酸化物であって、複合金属酸化物粉末1gに対して20ccの割合で純水を加え、室温で5分以上撹拌した後の分散液のpHが12以下であることを特徴とする、複合金属酸化物。
(10) P2またはP3型の結晶構造を有し、かつNa1−a(0<x≦1であり、MはMn、Fe、Co、Niから選ばれる少なくとも1種の遷移金属であり、MはZnであり、0<a≦0.3である。)で表される複合金属酸化物。
【発明の効果】
【0012】
本発明の複合金属酸化物をナトリウム二次電池用正極活物質として使用すれば、ナトリウム二次電池の電池性能を従来のナトリウム二次電池の性能と比較して向上させることができる。具体的には、本発明のナトリウム二次電池正極用複合金属酸化物は、水と反応しにくく、大気中あるいは水溶液中でも変質しにくいため工程性に優れ、さらに本発明のナトリウム二次電池正極用複合金属酸化物を備えるナトリウム二次電池は充放電(とくに高電圧)を繰り返しても高い放電容量を安定して示す。
【図面の簡単な説明】
【0013】
図1a】実施例1の複合金属酸化物の粉末X線回折測定の結果を示す図である。
図1b】実施例2の複合金属酸化物の粉末X線回折測定の結果を示す図である。
図1c】比較例1の複合金属酸化物の粉末X線回折測定の結果を示す図である。
図1d】比較例2の複合金属酸化物の粉末X線回折測定の結果を示す図である。
【発明を実施するための形態】
【0014】
以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。
【0015】
<複合金属酸化物>
本発明の一態様である複合金属酸化物(以下、「本発明の複合金属酸化物1」と略す場合がある。)は、NaMO(MはMn、Fe、Co、Niから選ばれる少なくとも1種の遷移金属であり、かつ0<x≦1である。)で表され、前記Mの一部がZnで置換されている複合金属酸化物であり、複合金属酸化物粉末1gに対して20ccの割合で純水を加え、室温で5分以上撹拌した後の分散液のpHが12以下であることを特徴とする。
また、本発明の別態様である複合金属酸化物(以下、「本発明の複合金属酸化物2」と略す場合がある。)は、P2またはP3型の結晶構造を有し、かつNa1−a(0<x≦1であり、MはMn、Fe、Co、Niから選ばれる少なくとも1種の遷移金属であり、MはZnであり、0<a≦0.3である。)で表されることを特徴とする。
本発明者らは、安定して充放電を繰り返すことができるナトリウム二次電池の研究を進める中で、正極活物質となる層状構造のナトリウム含有複合酸化物の中に、大気中の水分と反応して変質してしまうものがあることを見出している。このような複合金属酸化物は、ナトリウム二次電池の製造過程において厳密な水分管理が求められるため、工程性および生産性の観点において難点がある。
そして、本発明者らは、ナトリウム含有複合酸化物の中でも前述の複合金属酸化物1および複合金属酸化物2が、ナトリウム二次電池に利用した場合に良好な電池性能が得られるとともに、水との反応による変質を抑制して、工程性および生産性の課題を解決できることを見出したのである。
【0016】
本発明の複合金属酸化物1は、好ましい態様としてP2またはP3型の結晶構造を有し、複合金属酸化物2は、P2またはP3型の結晶構造を有することを特徴とするが、P2、P3型構造についてさらに詳しく述べる。P2型構造を有するものの代表的な結晶系としては、その対称性から空間群P63/mmcに帰属される。P3型構造を有するものの代表的な結晶系としては、その対称性から空間群R3mに帰属される。また、さらに対称性が低下する場合にはCmcmなど斜方晶さらにはC2/mなど単斜晶系の空間群に帰属可能な場合もあるが、基本的な構造はP2またはP3型に分類される層状構造である。但し、P2またはP3型構造を母構造として、P3やP2、O3型の積層欠陥が起こることもある。なお、複合金属酸化物がP2またはP3型構造を有する酸化物であるか否かは、X線回折により確認することができる。具体的には実施例に記載の方法で確認することができる。
本発明の複合金属酸化物1の好ましい態様、及び複合金属酸化物2は、P2またはP3型の結晶構造を有するものであれば、X線回折におけるピークの位置等の詳細は特に限定されないが、X線源にCuKα線を用いた粉末X線回折測定において、18°から20°の範囲にピークが観察されないことが好ましい。18°から20°の範囲にピークが観察されないことによって、P2またはP3型の結晶構造以外の酸化物の含有量が少なく、良質な複合金属酸化物であると判断することができる。なお、「ピークが観察されない」とは、実質的にピークが観察されないことを意味し、ノイズと判断することができるピークは含まれないものとする。
【0017】
