【実施例】
【0061】
以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」及び「部」は、特に断らない限り、質量基準である。
なお、実施例において、酸化セルロースナノファイバーのカルボキシル基量、並びに、含金属酸化セルロースナノファイバーの数平均繊維径、数平均繊維長、重合度および金属量は、それぞれ以下の方法を使用して評価した。
【0062】
<カルボキシル基量>
乾燥重量を精秤した酸化セルロースナノファイバーのパルプ試料から酸化セルロースナノファイバーの濃度が0.5〜1質量%の分散液を60mL調製した。次に、0.1Mの塩酸によって分散液のpHを約2.5とした後、0.05Mの水酸化ナトリウム水溶液を滴下して、pHが11になるまでの電気伝導度の変化を観測した。そして、電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(V)から、下式を用いて酸化セルロースナノファイバー中のカルボキシル基量を算出した。
カルボキシル基量(mmol/g)={V(mL)×0.05}/パルプ試料の質量(g)
<数平均繊維径>
含金属酸化セルロースナノファイバー分散液を希釈して含金属酸化セルロースナノファイバーの濃度が0.0001質量%の分散液を調製した。その後、得られた分散液をマイカ上に滴下し、乾燥させて観察試料とした。そして、原子間力顕微鏡(Dimension FastScan AFM、BRUKER社製、Tapping mode)を使用して観察試料を観察し、含金属酸化セルロースナノファイバーが確認できる画像において、含金属酸化セルロースナノファイバー5本以上の繊維径を測定し、平均値を算出した。
<数平均繊維長>
含金属酸化セルロースナノファイバー分散液を希釈して含金属酸化セルロースナノファイバーの濃度が0.0001質量%の分散液を調製した。その後、得られた分散液をマイカ上に滴下し、乾燥させて観察試料とした。そして、原子間力顕微鏡(Dimension FastScan AFM、BRUKER社製、Tapping mode)を使用して観察試料を観察し、含金属酸化セルロースナノファイバーが確認できる画像において、含金属酸化セルロースナノファイバー5本以上の繊維長を測定し、平均値を算出した。
<重合度>
調製した含金属酸化セルロースナノファイバーを水素化ホウ素ナトリウムで還元し、分子中に残存しているアルデヒド基をアルコールに還元した。その後、還元処理を施した含金属酸化セルロースナノファイバーを0.5Mの銅エチレンジアミン溶液に溶解させ、粘度法にて重合度を求めた。具体的には、「Isogai, A., Mutoh, N., Onabe, F., Usuda, M., “Viscosity measurements of cellulose/SO
2-amine-dimethylsulfoxide solution”, Sen’i Gakkaishi, 45, 299-306 (1989).」に準拠して、重合度を求めた。
なお、水素化ホウ素ナトリウムを用いた還元処理は、アルデヒド基が残存していた場合に銅エチレンジアミン溶液への溶解過程でベータ脱離反応が起こって分子量が低下するのを防止するために行ったものである。
<金属量>
ICP−AES法により、含金属酸化セルロースナノファイバー中の金属を定性および定量した。なお、測定にはSPS5100(SIIナノテクノロジー製)を用いた。また、イオンクロマトグラフ法により、各イオンの量を定量した。なお、測定には、DX500(DIONEX製)を用いた。
そして、各測定結果から、酸化セルロースナノファイバーのカルボキシル基と塩を形成している金属の量を求めた。
【0063】
(実施例1)
<酸化セルロースナノファイバー分散液の調製>
乾燥重量で1g相当分の針葉樹漂白クラフトパルプと、共酸化剤としての5mmolの次亜塩素酸ナトリウムおよび0.1g(1mmol)の臭化ナトリウムと、酸化触媒としての0.016g(1mmol)のTEMPOとを100mLの水に分散させ、室温で4時間穏やかに攪拌し、TEMPO触媒酸化法により針葉樹漂白クラフトパルプを酸化処理した。そして、得られた酸化パルプを蒸留水で洗浄し、TEMPO触媒酸化パルプ(酸化セルロース)を得た。なお、得られたTEMPO触媒酸化パルプのカルボキシル基量は、1.4mmol/gであった。
