IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社リコーの特許一覧 ▶ 独立行政法人産業技術総合研究所の特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-12
(45)【発行日】2022-12-20
(54)【発明の名称】原子発振器及び原子発振方法
(51)【国際特許分類】
   H03L 7/26 20060101AFI20221213BHJP
【FI】
H03L7/26
【請求項の数】 5
(21)【出願番号】P 2018195449
(22)【出願日】2018-10-16
(65)【公開番号】P2020065148
(43)【公開日】2020-04-23
【審査請求日】2021-06-17
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成30年度、国立研究開発法人新エネルギー・産業技術総合開発機構「インフラ維持管理・更新等の社会課題対応システム開発プロジェクト/インフラ状態モニタリング用センサシステム開発」委託研究、産業技術力強化法第19条の適用を受ける特許出願
(73)【特許権者】
【識別番号】000006747
【氏名又は名称】株式会社リコー
(73)【特許権者】
【識別番号】301021533
【氏名又は名称】国立研究開発法人産業技術総合研究所
(74)【代理人】
【識別番号】100107766
【弁理士】
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【弁理士】
【氏名又は名称】伊東 忠彦
(72)【発明者】
【氏名】原坂 和宏
(72)【発明者】
【氏名】柳町 真也
【審査官】吉村 伊佐雄
(56)【参考文献】
【文献】Christopher M Long, Kent D. Choquette,Optical characterization of a vertical cavity surface emitting laser for a coherent population trapping frequency reference,Journal of Applied Physics,米国,2008年02月,Vol.103,33101-1~33101-5
(58)【調査した分野】(Int.Cl.,DB名)
G04F1/00-5/16
H01S1/00-3/02
3/04-3/0959
3/098-3/102
3/105-3/131
3/136-3/213
3/23-4/00
H03L1/00-9/00
(57)【特許請求の範囲】
【請求項1】
金属原子が封入されているセルと、
バイアス電流を受けて前記金属原子を共鳴させる光を出射する光源と、
前記金属原子の基底準位の周波数差の2分の1に相当する変調周波数(f で前記光源を変調する変調部と、
前記光源に与える前記バイアス電流を制御する制御部とを備え、
前記制御部は、前記光源の緩和振動周波数(f )と前記変調周波数(f )との比である(f /f )が1よりも小さく、且つ、δI(前記バイアス電流の経時変化)、P(前記金属原子に入射する前記光源の光強度)、α(ライトシフト係数)、m(変調指数)、dm/dI(前記バイアス電流の変化に対する前記変調指数の変化の傾き)、dα/dm(前記変調指数の変化に対する前記ライトシフト係数の変化の傾き)に基づき求められる前記金属原子のライトシフト経時変化が最小となるf /f 以上となるように前記バイアス電流を制御する
原子発振器。
【請求項2】
前記制御部は、前記バイアス電流を、最大の前記変調指数が得られるバイアス電流よりも小さくする
請求項1に記載の原子発振器。
【請求項3】
前記変調指数は、前記光源における周波数の変調の応答特性を示す
請求項2に記載の原子発振器。
【請求項4】
前記変調指数と前記ライトシフト係数との関係の情報と、前記バイアス電流と前記緩和振動周波数(f との関係の情報とを記憶する記憶部をさらに備え、
前記制御部は、前記記憶部に記憶される情報に基づき、前記最大の前記変調指数が得られるバイアス電流を取得し、
前記ライトシフト係数は、前記光源の出射光の単位光強度あたりの前記変調周波数(f のシフト量を示す
請求項2または3に記載の原子発振器。
【請求項5】
請求項1~4のいずれか一項に記載の原子発振器を用い、
前記原子発振器の前記制御部が、
前記光源と、前記変調部を制御し、
前記光源に前記バイアス電流を与え、前記金属原子を共鳴させる光を前記金属原子へ出射させるステップと、
前記金属原子の基底準位の周波数差の2分の1に相当する前記変調周波数(f で前記光源を変調するステップと、
前記光源の前記緩和振動周波数(f )と前記変調周波数(f との比である(f /f )が1よりも小さく、且つ、δI(前記バイアス電流の経時変化)、P(前記金属原子に入射する前記光源の光強度)、α(ライトシフト係数)、m(変調指数)、dm/dI(前記バイアス電流の変化に対する前記変調指数の変化の傾き)、dα/dm(前記変調指数の変化に対する前記ライトシフト係数の変化の傾き)に基づき求められる前記金属原子のライトシフト経時変化が最小となるf /f 以上となるように前記バイアス電流を制御するステップとを実行する
原子発振方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、原子発振器及び原子発振方法に関する。
【背景技術】
【0002】
従来、原子の固有周波数を基準とする高い周波数安定性を有する原子発振器が知られている。原子発振器は、原子のエネルギー準位間の遷移に基づき発振する。
【0003】
例えば、アルカリ金属原子が封入されている原子セルと、バイアス電流が供給され且つアルカリ金属原子を共鳴させる光を出射する光源と、原子セルを透過した光を検出する受光部とを備える原子発振器がある(例えば、特許文献1参照)。特許文献1の原子発振器は、光源を温度調節する温度調節素子を備える。この原子発振器は、バイアス電流に関する情報を検出し、当該情報を用いて温度調節素子を制御する。
【発明の概要】
【発明が解決しようとする課題】
【0004】