本発明の複合金属酸化物1は、NaMO(MはMn、Fe、Co、Niから選ばれる少なくとも1種の遷移金属であり、かつ0<x≦1である。)で表され、前記Mの一部がZnで置換されていることを特徴とするが、xの具体的数値は、上記条件を満たすものであれば特に限定されない。
xは、好ましくは1/3以上、より好ましくは1/2以上であり、好ましくは5/6以下、より好ましくは2/3以下である。xが大きいほど可動ナトリウムイオンが増加するため、可逆容量が大きくなり好ましいが、xが5/6を超えるとP2またはP3型構造以外の構造が現れる傾向があり、固相法での直接合成が難しくなるため、5/6以下とすることが好ましい。
また、前記Mの一部がZnで置換されていればよく置換されているZnの組成比aは特に限定されないが、aは、好ましくは0.01以上、より好ましくは0.05以上であり、好ましくは0.3以下、より好ましくは0.2以下である。なお、組成比aは、M元素:Zn=1−a:aで表される。
【0018】
本発明の複合金属酸化物1は、複合金属酸化物粉末1gに対して20ccの割合で純水を加え、室温で5分以上撹拌した後の分散液のpHが12以下であることを特徴とするが、分散液のpHは好ましくは11.5以下、より好ましくは11.0以下、さらに好ましくは10.5以下であり、通常8.0以上である。上記範囲内であると、工程性により優れた複合金属酸化物となる。なお、本願における純水は、25℃における比抵抗値が1〜10MΩ・cmの範囲にあるものを意味する。また、撹拌は複合金属酸化物1が純水中に分散する程度に行えばよい。
【0019】
本発明の複合金属酸化物2は、Na1−a(0<x≦1であり、MはMn、Fe、Co、Niから選ばれる少なくとも1種の遷移金属であり、MはZnであり、0<a≦0.3である。)で表されることを特徴とする。
xは、好ましくは1/3以上、より好ましくは1/2以上であり、好ましくは5/6以下、より好ましくは2/3以下である。
aは、好ましくは0.01以上、より好ましくは0.05以上であり、好ましくは0.3以下、より好ましくは0.2以下である。
上記範囲内であると、充放電(特に高電位)を繰り返しても高い放電容量を安定して示す材料となる。
Znは、遷移金属を置換しうる元素であって、2価の価数をとり、充放電を行っても価数変化の無い元素という特徴を持っている。Znを置換することによって、充電端でNaイオンが抜けきらないことによるピラー効果のため、材料の体積変化が抑制され、繰り返し充放電に対して安定な材料となるものと推定している。合計の置換量が0.3を超えると容量低下が大きく好ましくない。また置換量が0.01以上で置換効果が大きくなり好ましい。
【0020】
本発明の複合金属酸化物2は、Na1−aで表されることを特徴とするが、MとしてMnを含むことが好ましく、Na1−aに対して3価のMnの存在比が2モル%以下であることが好ましい。3価のMnの存在比が2モル%以
下となるよう組成を設計することで、複合金属酸化物を純水に分散させた分散液のpHを12以下とし易くなる。なお、3価のMnの存在比は、より好ましくは0.6モル%以下、更に好ましくは0.2モル%以下である。
【0021】
なお、x、aの値は、原料の使用量、製造条件等を制御することで調整することができる。詳細は後述する。
【0022】
(平均一次粒子径)
本発明の複合金属酸化物1及び複合金属酸化物2の平均一次粒子径は、特に限定されないが、下限としては通常0.1μm以上、好ましくは0.2μm以上、より好ましくは0.3μm以上、また、上限としては通常5μm以下、好ましくは3μm以下、より好ましくは2μm以下、更に好ましくは1.5μm以下である。平均一次粒子径が、上記上限を超えると比表面積が低下したりするために、レート特性や出力特性等の電池特性が低下する可能性が高くなる場合がある。上記下限を下回ると結晶が未発達であるために充放電の可逆性が劣る等の問題を生ずる可能性がある。
なお、本発明における複合金属酸化物の平均一次粒子径は、走査型電子顕微鏡(SEM)で観察した平均一次粒子径であり、30,000倍のSEM画像を用いて、10〜30個程度の複合金属酸化物の一次粒子径の平均値として求めることができる。
【0023】
(メジアン径(二次粒子))
本発明の複合金属酸化物1及び複合金属酸化物2の二次粒子のメジアン径(50%積算径(D50))は特に限定されないが、通常2μm以上、好ましくは2.5μm以上、より好ましくは4μm以上で、また、通常20μm以下、好ましくは18μm以下、より好ましくは15μm以下である。メジアン径がこの下限を下回ると、正極活物質層形成時の塗布性に問題を生ずる可能性があり、上限を超えると電池性能の低下を来す可能性がある。
【0024】
(BET比表面積)