その後、未乾燥のTEMPO触媒酸化パルプに蒸留水を加え、固形分濃度0.1%の分散液を調製した。そして、分散液に、ホモジナイザー(マイクロテック・ニチオン製、ヒスコトロン)を使用して7.5×1000rpmで2分間、超音波ホモジナイザー(nissei製、Ultrasonic Generator)を使用し、容器の周りを氷で冷やしながら、V−LEVEL4、TIP26Dで4分間の解繊処理を施すことで、酸化セルロースナノファイバーとしてカルボキシル化セルロースナノファイバーを含む水分散液を得た。そして、カルボキシル化セルロースナノファイバー水分散液から、遠心分離機(SAKUMA製、M201-1VD、アングルローター50F-8AL)を使用して遠心分離(12000G(120×100rpm/g)、10分間、12℃)により未解繊成分を取り除き、透明な液体である濃度0.1%のカルボキシル化セルロースナノファイバー水分散液1を得た。なお、カルボキシル化セルロースナノファイバーは、共酸化剤由来のナトリウム(第1の金属)を塩の形で含有していた。
<含金属酸化セルロースナノファイバー分散液の調製>
50gのカルボキシル化セルロースナノファイバー水分散液1を撹拌し、そこへ第2の金属の塩の水溶液として濃度0.1%の酢酸銅(II)水溶液18gを加え、室温で3時間撹拌を継続した(金属置換工程)。
その後、酢酸銅(II)水溶液の添加によりゲル化したカルボキシル化セルロースナノファイバーを遠心分離機(SAKUMA製、M201-1VD、アングルローター50F-8AL)を使用して遠心分離(12000G(120×100rpm/g)、10分間、12℃)により回収し、回収したカルボキシル化セルロースナノファイバーを濃度0.1%の酢酸銅(II)水溶液および多量の蒸留水で順次洗浄した(洗浄工程)。
次に、50mLの蒸留水を加え、超音波ホモジナイザー(nissei製、Ultrasonic Generator)を使用し、容器の周りを氷で冷やしながら、V−LEVEL4、TIP26Dで超音波処理(2分間)を行い、金属置換されたカルボキシル化セルロースナノファイバーを分散させた。その後、遠心分離機(SAKUMA製、M201-1VD、アングルローター50F-8AL)を使用して遠心分離(12000G(120×100rpm/g)、10分間、12℃)により未解繊成分を取り除き、透明な液体である濃度0.1%の含金属カルボキシル化セルロースナノファイバー水分散液を得た(分散工程)。
<含金属酸化セルロースナノファイバー分散液の評価>
クロスニコルの状態に配した2枚の偏光板の間に得られた含金属カルボキシル化セルロースナノファイバー水分散液を配置し、反対側から光を当てつつ偏光板の間で水分散液を揺らすと、複屈折が観測された。これにより、含金属カルボキシル化セルロースナノファイバーが水中で良好に分散していることが確認された。なお、複屈折と分散性との関係については、国際公開第2009/069641号等に開示されている。
また、含金属カルボキシル化セルロースナノファイバーの数平均繊維径は3.13nmであり、数平均繊維長は550nmであった。これより、含金属カルボキシル化セルロースナノファイバーはミクロフィブリルレベルで水中に分散していることが確認できた。また、含金属カルボキシル化セルロースナノファイバーの平均重合度は600であった。
更に、ICP−AES法による測定の結果、含金属カルボキシル化セルロースナノファイバーには、銅(Cu)がカルボキシル化セルロースナノファイバーのカルボキシル基のモル量の1/2の割合で存在しており、ナトリウムの量は1質量ppm以下であることが分かった。また、イオンクロマトグラフ法によるイオン量の定量の結果、酢酸イオン量が0.5質量ppm以下であることが分かった。そして、これらの結果より、含金属カルボキシル化セルロースナノファイバーでは、カルボキシル化セルロースナノファイバーのナトリウムイオンが銅イオンで置換されており、カルボキシル基2つに対して1個の銅イオンが結合していると推察される。