半導体レーザ素子等の光源は、バイアス電流に応じて発光波長を変化させる。しかしながら、このような光源は、バイアス電流が一定であっても、発光波長が経時的に変化してしまうエージング特性を有する。例えば、発光波長を一定にするためにバイアス電流を調節すると、バイアス電流の変化に伴って光源の発光光量が変化する。これにより、照射される光量密度の変化に伴ってアルカリ金属の共鳴周波数が変化するライトシフトと呼ばれる現象が発生するため、原子発振器の周波数安定性が低下してしまう。特許文献1の原子発振器は、ライトシフトを低減するために、温度調節素子を用いて光源の温度を徐々に高くなるように制御することで、光源から出射される光の強度の変動を低減しつつ当該光の波長を調節する。しかしながら、ライトシフトの要因は、アルカリ金属に照射される光量の変化のみではない。このため、特許文献1の原子発振器は、ライトシフトを十分に低減することができず、周波数安定性を低下させるおそれがある。
【0005】
そこで、本開示の原子発振器及び原子発振方法は、周波数安定性を向上することを目的とする。
【課題を解決するための手段】
【0006】
本発明の一実施形態による原子発振器は、金属原子が封入されているセルと、バイアス電流を受けて前記金属原子を共鳴させる光を出射する光源と、前記金属原子の基底準位の周波数差の2分の1に相当する変調周波数(f で前記光源を変調する変調部と、前記光源に与える前記バイアス電流を制御する制御部とを備え、前記制御部は、前記光源の緩和振動周波数(f )と前記変調周波数(f )との比である(f /f )が1よりも小さく、且つ、δI(前記バイアス電流の経時変化)、P(前記金属原子に入射する前記光源の光強度)、α(ライトシフト係数)、m(変調指数)、dm/dI(前記バイアス電流の変化に対する前記変調指数の変化の傾き)、dα/dm(前記変調指数の変化に対する前記ライトシフト係数の変化の傾き)に基づき求められる前記金属原子のライトシフト経時変化が最小となるf /f 以上となるように前記バイアス電流を制御する
【0007】
本発明の一実施形態による原子発振方法は、前記原子発振器を用い、前記原子発振器の前記制御部が、前記光源と、前記変調部を制御し、光源に前記バイアス電流を与え、前記金属原子を共鳴させる光を前記金属原子へ出射させるステップと、前記金属原子の基底準位の周波数差の2分の1に相当する変調周波数(f で前記光源を変調するステップと、前記光源の前記緩和振動周波数(f )と前記変調周波数(f )との比である(f /f )が1よりも小さく、且つ、δI(前記バイアス電流の経時変化)、P(前記金属原子に入射する前記光源の光強度)、α(ライトシフト係数)、m(変調指数)、dm/dI(前記バイアス電流の変化に対する前記変調指数の変化の傾き)、dα/dm(前記変調指数の変化に対する前記ライトシフト係数の変化の傾き)に基づき求められる前記金属原子のライトシフト経時変化が最小となるf /f 以上となるように前記バイアス電流を制御するステップとを実行する。
【発明の効果】
【0008】
本開示の技術によれば、周波数安定性を向上することが可能になる。
【図面の簡単な説明】
【0009】
図1】実施の形態1に係る原子発振器の機能的な構成の一例を示すブロック図
図2】実施の形態1に係る原子発振器の量子部の構造の一例を示す断面側面図
図3】実施の形態1に係る原子発振器のハードウェア構成の一例を示すブロック図
図4】変調周波数と応答特性との関係の一例を示す図
図5A】各水準のバイアス電流についてのFM応答特性と変調周波数との関係の一例を示す図
図5B】各水準のバイアス電流についてのFM応答特性と変調周波数との関係の一例を示す図
図5C】各水準のバイアス電流についてのFM応答特性と変調周波数との関係の一例を示す図
図6】変調されたレーザ光の周波数成分の一例を示す図
図7】実施の形態1に係るライトシフトを生じる要因の事象の関係を示す図
図8A】レーザ光の波長が短波化シフトする場合のレーザ光の波長及びバイアス電流の経時的変化の一例を示す図
図8B】レーザ光の波長が短波化シフトする場合のレーザ光の波長及びバイアス電流の経時的変化の一例を示す図
図9A】レーザ光の波長が長波化シフトする場合のレーザ光の波長及びバイアス電流の経時的変化の一例を示す図
図9B】レーザ光の波長が長波化シフトする場合のレーザ光の波長及びバイアス電流の経時的変化の一例を示す図
図10】光源のレーザ素子のバイアス電流と変調指数との関係の一例を示す図
図11】変調指数とライトシフト係数との関係の一例を示す図
図12】CPT方式における原子エネルギー準位の一例を示す図
図13】変調時におけるレーザ素子の出力周波数の一例を示す図
図14】変調周波数とガスセルの透過光量との相関の一例を示す図
図15】実施の形態1に係る原子発振器におけるバイアス電流の設定処理の一例を示すフローチャート
図16】実施の形態1に係る原子発振器における変調指数とライトシフト係数との関係の一例を示す図
図17】実施の形態1に係る原子発振器におけるバイアス電流と緩和振動周波数との相関データの一例を示す図
図18】実施の形態1に係る原子発振器における緩和振動周波数と減衰係数との相関データの一例を示す図
図19】実施の形態1に係る原子発振器におけるバイアス電流と変調指数との相関データの一例を示す図
図20】実施の形態1に係る原子発振器における緩和振動周波数及びレーザ変調周波数の比とライトシフトとの相関データの一例を示す図
図21】実施の形態1に係る原子発振器における緩和振動周波数及びレーザ変調周波数の比とライトシフト変化との相関データの一例を示す図
図22】実施の形態1に係る原子発振器における電流差とライトシフト変化との相関データの一例を示す図
図23】セシウムとルビジウムとの特性を比較して示す図
【発明を実施するための形態】
【0010】
従来、原子発振器は、例えば原子時計に用いられ、高い周波数安定性により極めて正確な時間を計ることを可能にする。このような原子発振器を小型化する技術等が検討されている。
【0011】
いくつかの方式の原子発振器がある。例えば、原子と光との相互作用を利用するCPT(コヒーレントポピュレーショントラッピング:Coherent Population Trapping)方式の原子発振器は、従来の水晶発振器に比べて周波数安定度が3桁程度高く、さらに、超小型及び超低消費電力を望むことができる。