本発明の複合金属酸化物1及び複合金属酸化物2のBET比表面積は、特に限定されないが、通常0.1m/g以上、好ましくは0.2m/g以上、より好ましくは0.3m/g以上で、通常10m/g以下、好ましくは5m/g以下、より好ましくは3m/g以下、更に好ましくは2m/g以下、最も好ましくは1m/g以下である。
BET比表面積がこの範囲よりも小さいと電池性能が低下しやすく、大きいと嵩密度が上がりにくくなり、正極活物質層形成時の塗布性に問題が発生しやすくなる可能性がある。
【0025】
(タップ密度)
本発明の複合金属酸化物1及び複合金属酸化物2のタップ密度は、特に限定されないが、通常0.8g/cc以上、好ましくは1g/cc以上、より好ましくは1.4g/cc以上、更に好ましくは1.5g/cc以上で、通常3.0g/cc以下、好ましくは2.8g/cc以下、より好ましくは2.5g/cc以下である。タップ密度がこの上限を上回ることは、粉体充填性や電極密度向上にとって好ましい一方、比表面積が低くなり過ぎる可能性があり、電池性能が低下する可能性がある。タップ密度がこの下限を下回ると粉体充填性や正極調製に悪影響を及ぼす可能性がある。
なお、本発明におけるタップ密度は、複合金属酸化物粉体5〜10gを10mlのメスシリンダーに入れ、ストローク20mmで200回タップした時の粉体充填密度として求める。
【0026】
本発明の複合金属酸化物1及び複合金属酸化物2は、前述の条件を満たすものであればその他については特に限定されないが、対極に金属ナトリウムを使用して電池を作製した
時の開回路電圧が、2.5V以上となることが好ましく、2.6V以上となることがより好ましく、2.7V以上となることがさらに好ましい。上記範囲内であると、良好な性能を有するナトリウム二次電池を製造することができる。
【0027】
(複合金属酸化物の製造方法)
本発明の複合金属酸化物1及び複合金属酸化物2は、以下に説明する通り、金属含有化合物の混合物を焼成することによって製造できるが、本発明の技術的範囲はかかる製造方法によって製造された複合金属酸化物に限定されないことは言うまでもない。
【0028】
具体的には、対応する金属元素を含有する金属含有化合物を所定の組成となるように秤量し混合した後に、得られた混合物を焼成することによって製造することができる。
【0029】
例えば、Na:Ni:Mn:Zn=2/3 : 5/18 : 2/3 : 1/18で表される金属元素比を有する複合金属酸化物は、炭酸ナトリウム(NaCO)と水酸化ニッケル(Ni(OH))と三酸化二マンガン(Mn)と酸化亜鉛(ZnO)の各原料を、Na:Ni:Mn:Znのモル比が7/10(5%過剰): 5/18 : 2/3: 1/18となるように秤量し、それらを混合し、得られた混合物を焼成することによって製造することができる。
【0030】
複合金属酸化物を製造するために用いることができる金属含有化合物としては、酸化物、水酸化物、オキシ水酸化物、炭酸水素塩、炭酸塩、硝酸塩、硫酸塩、ハロゲン化物、シュウ酸塩等の有機酸塩を用いることができる。ナトリウム化合物としてはNaCO、NaHCO、Naが好ましく、取り扱い性の観点で、より好ましくはNaCOである。マンガン化合物としてはMnO、Mn、Mnが好ましく、ニッケル化合物としてはNiCO、Ni(OH)、NiOOH、NiOが好ましい。また、置換元素Znの原料化合物の例として、ZnO、塩基性炭酸亜鉛、酢酸亜鉛が好ましい。また、これらの金属含有化合物は水和物であってもよい。
【0031】
金属含有化合物の混合には、ボールミル、V型混合機、攪拌機、ダイノーミル等の、工業的に通常用いられている装置を用いることができる。この時の混合は、乾式混合、湿式混合のいずれでもよい。また、晶析法によって、所定の組成の金属含有化合物の混合物を得てもよい。さらに、共沈法によって、所定の組成の複合金属炭酸塩または水酸化物を得た上でナトリウム化合物との混合物を得てもよい。
【0032】
上記のようにして得た金属含有化合物の混合物を焼成することによって、上記複合金属酸化物を得ることができる。焼成条件については特に限定されないが、焼成温度を700〜1000℃の範囲、焼成時間を2〜24時間の範囲に設定することが好ましい。焼成温度が800℃以上であれば、過度な積層欠陥の生成を抑制するという理由で好ましく、焼成温度が900℃以下であれば、一次粒子サイズを低減するという理由で好ましい。また、焼成時間が12時間以上であれば単一粒子の均一な化学組成を得るという理由で好ましく、焼成時間が24時間以下であれば低温で積層欠陥を維持したまま結晶成長を行わせることも可能になるという理由で好ましい。
【0033】
焼成時の雰囲気としては、例えば、窒素、アルゴン等の不活性雰囲気:空気、酸素、酸素含有窒素、酸素含有アルゴン等の酸化性雰囲気:及び水素を0.1〜10体積%含有する水素含有窒素、水素を0.1〜10体積%含有する水素含有アルゴン等の還元性雰囲気のいずれでもよい。強い還元性の雰囲気で焼成するために、適量の炭素を金属含有化合物の混合物に含有させて焼成してもよい。焼成時の雰囲気としては、空気等の酸化性雰囲気が好ましい。