【0064】
(実施例2)
<酸化セルロースナノファイバー分散液の調製>
実施例1と同様にして濃度0.1%のカルボキシル化セルロースナノファイバー水分散液1を得た。
<含金属酸化セルロースナノファイバー分散液の調製>
金属置換工程において濃度0.1%の酢酸銅(II)水溶液18gに替えて濃度0.1%の酢酸コバルト(II)水溶液19gを使用し、洗浄工程において濃度0.1%の酢酸銅(II)水溶液に替えて濃度0.1%の酢酸コバルト(II)水溶液を使用した以外は実施例1と同様にして、濃度0.1%の含金属カルボキシル化セルロースナノファイバー水分散液を得た。
<含金属酸化セルロースナノファイバー分散液の評価>
クロスニコルの状態に配した2枚の偏光板の間に得られた含金属カルボキシル化セルロースナノファイバー水分散液を配置し、反対側から光を当てつつ偏光板の間で水分散液を揺らすと、複屈折が観測された。これにより、含金属カルボキシル化セルロースナノファイバーが水中で良好に分散していることが確認された。
また、含金属カルボキシル化セルロースナノファイバーの数平均繊維径は3.15nmであり、数平均繊維長は560nmであった。これより、含金属カルボキシル化セルロースナノファイバーはミクロフィブリルレベルで水中に分散していることが確認できた。また、含金属カルボキシル化セルロースナノファイバーの平均重合度は650であった。
更に、ICP−AES法による測定の結果、含金属カルボキシル化セルロースナノファイバーには、コバルト(Co)がカルボキシル化セルロースナノファイバーのカルボキシル基のモル量の1/2の割合で存在しており、ナトリウムの量は1質量ppm以下であることが分かった。また、イオンクロマトグラフ法によるイオン量の定量の結果、酢酸イオン量が0.5質量ppm以下であることが分かった。そして、これらの結果より、含金属カルボキシル化セルロースナノファイバーでは、カルボキシル化セルロースナノファイバーのナトリウムイオンがコバルトイオンで置換されており、カルボキシル基2つに対して1個のコバルトイオンが結合していると推察される。
【0065】
(実施例3)
<酸化セルロースナノファイバー分散液の調製>
実施例1と同様にして濃度0.1%のカルボキシル化セルロースナノファイバー水分散液1を得た。
<含金属酸化セルロースナノファイバー分散液の調製>
金属置換工程において濃度0.1%の酢酸銅(II)水溶液18gに替えて濃度0.1%の塩化アルミニウム(III)六水和物水溶液26gを使用し、洗浄工程において濃度0.1%の酢酸銅(II)水溶液に替えて濃度0.1%の塩化アルミニウム(III)六水和物水溶液を使用した以外は実施例1と同様にして、濃度0.1%の含金属カルボキシル化セルロースナノファイバー水分散液を得た。
<含金属酸化セルロースナノファイバー分散液の評価>
クロスニコルの状態に配した2枚の偏光板の間に得られた含金属カルボキシル化セルロースナノファイバー水分散液を配置し、反対側から光を当てつつ偏光板の間で水分散液を揺らすと、複屈折が観測された。これにより、含金属カルボキシル化セルロースナノファイバーが水中で良好に分散していることが確認された。
また、含金属カルボキシル化セルロースナノファイバーの数平均繊維径は3.14nmであり、数平均繊維長は500nmであった。これより、含金属カルボキシル化セルロースナノファイバーはミクロフィブリルレベルで水中に分散していることが確認できた。また、含金属カルボキシル化セルロースナノファイバーの平均重合度は550であった。
更に、ICP−AES法による測定の結果、含金属カルボキシル化セルロースナノファイバーには、アルミニウム(Al)がカルボキシル化セルロースナノファイバーのカルボキシル基のモル量の1/3の割合で存在しており、ナトリウムの量は1質量ppm以下であることが分かった。また、イオンクロマトグラフ法によるイオン量の定量の結果、塩化物イオン量が0.1質量ppm以下であることが分かった。そして、これらの結果より、含金属カルボキシル化セルロースナノファイバーでは、カルボキシル化セルロースナノファイバーのナトリウムイオンがアルミニウムイオンで置換されており、カルボキシル基3つに対して1個のアルミニウムイオンが結合していると推察される。