【0012】
例えば、CPT方式の原子発振器は、アルカリ金属がガスと共に封入されたガスセルと、ガスセルを照射するレーザ素子等を含む光源と、ガスセルを透過したレーザ光を検出する光検出器とを備える。光源のレーザ光は変調されて出射される。レーザ光は、その特定波長である搬送波の両側に出現するサイドバンドの波長成分により、アルカリ金属原子の電子に対して、2つのエネルギー準位の遷移を同時に行い、励起する、つまり、アルカリ金属を共鳴させる。原子発振器は、2つのサイドバンドの波長成分、つまり、波長の異なる2種類の光による量子干渉効果(CPT)を利用してアルカリ金属を共鳴させ、アルカリ金属の共鳴周波数を発振周波数として取得する。なお、共鳴周波数は、アルカリ金属を共鳴させるレーザ光の中心周波数により得ることができる。
【0013】
上記のエネルギー準位の遷移における遷移エネルギーは非常に安定的である。レーザ光の2つのサイドバンドの波長の間隔と遷移エネルギーに対応する波長とが一致する場合、アルカリ金属における光の吸収率が低下する電磁誘起透明化(EIT:Electromagnetically Induced Transparency)現象が生じる。透明化現象が生じている状態において、レーザ光はアルカリ金属原子に吸収されずに透過し、透過光が光検出器によって検出される。光検出器は、スペクトル等の透過光の光強度を示す信号を検出する。CPT方式の原子発振器は、アルカリ金属による光の吸収率を低下させるように、搬送波の波長を調節し、且つ、光検出器により検出される信号を変調器にフィードバックすることで、変調周波数を調節する。変調周波数は、変調器により光源のレーザ光の周波数を変調するための周波数である。例えば、光源のレーザ光は、その搬送波の周波数に対して変調周波数を用いて変化させた周波数に変調される。このような原子発振器は、その発振特性を向上させることができる。
【0014】
CPT方式の原子発振器の周波数安定性を制限する要因の一つとして、ライトシフト(「ACシュタルクシフト」とも呼ばれる)の経時変動がある。ライトシフトは、ガスセルに入射するレーザ光の波長、変調周波数及び光強度等の変動に起因して遷移エネルギーがわずかに変化する現象である。ライトシフトでは、アルカリ金属の共鳴周波数が変化する。光源のレーザ素子に経時変化が生じると、ライトシフトに経時変動が生じ、結果として原子発振器の周波数安定性が低下する。
【0015】
例えば、特許文献1の原子発振器は、レーザ素子の経時変化により生じるライトシフトの経時変動を抑制するために、レーザ素子のバイアス電流によってだけでなく、レーザ素子の温度によってもレーザ光の波長を制御することで、光強度の経時変動を小さくする。しかしながら、ライトシフトの変動要因は、光強度の変動成分だけでなく、光の変調度の変動成分も含む。このため、特許文献1のような光強度の変動の抑制だけでは、ライトシフトの変動の抑制には不十分である。
【0016】
また、例えば、非特許文献1では、ライトシフトの変動要因は光強度の変動と光の変調度の変動とに要因分解される。さらに、これらの変動要因について、レーザ素子の温度が変動してもライトシフトが変動しにくい変調パワーの条件、及び、変調パワーが変動してもライトシフトが変動しにくい光強度の条件等が示されている。これらの条件は、環境温度変化及び変調器に含まれる発振素子の出力変化等の外部環境の変化に対しては、ライトシフトの変動を抑制する。しかしながら、非特許文献1には、レーザ素子自体の経時変化により生じるライトシフトの変動を抑制する方法は示されていない。
【0017】
また、例えば、非特許文献2では、面発光レーザ素子に固有の緩和振動周波数に対して変調周波数を非常に大きくすることで、レーザ光の変調スペクトルが対称化される。これにより、原子のCPT共鳴に寄与する+1次のサイドバンドの光強度と-1次のサイドバンドの光強度とが等しくなることで、ライトシフトの絶対量が小さくされる。例えば、このような緩和振動周波数及び変調周波数の例として、緩和振動周波数が2.81GHzであり、変調周波数が3.417GHzである例が示されている。しかしながら、非特許文献2には、レーザ素子自体の経時変化により生じるライトシフトの変動を抑制する方法は示されていない。
【0018】
そこで、本開示の技術は、ライトシフトの変動を抑制することで、原子の発振の周波数安定性を向上する原子発振器及び原子発振方法を提供する。具体的には、本開示の技術は、CPT方式等の原子発振器及び原子発振方法において、レーザ素子等の光源の経時変化に起因した光強度及び変調度の経時変動により生じるライトシフトの経時変動を低減することで、原子の発振の周波数安定性を向上する。
【0019】
以下、本発明の実施の形態について添付の図面を参照しつつ説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することによって重複した説明を省く。
【0020】
(実施の形態1)
<原子発振器1の構成>
実施の形態1に係る原子発振器1の構成を説明する。原子発振器1は、原子のエネルギー準位間の遷移に基づき発振する装置である。本実施の形態では、原子発振器1は、CPT方式の原子発振器であるとして説明するが、原子発振器1の方式は、これに限定されない。
【0021】
図1は、実施の形態1に係る原子発振器1の機能的な構成の一例を示すブロック図である。図1に示すように、原子発振器1は、量子部100と、変調器200と、制御部300と、記憶部400と、電源部500とを備える。なお、本実施の形態では、原子発振器1は、量子部100、変調器200、制御部300、記憶部400及び電源部500等の構成要素が一体化された1つの装置を構成するが、分離した別々の装置を構成してもよい。原子発振器1が2つ以上の装置で構成される場合、当該2つ以上の装置は、1つの機器内に配置されてもよく、分離した2つ以上の機器内に分かれて配置されてもよい。本明細書及び特許請求の範囲では、原子発振器1等の「装置」は、1つの装置を意味し得るだけでなく、複数の装置からなるシステムも意味し得る。
【0022】