【0034】
原料の金属含有化合物として、高温で分解及び/又は酸化しうる化合物、例えば水酸化物、炭酸塩、硝酸塩、硫酸塩、ハロゲン化物、シュウ酸塩を使用した場合、上記の焼成を行う前に、200〜500℃の温度範囲で金属含有化合物の仮焼を行って、酸化物にしたり、結晶水を除去したりしてもよい。仮焼を行う雰囲気は、不活性ガス雰囲気、酸化性雰囲気又は還元性雰囲気のいずれでもよい。また、仮焼後の仮焼物を粉砕して用いてもよい。
【0035】
また、上記のようにして得られる複合金属酸化物に、必要に応じボールミルやジェットミル等を用いた粉砕、分級等を行って、粒度を調節することが好ましいことがある。また、焼成を2回以上行ってもよい。また、複合金属酸化物の粒子表面をW、Mo、Zr、Si、Y、B等を含有する無機物質で被覆する等の表面処理を行ってもよい。また、複合酸化物は、その結晶構造がトンネル構造でないものが好ましい。
【0036】
<ナトリウム二次電池>
本発明のナトリウム二次電池は、前述の本発明の複合金属酸化物1または複合金属酸化物2から構成される正極活物質を含む正極を備えるものであれば、その他については特に限定されず、公知のナトリウム二次電池に用いられる材料、技術を適宜採用することができる。なお、本発明のナトリウム二次電池に使用される具体的な材料の種類およびその製造方法等については、後述するもののほか、例えば特開2011−236117号公報に記載されている内容を適宜採用することができる。
【0037】
[正極]
正極は集電体と、その集電対の表面に形成された正極活物質層を含み、正極活物質層は、正極活物質、導電材、結着剤を含む。
【0038】
正極活物質層中の正極活物質の含有量は特に限定されないが、80〜95質量%であることが好ましい。
【0039】
本発明に使用可能な導電材としては、天然黒鉛、人造黒鉛、コークス類、カーボンブラック等の炭素材料等が挙げられる。正極活物質層中の導電材の含有量は特に限定されないが、5〜10質量%であることが好ましい。
【0040】
本発明に使用可能な結着剤としては、ポリフッ化ビニリデン(以下、PVDFということがある。)ポリテトラフルオロエチレン(以下、PTFEということがある。)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体、四フッ化エチレン・パーフルオロビニルエーテル系共重合体等が挙げられる。これらをそれぞれ単独で用いてもよいし、二種以上を混合して用いてもよい。結着剤のその他の例示としては、例えば、デンプン、メチルセルロース、カルボキシメチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルヒドロキシエチルセルロース、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリアクリロニトリル、ニトロセルロース等の多糖類及びその誘導体が挙げられる。また、使用可能な結着剤として、無機の微粒子、例えばコロイダルシリカ等を挙げることもできる。正極活物質中の結着剤の含有量は特に限定されないが、5〜10質量%であることが好ましい。
【0041】
本発明に使用可能な集電体としては、ニッケル、アルミニウム、ステンレス(SUS)等の導電性の材料を用いた箔、メッシュ、エキスパンドグリッド(エキスパンドメタル)、パンチドメタル等が挙げられる。メッシュの目開き、線径、メッシュ数等は特に限定されず、従来公知のものを使用できる。集電体の一般的な厚さは5〜30μmである。ただし、この範囲を外れる厚さの集電体を用いてもよい。
【0042】
集電体の大きさは、電池の使用用途に応じて決定される。大型の電池に用いられる大型の電極を作製するのであれば、面積の大きな集電体が用いられる。小型の電極を作製するのであれば、面積の小さな集電体が用いられる。
【0043】
正極を製造する方法としては、先ず、正極活物質と導電材と結着剤と有機溶媒とを混合させて正極活物質スラリーを調製する。ここで使用可能な有機溶剤としては、N,N−ジメチルアミノプロピリアミン、ジエチルトリアミン等のアミン系;エチレンオキシド、テトラヒドロフラン等のエーテル系;メチルエチルケトン等のケトン系;酢酸メチル等のエステル系、ジメチルアセトアミド、N−メチル−2−ピロリドン等の非プロトン性極性溶媒等が挙げられる。
また、本発明の複合金属酸化物は水に対する安定性が高いため、水を溶媒に使用したスラリー中でも層状構造を維持するため、水和相が形成される場合にも乾燥することより水和水が容易に脱離し、電極作製を行うことが可能である。
【0044】