【0066】
(実施例4)
<酸化セルロースナノファイバー分散液の調製>
実施例1と同様にして濃度0.1%のカルボキシル化セルロースナノファイバー水分散液1を得た。
<水素置換した酸化セルロースナノファイバー分散液の調製>
100mLのカルボキシル化セルロースナノファイバー水分散液1に対し、攪拌下で1Mの塩酸1mLを加えてpHを1に調整した。そして、60分間攪拌を継続した(水素置換工程)。
その後、塩酸の添加によりゲル化したカルボキシル化セルロースナノファイバーを遠心分離機(SAKUMA製、M201-1VD、アングルローター50F-8AL)を使用して遠心分離(12000G(120×100rpm/g)、10分間、12℃)により回収し、回収したカルボキシル化セルロースナノファイバーを1Mの塩酸および多量の蒸留水で順次洗浄した(第一の洗浄工程)。
次に、100mLの蒸留水を加え、水素置換されたカルボキシル化セルロースナノファイバーが分散した濃度0.1%の水素置換カルボキシル化セルロースナノファイバー水分散液1を得た(第一の分散工程)。なお、水素置換されたカルボキシル化セルロースナノファイバーの表面のカルボキシル基は、Biomacromolecules (2011年,第12巻,第518-522ページ)に従いFT−IR(日本分光製、FT/IR−6100)で測定したところ、90%以上がカルボン酸型に置換されていた。
<含金属酸化セルロースナノファイバー分散液の調製>
50gの水素置換カルボキシル化セルロースナノファイバー水分散液1(濃度0.1%)を撹拌し、そこへ第2の金属の塩の水溶液として濃度0.1%の酢酸銅(II)水溶液18gを加え、室温で3時間撹拌を継続した(金属置換工程)。
その後、酢酸銅(II)水溶液の添加によりゲル化したカルボキシル化セルロースナノファイバーを遠心分離機(SAKUMA製、M201-1VD、アングルローター50F-8AL)を使用して遠心分離(12000G(120×100rpm/g)、10分間、12℃)により回収し、回収したカルボキシル化セルロースナノファイバーを濃度0.1%の酢酸銅(II)水溶液および多量の蒸留水で順次洗浄した(第二の洗浄工程)。
次に、50mLの蒸留水を加え、超音波ホモジナイザー(nissei製、Ultrasonic Generator)を使用し、容器の周りを氷で冷やしながら、V−LEVEL4、TIP26Dで超音波処理(2分間)を行い、金属置換されたカルボキシル化セルロースナノファイバーを分散させた。その後、遠心分離機(SAKUMA製、M201-1VD、アングルローター50F-8AL)を使用して遠心分離(12000G(120×100rpm/g)、10分間、12℃)により未解繊成分を取り除き、透明な液体である濃度0.1%の含金属カルボキシル化セルロースナノファイバー水分散液を得た(第二の分散工程)。
<含金属酸化セルロースナノファイバー分散液の評価>
クロスニコルの状態に配した2枚の偏光板の間に得られた含金属カルボキシル化セルロースナノファイバー水分散液を配置し、反対側から光を当てつつ偏光板の間で水分散液を揺らすと、複屈折が観測された。これにより、含金属カルボキシル化セルロースナノファイバーが水中で良好に分散していることが確認された。
また、含金属カルボキシル化セルロースナノファイバーの数平均繊維径は3.13nmであり、数平均繊維長は530nmであった。これより、含金属カルボキシル化セルロースナノファイバーはミクロフィブリルレベルで水中に分散していることが確認できた。また、含金属カルボキシル化セルロースナノファイバーの平均重合度は580であった。
