【実施例】
【0031】
以下、実施例を参照しながら、本発明をより具体的に説明する。
(実施例1)
(1)ε酸化鉄粒子の調製
Ga置換タイプのε−Fe
2O
3結晶粒子(但し、GaとFeのモル比をGa:Fe=x:(2−x)と表すときx=0.45であるもの。)を調製した。
〈手順1〉
原料溶液と中和剤溶液の2種類の溶液を調製した。
【0032】
《原料溶液の調製》
ガラス製の5Lビーカーに、純水4153mL、硝酸鉄(III)9水和物(純度99%)を442g、硝酸ガリウム(III)8水和物(純度99%)を127g添加し、室温でよく撹拌しながら溶解させ、原料溶液とした。
このときの仕込み組成は、GaとFeのモル比をGa:Fe=x:(2−x)と表すときx=0.45であった。
【0033】
《中和剤溶液の調製》
21.3%アンモニア水374.3gを、中和剤溶液とした。
【0034】
〈手順2〉
原料溶液を1200rpmでよく撹拌しながら、原料溶液中に中和剤溶液を毎時約500mLの速度で滴下することにより、両液を撹拌混合し、中和反応を進行させた。全量を滴下した後、混合液を30分間撹拌し続けた。液は赤褐色となり、鉄およびガリウムの水酸化物が生じたことがわかった。
【0035】
〈手順3〉
手順2で得られた混合液を撹拌しながら、当該混合液にテトラエトキシシラン469mL(仕込み割合でSi/(Fe+Ga)×100=150モル%に相当する。)を毎時約125mLの速度で滴下した。約1日そのまま、撹拌し続けた。
【0036】
〈手順4〉
手順3で得られた溶液を遠心分離機にセットして遠心分離処理した。この処理で得られた沈殿物を回収した。回収された沈殿物(前駆体)を、純水を用いて複数回洗浄した。
【0037】
〈手順5〉
手順4で得られた沈殿物(前駆体)を乾燥した後、その乾燥粉に対し、大気雰囲気の炉内において1100℃で4時間の熱処理を施した。
【0038】
〈手順6〉
手順5で得られた熱処理粉を2モル/LのNaOH水溶液中で24時間撹拌し、粒子表面の珪素酸化物の除去処理を行った。次いで、ろ過・水洗し、乾燥した。
【0039】
以上の手順1から6を経ることによって、目的とするε酸化鉄粒子を得た。
得られたε酸化鉄粒子のTEM平均粒子径は25.4nm、標準偏差は11.1nm、(標準偏差/TEM平均粒径)×100で定義される変動係数は43.7%であった。
【0040】
(2)ε酸化鉄粒子分散液の調製
ε酸化鉄粒子10mgと、混合溶媒(トルエン:メチルエチルケトン=1:1)1.4mlと、ビヒクル(アセチルアセトン0.25gと、ステアリン酸n−ブチル0.25g、シクロヘキサン97.9mLとの混合溶媒へ、ウレタン樹脂(東洋紡社製UR−8200)34.9gと、塩化ビニル樹脂(日本ゼオン社製MR−555)15.8gとを溶解したもの)0.5mLと、0.3mmφのジルコニアボール20gとを、50mLの遠沈管に装填した。そして、当該遠沈管を振盪機に設置し、振盪数2000回/min、振幅3mm、4時間の振盪撹拌を実施して、ε酸化鉄粒子を混合溶媒中へ分散させて、ε酸化鉄粒子分散液を得た。
【0041】
(3)ε酸化鉄粒子を含む配向膜である磁気シートの調製
2cm角のガラス基板を準備し、当該ガラス基板上にポリエステルフィルム(東レ株式
会社製、ルミラー)を設置した。
当該ポリエステルフィルム上へ、ピペットを用いて、得られたε酸化鉄粒子分散液を約0.03mL滴下した。