次いで、上記正極活物質スラリーを正極集電体上に塗工し、乾燥後プレスする等して固着する。ここで、正極活物質スラリーを正極集電体上に塗工する方法としては、例えばスリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法、グラビア塗工法、静電スプレー法等を挙げることができる。
【0045】
なお、正極活物質層を正極集電体上に形成する方法としては、上記の方法以外に、正極活物質、導電材、結着剤の混合物を正極集電体上に設置し、加圧成型する方法でもよい。
【0046】
[負極]
負極は集電体と、その集電体の表面に形成された負極活物質層を含み、負極活物質層は負極活物質及び結着剤を含む。また、負極としては、負極活物質を含む負極合剤を負極集電体に担持したもの、ナトリウム金属又はナトリウム合金等のナトリウムイオンを吸蔵・脱離可能な電極を用いることができる。
【0047】
負極活物質としては、ナトリウムを吸蔵・脱離することのできる天然黒鉛、人造黒鉛、コークス類、ハードカーボン、カーボンブラック、熱分解炭素類、炭素繊維、有機高分子化合物焼成体等の炭素材料が挙げられる。炭素材料の形状としては、例えば天然黒鉛のような薄片状、メソカーボンマイクロビーズのような球状、黒鉛化炭素繊維のような繊維状、又は微粉末の凝集体等のいずれでもよい。ここで炭素材料は、導電材としての役割を果たす場合もある。
【0048】
上記の通り、本発明において負極活物質は、特定のものに限定されないが、ハードカーボンを使用することが好ましい。負極活物質としてハードカーボンを使用することで、負極活物質が原因となる電池性能の低下を抑えられる。
【0049】
ハードカーボンは2000℃以上の高温で熱処理しても殆ど積層秩序が変化しない炭素材料であり、難黒鉛化炭素ともよばれる。ハードカーボンとしては、炭素繊維の製造過程の中間生成物である不融化糸を1000〜1400℃程度で炭化した炭素繊維、有機化合物を150〜300℃程度で空気酸化した後、1000〜1400℃程度で炭化した炭素材料等が例示できる。ハードカーボンの製造方法は特に限定されず、従来公知の方法により製造されたハードカーボンを使用することができる。
【0050】
ハードカーボンの平均粒径、真密度、(002)面の面間隔等は特に限定されず、適宜好ましいものを選択して実施することができる。
【0051】
負極活物質層中の負極活物質の含有量は特に限定されないが、80〜95重量%であることが好ましい。
【0052】
結着剤としては、正極に使用可能なものと同様のものが使用可能であるため、これらについては説明を省略する。集電体としては、ニッケル、アルミニウム、銅、ステンレス(SUS)等の導電性の材料を用いる。集電体は正極用の集電体と同様に、箔、メッシュ、エキスパンドグリッド(エキスパンドメタル)、パンチドメタル等から構成される。
【0053】
また、負極活物質層を集電体上に形成する方法としては、正極活物質層を集電体上に形成する方法と同様の方法を採用することができる。
【0054】
[電解質]
電解質は特に限定されず、一般的な電解液、固体電解質のいずれも使用可能である。電解液としては、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、イソプロピルメチルカーボネート、ビニレンカーボネート、フルオロエチレンカーボネート、4−トリフルオロメチル−1,3−ジオキソラン−2−オン、1,2−ジ(メトキシカルボニルオキシ)エタン等のカーボネート類;1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3−テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフラン等のエーテル類;ギ酸メチル、酢酸メチル、γ−ブチロラクトン等のエステル類;アセトニトリル、ブチロニトリル等のニトリル類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド類;3−メチル−2−オキサゾリドン等のカーバメート類;スルホラン、ジメチルスルホキシド、1,3−プロパンサルトン等の含硫黄化合物;又は上記の有機溶媒にさらにフッ素置換基を導入したものを用いることができる。通常は有機溶媒として、これらのうちの二種以上を混合して用いる。
【0055】
上記電解液の中でも、実質的に飽和環状カーボネート(ただし、エチレンカーボネートの単独使用を除く)、又は飽和環状カーボネートと鎖状カーボネートとの混合溶媒からなる非水溶媒を採用することが好ましい。特に、これらの非水溶媒の中からいずれかを採用し、負極活物質としてハードカーボンを採用すると、ナトリウム二次電池は優れた充放電効率及び充放電特性を持つ。必要に応じてリチウムイオン電池に用いられている既知の添加剤を用いてもよい。特に、フルオロエチレンカーボネートは添加剤として好ましい。