更に、ICP−AES法による測定の結果、含金属カルボキシル化セルロースナノファイバーには、銅(Cu)がカルボキシル化セルロースナノファイバーのカルボキシル基のモル量の1/2の割合で存在しており、ナトリウムの量は1質量ppm以下であることが分かった。また、イオンクロマトグラフ法によるイオン量の定量の結果、酢酸イオン量が0.5質量ppm以下、塩素イオン量が0.1質量ppm以下であることが分かった。そして、これらの結果より、含金属カルボキシル化セルロースナノファイバーでは、カルボキシル化セルロースナノファイバーのナトリウムイオンが銅イオンで置換されており、カルボキシル基2つに対して1個の銅イオンが結合していると推察される。
【0067】
(実施例5)
<酸化セルロースナノファイバー分散液の調製>
実施例4と同様にして濃度0.1%のカルボキシル化セルロースナノファイバー水分散液1を得た。
<水素置換した酸化セルロースナノファイバー分散液の調製>
実施例4と同様にして濃度0.1%の水素置換カルボキシル化セルロースナノファイバー水分散液1を得た。
<含金属酸化セルロースナノファイバー分散液の調製>
金属置換工程において濃度0.1%の酢酸銅(II)水溶液18gに替えて濃度0.1%の酢酸亜鉛(II)水溶液19.5gを使用し、第二の洗浄工程において濃度0.1%の酢酸銅(II)水溶液に替えて濃度0.1%の酢酸亜鉛(II)水溶液を使用した以外は実施例4と同様にして、濃度0.1%の含金属カルボキシル化セルロースナノファイバー水分散液を得た。
<含金属酸化セルロースナノファイバー分散液の評価>
クロスニコルの状態に配した2枚の偏光板の間に得られた含金属カルボキシル化セルロースナノファイバー水分散液を配置し、反対側から光を当てつつ偏光板の間で水分散液を揺らすと、複屈折が観測された。これにより、含金属カルボキシル化セルロースナノファイバーが水中で良好に分散していることが確認された。
また、含金属カルボキシル化セルロースナノファイバーの数平均繊維径は3.15nmであり、数平均繊維長は520nmであった。これより、含金属カルボキシル化セルロースナノファイバーはミクロフィブリルレベルで水中に分散していることが確認できた。また、含金属カルボキシル化セルロースナノファイバーの平均重合度は560であった。
更に、ICP−AES法による測定の結果、含金属カルボキシル化セルロースナノファイバーには、亜鉛(Zn)がカルボキシル化セルロースナノファイバーのカルボキシル基のモル量の1/2の割合で存在しており、ナトリウムの量は1質量ppm以下であることが分かった。また、イオンクロマトグラフ法によるイオン量の定量の結果、酢酸イオン量が0.5質量ppm以下、塩素イオン量が0.1質量ppm以下であることが分かった。そして、これらの結果より、含金属カルボキシル化セルロースナノファイバーでは、カルボキシル化セルロースナノファイバーのナトリウムイオンが亜鉛イオンで置換されており、カルボキシル基2つに対して1個の亜鉛イオンが結合していると推察される。
【0068】
(実施例6)
<酸化セルロースナノファイバー分散液の調製>
実施例4と同様にして濃度0.1%のカルボキシル化セルロースナノファイバー水分散液1を得た。
<水素置換した酸化セルロースナノファイバー分散液の調製>
実施例4と同様にして濃度0.1%の水素置換カルボキシル化セルロースナノファイバー水分散液1を得た。
<含金属酸化セルロースナノファイバー分散液の調製>
金属置換工程において濃度0.1%の酢酸銅(II)水溶液18gに替えて濃度0.1%の酢酸コバルト(II)水溶液19gを使用し、第二の洗浄工程において濃度0.1%の酢酸銅(II)水溶液に替えて濃度0.1%の酢酸コバルト(II)水溶液を使用した以外は実施例4と同様にして、濃度0.1%の含金属カルボキシル化セルロースナノファイバー水分散液を得た。
<含金属酸化セルロースナノファイバー分散液の評価>
クロスニコルの状態に配した2枚の偏光板の間に得られた含金属カルボキシル化セルロースナノファイバー水分散液を配置し、反対側から光を当てつつ偏光板の間で水分散液を揺らすと、複屈折が観測された。これにより、含金属カルボキシル化セルロースナノファイバーが水中で良好に分散していることが確認された。