量子部100は、光源110と、4分の1波長板120と、ND(ニュートラル・デンシティ:Neutral Density)フィルタ130と、ガスセル140と、受光素子150と、測温素子160と、熱源170とを備える。光源110、4分の1波長板120、NDフィルタ130、ガスセル140及び受光素子150は、光源110から出射される光の進行方向に沿って、この順で配置される。
【0023】
光源110は、ガスセル140に封入されたアルカリ金属原子を励起させる共鳴光対等の光を、ガスセル140へ出射する。光源110は、エネルギー準位間を遷移させるようにアルカリ金属原子を励起させる光を出射できるものであればよい。光源110の例は、半導体レーザ素子等のレーザ素子である。レーザ素子の例は、垂直共振器面発光レーザ素子(VCSEL:Vertical Cavity Surface Emitting LASER)などの面発光レーザ素子、分布帰還型(DFB:Distributed Feedback)レーザ素子、及び分布反射型(DBR:Distributed Bragg Reflector)レーザ素子である。本実施の形態では、光源110は面発光レーザ素子であるが、これに限定されない。ここで、アルカリ金属原子は、金属原子の一例であり、ガスセル140は、セルの一例である。
【0024】
4分の1波長板120は、光源110から入射するレーザ光に対して、4分の1波長の位相差を与えて通過させる。つまり、4分の1波長板120を通過前後のレーザ光の位相差はπ/2である。4分の1波長板120は、光源110から入射するレーザ光が直線偏光である場合、当該レーザ光を左円偏光又は右円偏光の円偏光に変換する。
【0025】
円偏光のレーザ光をアルカリ金属原子に照射すると、レーザ光とアルカリ金属原子とが相互作用し、許容遷移を介して透明化現象に寄与する原子を確保可能となり、受光素子150によって検出可能な信号を得ることができる。その結果、原子発振器1の発振特性を向上させることができる。なお、直線偏光でアルカリ金属原子を励起させる場合が有利な場合もあるため、4分の1波長板120は必須ではない。
【0026】
NDフィルタ130は、中性濃度フィルタとも呼ばれ、入射するレーザ光に対して光量を所定量低下させた光を透過させる。つまり、NDフィルタ130は、入射するレーザ光に対して、光学濃度を所定の光学濃度に調節して透過させる。
【0027】
ガスセル140は、光の透過性を有する容器と、当該容器内に封入されたアルカリ金属原子とを含む。例えば、容器内には、ガス状のアルカリ金属が封入される。さらに、ガスセル140は、容器内に、アルカリ金属原子と共にバッファガスを含んでもよい。容器の構成材料の例は、透明なガラス及びプラスチック等の透光性を有する材料である。アルカリ金属の例は、ルビジウム(Rb)、セシウム(Cs)及びナトリウム(Na)等である。バッファガスの例は、アルゴン(Ar)及びネオン(Ne)などの希ガス、並びに、窒素(N)などの不活性ガス等である。また、ガスセル140には、電磁コイル等の磁場発生体によって、所定方向の磁場、具体的には、ガスセル140内でのレーザ光の進行方向に沿う光軸方向の磁場が印加されている。この磁場はガスセル140内のアルカリ金属原子にゼーマン分裂を引き起こす。
【0028】
受光素子150は、光源110から出射され且つガスセル140を通過した後のレーザ光を受光し、当該レーザ光の光強度を含む信号を制御部300に出力する。つまり、受光素子150は、当該レーザ光の光強度を検出する。受光素子150の例は、フォトダイオード等である。
【0029】
測温素子160は、光源110及び/又はガスセル140の温度を検出する。本実施の形態では、測温素子160は、後述するように、熱源の170の温度を検出することで、光源110及びガスセル140の温度を検出するが、これに限定されず、光源110及びガスセル140それぞれに配置されてもよい。測温素子160の例は、サーミスタ及び熱電対等である。
【0030】
熱源170は、光源110及び/又はガスセル140を昇温する。本実施の形態では、熱源170は、後述するように、光源110を直接的に昇温し、ガスセル140を間接的に昇温するが、これに限定されず、光源110及びガスセル140それぞれに配置されてもよい。熱源170の例は、ヒータ及びコイルなどの発熱体、並びに、ペルチェ素子等である。
【0031】
原子発振器1に発振動作させるためには、アルカリ金属原子を気化させ、所望の原子密度が得られるようにする必要がある。ガスセル140の温度変動は、原子発振器1の周波数安定性を損なう要因となるため、ガスセル140の温度は一定であることが望ましい。このため、熱源170は、測温素子160からガスセル140の温度を取得する制御部300の制御のもと、ガスセル140を昇温しその温度を保持する。
【0032】
また、光源110のレーザ素子の温度が変動すると、光源110の出射光の波長及び光強度が変動する。これは、原子発振器1の周波数安定性を損なう要因となる。このため、熱源170は、測温素子160から光源110の温度を取得する制御部300の制御のもと、光源110を昇温しその温度を保持する。
【0033】
変調器200は、変調周波数で光源110を変調する。具体的には、変調器200は、受光素子150からレーザ光の光強度の検出結果を取得し、取得された光強度に基づき、光源110から出射されるレーザ光の振幅及び/又は周波数を変調する。つまり、変調器200は、受光素子150からのレーザ光の光強度のフィードバックに基づき、光源110から出射されるレーザ光に対する変調周波数を調節する。ここで、変調器200は、変調部の一例である。
【0034】
制御部300は、光源110、変調器200、ガスセル140の磁場発生体、測温素子160及び熱源170の動作を制御する。例えば、制御部300は、受光素子150からレーザ光の光強度の検出結果を取得し、取得されたレーザ光の光強度に基づき、光源110から出射される光の波長を決定する。また、制御部300は、受光素子150から取得されたレーザ光の光強度に基づき、変調器200の変調動作を制御する。
【0035】
記憶部400は、種々の情報の記憶及び取り出しを可能にする。記憶部400は、各パラメータの関係、閾値及び検出結果のデータ等を記憶する。