【0056】
ここで、「実質的に」とは、飽和環状カーボネートのみからなる非水溶媒(ただし、エチレンカーボネートの単独使用を除く)、飽和環状カーボネートと鎖状カーボネートとの混合溶媒からなる非水溶媒の他、充放電特性等のナトリウム二次電池の性能に影響を与えない範囲で、他の溶媒を本発明に用いる上記非水溶媒に含んだ溶媒も含むことを指す。
【0057】
飽和環状カーボネートの中でもプロピレンカーボネートの使用が好ましい。また、混合溶媒の中でもエチレンカーボネートとジエチルカーボネートとの混合溶媒、又はエチレンカーボネートとプロピレンカーボネートとの混合溶媒の使用が好ましい。
【0058】
電解質として、電解液を採用した場合に使用可能な電解質塩は、特に限定されず、ナトリウム二次電池に一般的に用いられる電解質塩を使用できる。
【0059】
ナトリウム二次電池に一般的に用いられる電解質塩としては、例えば、NaClO、NaPF、NaBF、CFSONa、NaAsF,NaB(C,CHSONa、NaN(SOCF、NaN(SO、NaC(SOCF、NaN(SOCF等を挙げることができる。また、電解質塩と
して、前記Na塩の他、Li塩を用いてもよい。なお、これらの電解質のうち1種を用いてもよく、あるいは2種以上を組み合わせて用いてもよい。
【0060】
また、電解液中の電解質塩の濃度は特に限定されないが、上記電解質塩の濃度は3〜0.1mol/lであることが好ましく、1.5〜0.5mol/lであることがより好ましい。
【0061】
固体電解質としては、例えばポリエチレンオキサイド系の高分子化合物、ポリオルガノシロキサン鎖もしくはポリオキシアルキレン鎖の少なくとも一種以上を含む高分子化合物等の有機系固体電解質を用いることができる。また、高分子化合物に非水電解質溶液を保持させた、いわゆるゲルタイプのものを用いることもできる。また、NaS−SiS、NaS−GeS、NaTi(PO、NaFe(PO、Na(SO、Fe(SO(PO)、Fe(MoO等の無機系固体電解質を用いてもよい。本発明のP2型およびP3型層状構造を有する複合金属酸化物は、O3型層状構造を有する複合金属酸化物よりも柔らかいため、固体電解質との密着性に優れた効果が期待できる。
【0062】
[ナトリウム二次電池の構造]
本発明のナトリウム二次電池の構造としては特に限定されず、形態・構造で区別した場合には、積層型(扁平型)電池、捲回型(円筒型)電池等、従来公知のいずれの形態・構造にも適用しうるものである。また、ナトリウム二次電池内の電気的な接続形態(電池構造)で見た場合、(内部並列接続タイプ)電池及び双極型(内部直列接続タイプ)電池のいずれにも適用しうるものである。
【0063】
(満充電状態における正極の充電電位)
本発明のナトリウム二次電池は、満充電状態における正極の充電電位が4.35V(vs.Na/Na)以上となるように設計されていることが好ましい。なお、「正極の充電電位が4.35V(vs.Na/Na)以上となるように設計されている」とは、ナトリウム二次電池が4.35V(vs.Na/Na)以上という高い充電電位で使用されることを考慮して、ナトリウム二次電池の構造や材料等が適宜選択されることを意味する。
即ち、本発明のナトリウム二次電池正極材料用複合酸化物は、前述の特定の組成により、4.35V(vs.Na/Na)以上という高い充電電位で充電するように設計されたナトリウム二次電池に使用した場合において、サイクル特性を高める効果を有効に発揮する。ただし、前記充電電位が4.35V未満として使用することも可能である。
【実施例】
【0064】
以下、本発明について実施例を挙げて詳細に説明する。なお、本発明は、以下に示す実施例に何ら限定されるものではない。
【0065】
(実施例1)
NaCO、Ni(OH)、Mn、ZnOを、Na:Ni:Mn:Znのモル比が7/10(5%過剰) : 5/18 : 2/3 : 1/18となるように秤量し、ボールミルで12時間にわたって混合して金属含有化合物の混合物を得た。得られた混合物をペレット成型した後、アルミナボートに充填し、電気炉を用いて大気雰囲気において900℃で24時間の条件で焼成することによって、実施例1の複合金属酸化物(P2−Na2/3Ni5/18Mn2/3Zn1/18)を得た。EDXによりZnが導入されていることを確認した。
【0066】
上記複合金属酸化物からなる正極活物質、導電材としてのアセチレンブラック、及び結
着剤としてのポリビニリデンフルオライドを、正極活物質:導電材:結着剤=80:10:10(質量比)の組成となるように以下の手順で電極を作製した。先ず、正極活物質と導電材をメノウ乳鉢で十分に混合し、この混合物に結着材とN−メチルピロリドンを加えて引き続き均一になるように混合し、混合物をスラリー化した。次いで、得られた正極活物質スラリーを、集電体となる厚さ20μmのアルミ箔上に、アプリケータを用いて40μmの厚さで塗布し、これを乾燥機に入れ、N−メチルピロリドンを除去しながら十分に乾燥することによって電極シートを得た。この電極シートを電極打ち抜き機で直径1.0cmに打ち抜いて正極を得た。