当該ε酸化鉄粒子分散液を滴下したガラス基板を、超電導磁石下において8テスラの磁束密度を印加しながら36時間静置し、混合溶媒を揮散させてビヒクルを硬化させ、実施例1に係るε酸化鉄粒子を含む配向膜である磁気シートを調製した。
【0042】
(4)ε酸化鉄粒子を含む配向膜である磁気シートの磁気特性
実施例1に係るε酸化鉄粒子を含む配向膜である磁気シートの磁気特性について、図面を参照しながら説明する。
図1は、実施例1に係るε酸化鉄粒子を含む配向膜である磁気シートの70kOe(5.57×10
6A/m)における常温(300K)における磁気ヒステリシスループを示すグラフであり、
図2は、当該
図1の±30kOeにおけるグラフの拡大図である。
図1,2は、磁化困難軸方向を0°とし、それに垂直(90°)な方向を磁化容易軸方
向として、15°毎に磁気ヒステリシスループを測定した結果を重ねて記載したものである。
ここで、
図1,2において、磁化困難軸方向から0°のループを〇、15°のループを●、30°のループを△、45°のループを▽、60°のループを▲、75°のループを□、90°(磁化容易軸)のループを■でプロットした。
尚、磁気ヒステリシスループの測定は、カンタムデザイン社製のMPMS7の超伝導量子干渉計(SQUID)を用いた。そして、測定された磁気モーメントの値は、酸化鉄の質量で規格化してある。
図1,2より、本発明に係るε酸化鉄を含む配向体は、ε酸化鉄固有の性質を発揮していることが判明した。
【0043】
一方、
図3は、実施例1に係るε酸化鉄粒子を含む配向膜である磁気シートにおける自発磁化と、磁化困難軸との角度との関係を示すグラフである。
【0044】
図1〜3に示す結果から、磁化容易軸方向から磁化困難軸方向へ向けての、飽和磁化、残留磁化、角形比(SQ)の値を求めた。当該結果を表1に示す。
そして、当該表1の結果より、配向度=SQ(磁化容易軸方向)/SQ(磁化困難軸方向)にて定義される配向度の値が4.6と、3.5以上であることが判明し、磁気的な挙動がシャープであると考えられる。この結果、実施例1に係るε酸化鉄粒子を含む配向膜である磁気シートにおいても、単結晶に近い水準にて磁気記録密度の向上や、ファラデー効果の効率向上が期待できるものである。
【0045】
【表1】
【0046】
(実施例2)
実施例1にて説明した「(3)ε酸化鉄粒子を含む配向膜である磁気シートの調製」において、ε酸化鉄粒子分散液を滴下したガラス基板を、超電導磁石下において2テスラの磁束密度を印加しながら36時間静置し、混合溶媒を揮散させてビヒクルを硬化させた以外は、実施例1と同様の操作を行い、実施例2に係る磁気シートを調製した。
そして、当該実施例2に係る磁気シートの磁気特性を実施例1と同様に測定した。
その結果、配向度=SQ(磁化容易軸方向)/SQ(磁化困難軸方向)にて定義される配向度の値は4.8と、3.5以上であることが判明し、磁気的な挙動がシャープであると考えられる。この結果、実施例2に係るε酸化鉄粒子を含む配向膜である磁気シートにおいても、単結晶に近い水準にて磁気記録密度の向上や、ファラデー効果の効率向上が期待できるものである。当該結果を表2に示す。
【0047】
【表2】
【0048】
(比較例1)
(1)ε酸化鉄粒子の調製
〔手順1〕
ミセル溶液Iとミセル溶液IIの2種類のミセル溶液を調整した。
・ミセル溶液Iの作製
テフロン(登録商標)製のフラスコに、純水9mL、n−オクタン27.4mLおよび1−ブタノール5.4mLを入れた。そこに、硝酸鉄(III)9水和物を0.0060モル添加し、室温で良く撹拌しながら溶解させた。さらに、界面活性剤としての臭化セチルトリメチルアンモニウムを、純水/界面活性剤のモル比が35となるような量で添加し、撹拌により溶解させ、ミセル溶液Iを得た。