【0036】
電源部500は、商用電源等の外部電源と接続され、外部電源から供給される電力を原子発振器1の各構成要素に分配する。電源部500は、制御部300等の指令に従って、電力変換、電圧制御及び電流制御等を行う。
【0037】
上述のような原子発振器1では、光源110のレーザ光は、変調器200による変調を受けた状態で出射され、4分の1波長板120において位相の制御を受け、NDフィルタ130において光濃度の制御を受け、ガスセル140を透過する。レーザ光は、ガスセル140を透過する際、ガスセル140内のアルカリ金属原子を励起し共鳴させる。ガスセル140を透過後のレーザ光は、受光素子150によって受光され、光強度の検出を受ける。受光素子150は、検出結果を変調器200及び制御部300へフィードバックする。本実施の形態では、受光素子150の検出結果は、制御部300を介して変調器200へフィードバックされるが、これに限定されない。変調器200は、フィードバック結果を反映したレーザ光の変調を、光源110に対して行う。制御部300は、フィードバック結果に基づき、原子発振器1の周波数安定性を高めるように熱源170の動作を制御する。
【0038】
図2は、実施の形態1に係る原子発振器1の量子部100の構造の一例を示す断面側面図である。図2に示すように、量子部100は、光源110、4分の1波長板120、NDフィルタ130、ガスセル140、受光素子150、測温素子160及び熱源170を収容する筐体180を備える。
【0039】
筐体180は、気密性を有してよく、例えば、内部が真空にされてもよい。筐体180の内部が真空であることで、筐体180内の構成要素が筐体180の外部から受ける熱の影響を低減することが可能である。さらに、筐体180は、内部の構成要素に対して外部の磁気を遮断する材料で構成されてもよい。これにより、筐体180は、アルカリ金属原子を外部の磁気から遮断する磁気シールドとして機能する。
【0040】
量子部100は、筐体180内に、基板181を備えている。基板181は、金属等の高い熱伝導性を有する材料で構成されているが、これに限定されない。基板181の2つの平坦な主面の一方の上には、板状の熱源170が熱伝達を可能に配置されている。熱源170上には、光源110及び測温素子160が、熱源170と熱伝達を可能に配置されている。よって、熱源170は直接的に光源110を加熱する。測温素子160は、熱源170の温度を検出することによって、光源110及びガスセル140の温度を間接的に検出する。
【0041】
ガスセル140は、基板181の上記主面と対向して配置されている。ガスセル140は、ガスセル140と基板181との間に配置された伝熱スペーサ182によって、光源110のレーザ光の光軸方向に基板181から所定の間隔をあけて保持されている。伝熱スペーサ182は、金属等の高い熱伝導性を有する材料で構成されており、ガスセル140、熱源170及び基板181と接触している。伝熱スペーサ182は熱源170が発生する熱をガスセル140に伝達する。よって、熱源170は伝熱スペーサ182を介して間接的にガスセル140を加熱する。また、光源110が発生する熱は、基板181及び伝熱スペーサ182を介して、ガスセル140に伝達され、ガスセル140の加熱に利用される。光源110のレーザ素子において、電力から光に変換する効率が例えば数10%であるため、光に変換されなかったエネルギーは熱として消費され得る。
【0042】
ガスセル140における基板181と対向する面上には、4分の1波長板120及びNDフィルタ130が積層して配置されている。4分の1波長板120は、NDフィルタ130よりも光源110の近くに位置するようにNDフィルタ130上に重ねられている。
【0043】
ガスセル140における4分の1波長板120及びNDフィルタ130と反対側の面上には、受光素子150が配置されている。
【0044】
また、ガスセル140の周囲には、磁場発生体としての電磁コイル141が巻き付けられている。電磁コイル141は、電流が印加されることによって、基板181から受光素子150に向かう磁界、つまり、光源110のレーザ光の出射方向に沿う光軸方向の磁界をガスセル140内に形成する。この磁界はガスセル140内のアルカリ金属原子にゼーマン分裂を引き起こす。磁場発生体は、上述のような磁界を形成することができればよく、電磁コイル141に限定されない。例えば、磁場発生体は永久磁石であってもよい。
【0045】
基板181、熱源170、光源110、測温素子160、伝熱スペーサ182、4分の1波長板120、NDフィルタ130、ガスセル140、電磁コイル141及び受光素子150は、1つの組立体190を形成する。組立体190は、組立体190と筐体180との間に配置された複数の断熱スペーサ191によって、筐体180の壁部から所定の間隔をあけて保持されている。
【0046】
断熱スペーサ191は、樹脂等の低い熱伝導性を有する材料で構成されている。断熱スペーサ191は、筐体180から離して組立体190を支持し、且つ、筐体180と組立体190との間での熱の伝達を抑制する。断熱スペーサ191が熱の伝達を抑制することにより、熱源170の発生熱は、光源110及びガスセル140の加熱に効率的に利用される。また、本実施の形態では、断熱スペーサ191は、基板181及び受光素子150を支持することで、組立体190を支持するが、組立体190における支持対象はこれらに限定されない。また、断熱スペーサ191内に、光源110、電磁コイル141、受光素子150、測温素子160及び熱源170から延びる配線が通されてもよい。
【0047】
なお、光源110のレーザ素子の波長の調整は、光源110のバイアス電流を変化させる方法と、光源110の温度を変化させる方法との2通りの方法で行うことができる。しかしながら、上述のような量子部100の構造では、ガスセル140と光源110とが熱的に結合している。この場合、波長を調整するために光源110の温度を変化させると、ガスセル140の温度も同時に変化し、ガスセル140内に含まれるバッファガスに依存した温度周波数特性により、アルカリ金属の共鳴周波数がシフトしてしまう。このため、上記構造では、光源110のバイアス電流を変化させる方法の方が、光源110の温度を変化させる方法よりも望ましい。光源110へのバイアス電流を変化させることで、光源110が発熱したとしても、制御部300による熱源170に対する温度一定のフィードバック制御により、ガスセル140の温度は一定に保たれる。