【0067】
対極に金属ナトリウムを用いて作製した負極と、作用極に上記複合金属酸化物を用いて作製した正極とを使用してコイン型ナトリウム二次電池を作製した。電解液としては、1Mの電解質塩(NaPF)を非水溶媒(プロピレンカーボネート)に溶解させたものを用いた。セパレータとしてはガラスフィルタを使用した。また、ナトリウム二次電池の作製は、アルゴンを満たしたグローブボックス中にて行った。
【0068】
(実施例2)
複合金属酸化物の製造において、焼成温度および処理時間を700℃、48時間とした以外は実施例1と同様の方法で、実施例2の複合金属酸化物(P3−Na2/3Ni5/18Mn2/3Zn1/18)を製造した。EDXによりZnが導入されていることを確認した。そして、実施例2の複合金属酸化物を用いて作製した正極を使用した以外は、実施例1と同様の方法で、実施例2のコイン型ナトリウム二次電池を作製した。
【0069】
(比較例1)
複合金属酸化物の製造において、NaCO、Ni(OH)、MnをNa:Ni:Mnのモル比が7/10(5%過剰): 1/3 : 2/3となるように秤量した
以外は実施例1と同様の方法で、比較例1の複合金属酸化物(P2−Na2/3Ni1/3Mn2/3)を製造した。そして、比較例1の複合金属酸化物を用いて作製した正極を使用した以外は、実施例1と同様の方法で、比較例1のコイン型ナトリウム二次電池を作製した。
【0070】
(比較例2)
複合金属酸化物の製造において、NaCO、Ni(OH)、Mnを、Na:Ni:Mnのモル比が7/10(5%過剰): 1/3 : 2/3:となるように秤量した以外は実施例2と同様の方法で、比較例2の複合金属酸化物(P3−Na2/3Ni1/3Mn2/3)を製造した。そして、比較例2の複合金属酸化物を用いて作製した正極を使用した以外は、実施例1と同様の方法で、比較例2のコイン型ナトリウム二次電池を作製した。
【0071】
(評価1)XRD測定による結晶構造の同定
実施例及び比較例の複合金属酸化物について、粉末X線回折測定を行った。測定は、リガク製の粉末X線回折測定装置MultiFlexを用いて、以下の条件で行った。
X線:CuKα
電圧−電流:40kV−20mA
測定角度範囲:2θ=10〜70°
ステップ:0.02°
スキャンスピード:6°/分
【0072】
実施例1の測定結果を図1aに、実施例2の測定結果を図1bに、比較例1の測定結果を図1cに、比較例2の測定結果を図1dに示した。
【0073】
図1a〜図1dより、実施例1、比較例1の複合金属酸化物は、P2型層状構造を、実施例2、比較例2の複合金属酸化物は、P3型層状構造を有する酸化物が略単相で得られていることが判る。また実施例1、比較例1の複合金属酸化物は、48°付近の(104)回折線ピークの半値幅が0.3度程度であることから、若干の積層欠陥を含むP2型層状構造を有する酸化物であることが確認された。
【0074】
(評価2)pH測定による耐水性評価
実施例及び比較例の複合金属酸化物について、pH測定を実施した。測定は、複合金属酸化物粉末1gに対して20ccの割合で純水を加え、室温で5分以上撹拌した後の分散液のpHを、市販のガラス電極を用いたpH計で測定することで評価した。
【0075】
実施例及び比較例の複合金属酸化物のpH測定結果を以下に記載する。
実施例1の複合金属酸化物のpHは11.9であった。
実施例2の複合金属酸化物のpHは11.8であった。
比較例1の複合金属酸化物のpHは11.9であった。
比較例2の複合金属酸化物のpHは12.0であった。
【0076】
pHが12より高い材料は、電極作製工程で混入する水分の影響を受けやすく以下のような実用上多くの問題を引き起こすため好ましくない。極板作製用スラリーがゲル化しやすくなること、Al集電体を溶解させる懸念があること、残存アルカリが原因で電池として使用した時に発生ガス量が増加するため信頼性に懸念が生じることなどの問題である。pHが12より高い材料を実用的に使用するためには厳密な水分管理が必要となり工程性を悪化させる。本実施例の複合金属酸化物は水との反応を抑制し、pHが12以下であるため、上述した欠点がなく工程性に優れるものである。水を溶媒に使用したスラリー中でも材料の変化がなく電極作製を行うことが可能である。
【0077】
ナトリウム含有層状複合金属酸化物と水との反応によるpH上昇については2種類の反応が存在することを確認している。以下に反応式と反応メカニズムを記載する。
【0078】