【0049】
・ミセル溶液IIの作製
25%アンモニア水4mLを純水2mLに混ぜて撹拌し、その液に、さらにn−オクタン18.3mLと1−ブタノール3.6mLを加えてよく撹拌した。その溶液に、界面活性剤として臭化セチルトリメチルアンモニウムを、(純水+アンモニア中の水分)/界面活性剤のモル比が30となるような量で添加し、溶解させ、ミセル溶液IIを得た。
【0050】
〔手順2〕
ミセル溶液Iをよく撹拌しながら、ミセルI溶液に対してミセル溶液IIを滴下した。滴下終了後、混合液を30分間撹拌し続けた。
【0051】
〔手順3〕
手順2で得られた混合液を撹拌しながら、当該混合液にテトラエトキシシラン6.0mLを加える。約1日そのまま、撹拌し続けた。
【0052】
〔手順4〕
手順3で得られた溶液を遠心分離機にセットして遠心分離処理した。この処理で得られた沈殿物を回収した。回収された沈殿物をクロロホルムとメタノールの混合溶液を用いて複数回洗浄した。
【0053】
〔手順5〕
手順4で得られた沈殿物を乾燥した後、大気雰囲気の炉内にて1150℃で4時間の熱処理を施した。
【0054】
〔手順6〕
手順5で得られた熱処理粉を、メノウ製乳鉢により丁寧に解粒を実施したのち、水酸化テトラメチルアンモニウム(N(CH
3)
4OH)水溶液1モル/Lにより72時間、70℃で撹拌して粒子表面に存在するであろうシリカの除去処理を行った。その後溶液を、遠心分離器(日立工機製CR21GII)を用いて8000rpmで遠心分離して、ε−Fe
2O
3結晶粉体からなる沈殿物を得た。この段階で、上澄みは濁っていたが、上澄み中の粒子は粒子径が小さく、超常磁性粒子を多く含有しているため、廃棄した。
当該手順6により、ε−Fe
2O
3結晶粉体を得た。
【0055】
得られたε−Fe
2O
3結晶粒子のTEM平均粒子径は27.6nm、粒子径の標準偏差は13.0nm、[粒子径の標準偏差]/[TEM平均粒子径]×100により算出される変動係数は47.0%であった。
【0056】
(2)ε酸化鉄粒子分散液の調製
上記ε−Fe
2O
3結晶粉体に純水を添加し、超音波洗浄器に3時間かけ分散させることにより、ε−Fe
2O
3結晶粉体の粒子が分散したコロイド溶液を得た。このとき、コロイド溶液中のε−Fe
2O
3結晶粉体の濃度は15g/Lとした。
【0057】
(3)ε酸化鉄粒子を含む配向膜である磁気シートの調製
上記コロイド溶液にテトラメトキシシラン(Si(CH
3O)
4)を加え、2テスラの磁場中で、水との加水分解反応によりSiO
2ゲルを生成させる手法により作製した。まず上記コロイド水溶液0.3mLと純水0.6mLをよく混ぜておく。この液にテトラメトキシシランを0.09mL加えて、すばやく撹拌して容器(ガラス製シャーレ)に流し込んだ。超伝導磁石を使った2テスラの磁場中に容器をセットし、24時間待った。その間に、磁場を受けながらコロイドがゲル化し、磁気シートが得られた。
【0058】
(4)ε酸化鉄粒子を含む配向膜である磁気シートの磁気特性
得られた磁気シートに対して、実施例1と同様に磁気特性を測定した。
その結果、配向度=SQ(磁化容易軸方向)/SQ(磁化困難軸方向)にて定義される配向度の値が3.2と、3.5に到達しないことが判明し、磁気的な挙動のシャープさは、実施例1に及ばないことが判明した。