【0048】
図3は、実施の形態1に係る原子発振器1のハードウェア構成の一例を示すブロック図である。図3に示すように、原子発振器1は、量子部100と、発振回路200Aと、制御回路300Aと、メモリ400Aと、電源回路500Aと、バイアスティ600Aとを備える。
【0049】
制御回路300Aは、制御部300の機能を実現する。制御回路300Aは、受光素子150から検出信号である受光信号を取得し、当該受光信号に基づき、発振回路200A及び電源回路500Aに制御信号を出力する。
【0050】
発振回路200Aは、変調器200の機能を実現する。発振回路200Aは、制御回路300Aから取得される制御信号に応じて変調信号を生成し、バイアスティ600Aに出力する。また、発振回路200Aは原子発振器1としての信号を外部に出力する機能を兼ねている。この信号は一定周期のクロック信号であり、原子の固有周波数の安定性に準拠している。
【0051】
電源回路500Aは、電源部500の機能を実現する。電源回路500Aは、制御回路300Aから取得される制御信号に応じてバイアス電流を生成し、バイアスティ600Aに出力する。
【0052】
バイアスティ600Aは、変調器200の機能を実現する。バイアスティ600Aは、取得されるバイアス電流と変調信号とを重畳して変調された電流である変調電流を生成し、光源110に出力する。
【0053】
光源110は、レーザ光をガスセル140に出射し、受光素子150は、ガスセル140を透過したレーザ光を検出する。受光素子150は、検出した光の強度を示す受光信号を制御回路300Aに出力する。
【0054】
メモリ400Aは、記憶部400の機能を実現する。メモリ400Aは、揮発性又は不揮発性の半導体メモリ、HDD(Hard Disk Drive)又はSSD(Solid State Drive)等の記憶装置で構成される。
【0055】
発振回路200A、制御回路300A、電源回路500A及びバイアスティ600Aは、CPU(Central Processing Unit)等のプログラム実行部によって実現されてもよく、回路によって実現されてもよく、プログラム実行部及び回路の組み合わせによって実現されてもよい。プログラム実行部では、プロセッサ等で構成されるCPUは、ROM(Read Only Memory)等に予め保持されたプログラムをRAM(Random Access Memory)に読み出して展開する。CPUは、RAMに展開されたプログラム中のコード化された各命令を実行することで、各機能を実現する。なお、プログラムは、ROMに限らず、例えば記録ディスク等の記録媒体に格納されていてもよい。また、プログラムは、有線ネットワーク、無線ネットワーク又は放送等を介して伝送され、RAMに取り込まれてもよい。
【0056】
なお、発振回路200A、制御回路300A、電源回路500A及びバイアスティ600Aは、集積回路であるLSI(大規模集積回路:Large Scale Integration)として実現されてもよい。これらは個別に1チップ化されてもよく、一部又は全てを含むように1チップ化されてもよい。LSIとして、LSI製造後にプログラムすることが可能なFPGA(Field Programmable Gate Array)、LSI内部の回路セルの接続及び/又は設定を再構成可能なリコンフィギュラブル・プロセッサ、又は、特定用途向けに複数の機能の回路が1つにまとめられたASIC(Application Specific Integrated Circuit)等が利用されてもよい。
【0057】
<レーザ光の変調周波数>
ここで、レーザ光の変調周波数について説明する。変調電流を光源110のレーザ素子に注入すると、レーザ素子のレーザ光は、光強度変調(IM:Intensity modulation)の応答特性と、周波数変調(FM:Frequency modulation)の応答特性との2つの特性に変化を生じる。IM応答特性は、変調電流に応じてレーザ光の発光特性が変化する特性であり、レーザ光の光強度が変調される特性である。FM応答特性は、変調電流に応じてキャリア電子の密度が変化し、キャリアプラズマ効果等による屈折率変化を介して、レーザ光の周波数(波長)が変調される特性である。CPT方式の原子発振器1では、FM応答特性が重要である。
【0058】
IM応答特性及びFM応答特性は、レーザ素子のレート方程式モデルにより示すことができる。このモデルにおける伝達関数H(ω)は下記の式1により定義することができる。伝達関数H(ω)を用いて、IM応答特性は下記の式2のように表され、FM応答特性は下記の式3ように表される。
【0059】
【数1】
【0060】
式1~式3は、複素表示されている。|A|はAの絶対値を取ることを示す。式1~式3において、ωはレーザ光の角周波数であり、ωはレーザ光の光強度の緩和振動角周波数である。緩和振動角周波数ωと緩和振動周波数fとは、ω=2πfの関係を満たす。jは純虚数であり、γはレーザ光の減衰係数であり、γppはレーザ光の実効光子寿命である。緩和振動角周波数ω、減衰係数γ及び実効光子寿命γppはいずれもバイアス電流に応じて変化する。
【0061】
例えば、図4は、変調周波数と応答特性との関係の一例を示す図であり、IM応答特性及びFM応答特性について示す図である。図4では、横軸は変調周波数を示し、縦軸は応答特性を示す。IM応答特性及びFM応答特性のいずれの場合も、応答特性と変調周波数との関係は、図4に示すような線形を示す。応答特性は、変調周波数の増加に伴って変化し、ある変調周波数fにて極大値をとる。さらに、応答特性は、極大値の変調周波数f以上では、変調周波数の増加と共に低下する傾向がある。応答特性が最大つまり極大値となる変調周波数fは、緩和振動周波数に相当する。緩和振動は、特定の変調周波数において、レーザ素子中のキャリア密度と光子密度とが誘導放出等を介して相互作用することにより生じる、光強度の共振現象である。