第一の反応は、NaとHのイオン交換反応であり、O3型層状構造の複合金属酸化物にみられ、(式1)で記述できる。Hが挿入された金属酸化物材料は乾燥にともなう脱水過程を経て構造破壊に至る。8割以上のNaが溶出することを確認している。
(式1) NaFe(III)0.4Ni(II)0.3Mn(IV)0.3+H
→NaOH+Fe(III)0.4Ni(II)0.3Mn(IV)0.3OOH
【0079】
第二の反応は、層状構造中の3価のMnによる水の還元分解反応である。(式2)で記述できる。水素発生を伴い3価のMnが4価に酸化される反応が進行する。P2型またはP3型層状構造の複合金属酸化物ではイオン交換反応は起こらず、3価のMnが消費された時点で反応は停止し、P2型、P3型およびそれらの水和相からなるが、層状構造は維持され、それらの水和相も150℃で乾燥することによりP2型、P3型構造に戻ることを
確認している。
(式2) Na2/3Fe(III)1/2Mn(III)1/6Mn(IV)1/3+H
→1/6NaOH+1/12H+Na1/2Fe(III)1/2Mn(IV)1/2
また、この結果は、本発明の複合金属酸化物の製造においても、水洗および乾燥工程を加えることが可能であることを示している。
【0080】
層状複合金属酸化物のイオン交換反応は、Naの占有サイトの形状と大きな相関が認められる。O3型層状構造の複合金属酸化物のように、Naが層間のオクタヘドラルサイトに存在する場合、隣接する空の4配位サイトにHが安定配置しやすく、イオン交換が進行するのに対して、P2型層状構造あるいはP3型層状構造の複合金属酸化物のように、Naが層間のプリズマティックサイトに存在する場合は、隣接する空のプリズマティックサイトにHが安定配置できないためイオン交換は進行しないものと推定している。
【0081】
水との反応を抑制しpHの上昇を抑えるためには、Naがプリズマティックサイトに存在し、水の還元分解反応が進行しない平衡電位をもつ材料を設計することで達成できる。層状複合金属酸化物中に3価のMnが存在する場合は、その量を2モル%以下となるよう組成を設計することでpHを12以下とすることができる。
複合金属酸化物NaMO中の3価のMnの存在量と生成するNaOHの量は、上述の(式2)の反応に従い等しくなることが判る。従って、3価のMnの存在量とpHの関係は、以下の式(式3)により見積もることができる。
(式3)pH=14−p[OH
=14+Log[y/(2×FW)]
≒14+Log[y/200]
(但し、FWは複合金属酸化物NaMOの式量であり、化合物組成により若干異なるが約100とすることができる。yは複合金属酸化物NaMO中の3価のMnのモル%である。)
【0082】
(評価3)充放電評価
実施例1のナトリウム二次電池について、充放電評価を行った。各正極材料に対して電流密度が12.9mA/gになるように設定し、4.5V(充電電圧)まで定電流充電を行った。充電後、電流密度が12.9mA/gの電流になるように設定し、2.0V(放電電圧)まで定電流放電を行った。この充放電を20サイクル行い、20サイクル後の容量維持率は93.2%であり、高サイクル維持率であることが確認された。なお、充放電は、温度25℃の条件下で行った。また、あわせて開回路電圧を測定した。
【0083】
実施例2のナトリウム二次電池の充放電評価を、実施例1のナトリウム二次電池の充放電評価と同様の方法で行った。20サイクル後の容量維持率は85.0%であり、高サイクル維持率であることが確認された。
【0084】
比較例1のナトリウム二次電池の充放電評価を、実施例1のナトリウム二次電池の充放電評価と同様の方法で行った。20サイクル後の容量維持率は72.9%であり、低サイクル維持率であることが確認された。
【0085】
比較例2のナトリウム二次電池の充放電評価を、実施例1のナトリウム二次電池の充放電評価と同様の方法で行った。20サイクル後の容量維持率は73.2%であり、低サイクル維持率であることが確認された。
【0086】
実施例1、2および比較例1、2の結果を表1にまとめる。本実施例の複合金属酸化物は、Znによって遷移金属元素が置換されており、かつpHが12以下であるため、良好なサイクル特性を有し、工程性にも優れる材料であることが判る。
【0087】
【表1】
【産業上の利用可能性】
【0088】
本発明のナトリウム二次電池用正極活物質を備えたナトリウム二次電池の用途は特に限定されず、公知の各種の用途に用いることが可能である。具体例としては、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、定置型電源、モーター、照明器具、玩具、ゲーム機器、時計、ストロボ、カメラ、ペースメーカー、電動工具、自転車・バイク用動力源、自動車用動力源、軌道車両動力源、人工衛星用動力源等を挙げることができる。
図1a
図1b
図1c
図1d