また、含金属カルボキシル化セルロースナノファイバーの数平均繊維径は3.15nmであり、数平均繊維長は550nmであった。これより、含金属カルボキシル化セルロースナノファイバーはミクロフィブリルレベルで水中に分散していることが確認できた。また、含金属カルボキシル化セルロースナノファイバーの平均重合度は600であった。
更に、ICP−AES法による測定の結果、含金属カルボキシル化セルロースナノファイバーには、コバルト(Co)がカルボキシル化セルロースナノファイバーのカルボキシル基のモル量の1/2の割合で存在しており、ナトリウムの量は1質量ppm以下であることが分かった。また、イオンクロマトグラフ法によるイオン量の定量の結果、酢酸イオン量が0.5質量ppm以下、塩素イオン量が0.1質量ppm以下であることが分かった。そして、これらの結果より、含金属カルボキシル化セルロースナノファイバーでは、カルボキシル化セルロースナノファイバーのナトリウムイオンがコバルトイオンで置換されており、カルボキシル基2つに対して1個のコバルトイオンが結合していると推察される。
【0069】
(実施例7)
<酸化セルロースナノファイバー分散液の調製>
実施例4と同様にして濃度0.1%のカルボキシル化セルロースナノファイバー水分散液1を得た。
<水素置換した酸化セルロースナノファイバー分散液の調製>
実施例4と同様にして濃度0.1%の水素置換カルボキシル化セルロースナノファイバー水分散液1を得た。
<含金属酸化セルロースナノファイバー分散液の調製>
金属置換工程において濃度0.1%の酢酸銅(II)水溶液18gに替えて濃度0.1%の酢酸カルシウム(II)一水和物水溶液19gを使用し、第二の洗浄工程において濃度0.1%の酢酸銅(II)水溶液に替えて濃度0.1%の酢酸カルシウム(II)一水和物水溶液を使用した以外は実施例4と同様にして、濃度0.1%の含金属カルボキシル化セルロースナノファイバー水分散液を得た。
<含金属酸化セルロースナノファイバー分散液の評価>
クロスニコルの状態に配した2枚の偏光板の間に得られた含金属カルボキシル化セルロースナノファイバー水分散液を配置し、反対側から光を当てつつ偏光板の間で水分散液を揺らすと、複屈折が観測された。これにより、含金属カルボキシル化セルロースナノファイバーが水中で良好に分散していることが確認された。
また、含金属カルボキシル化セルロースナノファイバーの数平均繊維径は3.14nmであり、数平均繊維長は550nmであった。これより、含金属カルボキシル化セルロースナノファイバーはミクロフィブリルレベルで水中に分散していることが確認できた。また、含金属カルボキシル化セルロースナノファイバーの平均重合度は600であった。
更に、ICP−AES法による測定の結果、含金属カルボキシル化セルロースナノファイバーには、カルシウム(Ca)がカルボキシル化セルロースナノファイバーのカルボキシル基のモル量の1/2の割合で存在しており、ナトリウムの量は1質量ppm以下であることが分かった。また、イオンクロマトグラフ法によるイオン量の定量の結果、酢酸イオン量が0.5質量ppm以下、塩素イオン量が0.1質量ppm以下であることが分かった。そして、これらの結果より、含金属カルボキシル化セルロースナノファイバーでは、カルボキシル化セルロースナノファイバーのナトリウムイオンがカルシウムイオンで置換されており、カルボキシル基2つに対して1個のカルシウムイオンが結合していると推察される。
【0070】
(実施例8)
<酸化セルロースナノファイバー分散液の調製>
実施例4と同様にして濃度0.1%のカルボキシル化セルロースナノファイバー水分散液1を得た。
<水素置換した酸化セルロースナノファイバー分散液の調製>
実施例4と同様にして濃度0.1%の水素置換カルボキシル化セルロースナノファイバー水分散液1を得た。
<含金属酸化セルロースナノファイバー分散液の調製>
金属置換工程において濃度0.1%の酢酸銅(II)水溶液18gに替えて濃度0.1%の酢酸銀(I)水溶液18gを使用し、第二の洗浄工程において濃度0.1%の酢酸銅(II)水溶液に替えて濃度0.1%の酢酸銀(I)水溶液を使用した以外は実施例4と同様にして、濃度0.1%の含金属カルボキシル化セルロースナノファイバー水分散液を得た。