【0062】
例えば、図5A図5Cはそれぞれ、レート方程式モデルを用いて3つの水準のバイアス電流についてのFM応答特性と変調周波数との関係の一例を示す図である。図5A図5Cにおいて、3つの水準のバイアス電流I、I及びIは、I<I<Iの関係にある。さらに、「f」は緩和振動周波数であり、「f」はレーザ変調周波数である。レーザ変調周波数fは、原子に固有の値であり、f=(原子の基底準位周波数差)/2の関係を満たす。原子の基底準位周波数差は、原子の2つの基底準位の周波数間の差である。なお、原子は、原子発振器1のアルカリ金属原子である。図5Bに示すように、緩和振動周波数fとレーザ変調周波数fとが一致するバイアス電流Iにおいて、FM応答特性が極大値を持つことが明らかとなる。
【0063】
さらに、FM応答特性を特徴付けるパラメータである変調指数mについて説明する。変調指数は、変調の度合いを示すパラメータであり、変調度とも呼ばれる。例えば、レーザ素子に理想的なFM変調特性として、図6に示すようなFM変調特性を想定することができる。図6は、変調されたレーザ光の周波数成分の一例を示す図である。図6において、横軸は、周波数を示し、横軸に垂直な方向の矢印は、振幅の絶対値を示す。
【0064】
図6に示すように、サイドバンドの周波数成分は、搬送波の周波数fを中心としてレーザ変調周波数fの間隔で櫛状に発生する。例えば、サイドバンドの周波数成分として、f-3f、f-2f、f-f、f+f、f+2f、f+3f等が発生し得る。サイドバンドの各周波数成分の振幅はベッセル関数J(m)により表される。なお、ベッセル関数における「n」は、サイドバンドの周波数成分の番号である。例えば、J(m)は、周波数fでの振幅である。n>0のJ(m)は、周波数fよりも大きい周波数であるサイドバンドの周波数成分の振幅であり、n<0のJ(m)は、周波数fよりも小さい周波数であるサイドバンドの周波数成分の振幅である。
【0065】
周波数fの搬送波の振幅に対する各サイドバンドの周波数成分の振幅の比率は、変調指数mだけをパラメータとして表現することができる。変調指数の定義は、周波数変調されたレーザ光において、最大周波数偏差をレーザ変調周波数で除算した値である。最大周波数偏差は、搬送波の周波数fと最大の瞬時周波数との差である。つまり、変調指数m=|搬送波の周波数f-最大の瞬時周波数|/レーザ変調周波数fである。例えば、アルカリ金属原子にセシウム原子を用いる場合、搬送波の周波数fの例は、光の周波数に相当する約300THzであり、レーザ変調周波数fの例は、(セシウム原子の基底準位周波数差)/2である約4.6GHzである。そして、上述のような変調指数m及び振幅J(m)は、下記の式4の関係を満たす。なお、式4の左辺では、位相の項に変調成分が含まれているが、右辺では、搬送波の周波数fとレーザ変調周波数fの整数倍の周波数成分との和に分解して表現されている。
【0066】
【数2】
【0067】
<ライトシフトの要因>
次に、ライトシフトの要因について説明する。ライトシフトは、下記の式5のように示される。
【0068】
【数3】
【0069】
式5において、α(λ)は、金属原子に照射される単位光強度あたりの変調周波数のシフト量を示すライトシフト係数であり、照射光の波長λを変数とする周波数の関数である。P(λ)は、金属原子に照射される波長λの光の強度を示す。ライトシフトは、光源110の出射光の波長に対するライトシフト係数と光強度との積を、全波長領域にわたり総和を取った値として得られる。
【0070】
さらに、本発明者らによって、レーザ光の波長が変化することによりライトシフトの変化が生じるまでの要因を構成する事象の関係として、図7に示す関係が見出された。図7は、実施の形態1に係るライトシフトを生じる要因の事象の関係を示す図である。
【0071】
図7に示すように、本実施の形態に係る原子発振器1は、光源110のレーザ素子の経時変化によりレーザ光の波長が変化する(事象A)と、レーザ光の波長が原子の吸収波長に一致又は近似するように、レーザ素子のバイアス電流を制御することによりフィードバック制御を行い、レーザ光の中心波長を一定に保つ(事象B)。なお、レーザ光の波長が原子の吸収波長に一致するとは、後述するように、アルカリ金属原子の励起準位と平均基底準位との差が搬送波の波長に対応することである。
【0072】
しかしながら、バイアス電流が変わることで、レーザ光の光強度Pが変化し(事象C)、且つ、レーザ光の変調度が変化する(事象D)。さらに、変調度の変化により、ライトシフト係数αが変化する(事象E)。最終的に、光強度Pの変化とライトシフト係数αの変化とにより、ライトシフトの変化が生じる(事象F)。
【0073】
そこで、バイアス電流の変化と変調度の変化との関係、つまり、事象Bを要因として事象Dが発生するプロセスが、本発明者らによって見出された。さらに、光強度の変化(事象C)を要因とするライトシフトの変化(事象F)と、変調度の変化(事象D)を要因とするライトシフトの変化(事象F)とを相殺することによって、ライトシフトを総合的に低減できることが、本発明者らによって見出された。
【0074】
事象間の関係の詳細を説明する。事象A及び事象Bの関係の詳細は、以下のとおりである。バイアス電流が大きくなるとレーザ光の波長は長くなり、バイアス電流が小さくなるとレーザ光の波長は短くなる。このため、事象Aにおいて、レーザ素子が、図8Aに示すように一定のバイアス電流に対してレーザ光の波長が小さくなる方向に経時変化する場合、制御部300は、事象Bにおいて、図8Bに示すようにバイアス電流を経時的に大きくする制御を行うことによって、レーザ光の波長を一定に保つ。なお、図8A及び図8Bは、レーザ光の波長が短波化シフトする場合のレーザ光の波長及びバイアス電流の経時的変化の一例を示す図である。
【0075】
また、事象Aにおいて、レーザ素子が、図9Aに示すように一定のバイアス電流に対してレーザ光の波長が大きくなる方向に経時変化する場合、制御部300は、図9Bに示すようにバイアス電流を経時的に小さくする制御を行うことによって、レーザ光の波長を一定に保つ。なお、図9A及び図9Bは、レーザ光の波長が長波化シフトする場合のレーザ光の波長及びバイアス電流の経時的変化の一例を示す図である。