<含金属酸化セルロースナノファイバー分散液の評価>
クロスニコルの状態に配した2枚の偏光板の間に得られた含金属カルボキシル化セルロースナノファイバー水分散液を配置し、反対側から光を当てつつ偏光板の間で水分散液を揺らすと、複屈折が観測された。これにより、含金属カルボキシル化セルロースナノファイバーが水中で良好に分散していることが確認された。
また、含金属カルボキシル化セルロースナノファイバーの数平均繊維径は3.13nmであり、数平均繊維長は540nmであった。これより、含金属カルボキシル化セルロースナノファイバーはミクロフィブリルレベルで水中に分散していることが確認できた。また、含金属カルボキシル化セルロースナノファイバーの平均重合度は590であった。
更に、ICP−AES法による測定の結果、含金属カルボキシル化セルロースナノファイバーには、銀(Ag)がカルボキシル化セルロースナノファイバーのカルボキシル基のモル量と等しい割合で存在しており、ナトリウムの量は1質量ppm以下であることが分かった。また、イオンクロマトグラフ法によるイオン量の定量の結果、酢酸イオン量が0.5質量ppm以下、塩素イオン量が0.1質量ppm以下であることが分かった。そして、これらの結果より、含金属カルボキシル化セルロースナノファイバーでは、カルボキシル化セルロースナノファイバーのナトリウムイオンが銀イオンで置換されており、カルボキシル基1つに対して1個の銀イオンが結合していると推察される。
【0071】
(実施例9)
<酸化セルロースナノファイバー分散液の調製>
実施例4と同様にして濃度0.1%のカルボキシル化セルロースナノファイバー水分散液1を得た。
<水素置換した酸化セルロースナノファイバー分散液の調製>
実施例4と同様にして濃度0.1%の水素置換カルボキシル化セルロースナノファイバー水分散液1を得た。
<含金属酸化セルロースナノファイバー分散液の調製>
金属置換工程において濃度0.1%の酢酸銅(II)水溶液18gに替えて濃度0.1%の塩化アルミニウム(III)六水和物水溶液26gを使用し、第二の洗浄工程において濃度0.1%の酢酸銅(II)水溶液に替えて濃度0.1%の塩化アルミニウム(III)六水和物水溶液を使用した以外は実施例4と同様にして、濃度0.1%の含金属カルボキシル化セルロースナノファイバー水分散液を得た。
<含金属酸化セルロースナノファイバー分散液の評価>
クロスニコルの状態に配した2枚の偏光板の間に得られた含金属カルボキシル化セルロースナノファイバー水分散液を配置し、反対側から光を当てつつ偏光板の間で水分散液を揺らすと、複屈折が観測された。これにより、含金属カルボキシル化セルロースナノファイバーが水中で良好に分散していることが確認された。
また、含金属カルボキシル化セルロースナノファイバーの数平均繊維径は3.15nmであり、数平均繊維長は490nmであった。これより、含金属カルボキシル化セルロースナノファイバーはミクロフィブリルレベルで水中に分散していることが確認できた。また、含金属カルボキシル化セルロースナノファイバーの平均重合度は530であった。
更に、ICP−AES法による測定の結果、含金属カルボキシル化セルロースナノファイバーには、アルミニウム(Al)がカルボキシル化セルロースナノファイバーのカルボキシル基のモル量の1/3の割合で存在しており、ナトリウムの量は1質量ppm以下であることが分かった。また、イオンクロマトグラフ法によるイオン量の定量の結果、酢酸イオン量が0.5質量ppm以下、塩素イオン量が0.1質量ppm以下であることが分かった。そして、これらの結果より、含金属カルボキシル化セルロースナノファイバーでは、カルボキシル化セルロースナノファイバーのナトリウムイオンがアルミニウムイオンで置換されており、カルボキシル基3つに対して1個のアルミニウムイオンが結合していると推察される。
【0072】
実施例1〜9より、本発明の製造方法によれば、分散性に優れ、且つ、種々の用途に応用可能な含金属酸化セルロースナノファイバーの分散液が得られることが分かる。