【0076】
事象B及び事象Dの関係の詳細は、以下のとおりである。図10は、光源110のレーザ素子のバイアス電流と変調指数との関係の一例を示す図である。図10は、本発明者らの研究及び実験等により得られた結果であり、図5A図5Cに示す3つの水準のバイアス電流I、I及びI(I<I<I)のケースを含む。図10に示すように、変調指数は、あるバイアス電流Iにおいて極大値「m2」をとり、バイアス電流Iにおいて値「m1(<m2)」をとり、バイアス電流Iにおいて値「m3(<m2)」をとる。よって、バイアス電流と変調指数とは、上に凸の曲線状の線形を描く関係であることが、見出された。これは、例えばFM応答特性が図5A図5Cに示すような応答特性を示すことが要因であり、この要因により、バイアス電流が増加したときの変調指数の変化が直線的な線形を示さない。
【0077】
事象C及び事象Fの関係、事象D及び事象Eの関係、並びに、事象E及び事象Fの関係の詳細は、以下のとおりである。変調指数が変化した場合のライトシフト係数の変化は、レーザ光の光電場とアルカリ金属原子の電気双極子モーメントとの相互作用を量子力学的に計算することで導出することができる。
【0078】
アルカリ金属原子としてセシウム原子を用いる場合、レーザ変調周波数fの例は、(セシウム原子の基底準位周波数差)/2である約4.6GHzである。上述のような条件のもと数値計算を行うことによって、図11に示すような変調指数mとライトシフト係数αとの関係が導出される。図11は、変調指数mとライトシフト係数αとの関係の一例を示す図である。
【0079】
図11に示すように、ライトシフト係数は正の値であることと式5とから、光強度が大きくなるとライトシフトは増加する関係となる、つまり、事象C及び事象Fの関係が明らかになる。また、図11に示される線形は、変調指数の増加に対しては負の傾きを有することから、変調指数が大きくなるほどライトシフト係数は小さくなる関係となる、つまり、事象D及び事象Eの関係が明らかになる。また、ライトシフト係数は正の値であることと式5とから、ライトシフト係数が大きくなるとライトシフトは増加する関係となる、つまり、事象E及び事象Fの関係が明らかになる。
【0080】
<原子発振器1のライトシフトの変化の抑制動作>
本実施の形態に係る原子発振器1の制御部300がライトシフトの変化を抑制する動作を説明する。
【0081】
レーザ素子の波長が経時的に短波化する場合、制御部300は、バイアス電流を経時的に増加させる制御を行うことで波長を一定に保つ。このとき、制御部300は、図5A及び図10のバイアス電流Iのケースに示されるように、レーザ変調周波数fが緩和振動周波数fよりも大きくなるようにバイアス電流を制御する。
【0082】
そして、バイアス電流が経時的に大きくなることで、図10に示すように、変調指数は大きくなる方向に変化する。変調指数が大きくなると、図11に示すような関係により、ライトシフト係数は小さくなる方向に経時変化する。以上の関係より、ライトシフト係数の変化によるライトシフトは、経時的に負の方向にシフトする。これは、図7の事象B→事象D→事象E→事象Fの変化に相当する。
【0083】
また、バイアス電流が経時的に大きくなることで、光強度は大きくなる。ライトシフト係数は正の値であるため、光強度の増大により、ライトシフトは経時的に正の方向にシフトする。これは、図7の事象B→事象C→事象Fの変化に相当する。
【0084】
このように、制御部300は、変調指数の変化により負の方向にシフトするライトシフトと、光強度の変化により正の方向にシフトするライトシフトとが相殺されるようにバイアス電流を制御し、全体としてのライトシフトの経時的な変化を抑制する。
【0085】
レーザ素子の波長が経時的に長波化する場合、制御部300は、バイアス電流を経時的に減少させる制御を行うことで波長を一定に保つ。制御部300は、図5A及び図10のバイアス電流Iのケースに示されるように、レーザ変調周波数fが緩和振動周波数fよりも大きくなるようにバイアス電流を制御する。
【0086】
そして、バイアス電流が経時的に小さくなることで、図10に示すように、変調指数は小さくなる方向に変化する。変調指数が小さくなるとライトシフト係数は大きくなり、結果として経時的に正方向にシフトするライトシフトが生じる。
【0087】
また、バイアス電流が経時的に小さくなることで、光強度は小さくなる。ライトシフト係数は正の値であるため、経時的に負方向にシフトするライトシフトが生じる。
【0088】
このように、制御部300は、変調指数の変化により正方向にシフトするライトシフトと、光強度の変化により負方向にシフトするライトシフトとが相殺されるようにバイアス電流を制御し、全体としてのライトシフトの経時的な変化を抑制する。
【0089】
一般的にレーザ素子を変調して使用する場合は、できるだけ少ない電力で高い応答性が得られるように、レーザ変調周波数fが緩和振動周波数f以下となるような条件が設定される。
【0090】
しかしながら、本実施の形態では、制御部300は、レーザ変調周波数fが緩和振動周波数fよりも大きくなるバイアス電流を積極的に設定することで、複数のライトシフトの要因を相殺することができる。これにより、長期的に周波数の安定性に優れる原子発振器1を実現できる。
【0091】
<変調処理>
図1及び図12図14を参照しつつ、本実施の形態に係る原子発振器1における変調処理、具体的には、CPT方式での変調処理を説明する。図12は、CPT方式における原子エネルギー準位の一例を示す図である。図12に示すように、アルカリ金属原子は、3準位系のエネルギー準位を有する。3準位系のエネルギー準位は、エネルギー準位の異なる2つの基底準位と、励起準位とを含む。光源110のレーザ光によって、アルカリ金属原子の電子が同時に2つの基底準位から励起準位に励起されると、アルカリ金属原子における光の吸収率が低下する透明化現象が生じる。原子発振器1では、この透明化現象が利用される。搬送波の波長は、2つの基底準位の平均である平均基底準位と励起準位との差のエネルギーに対応する。例えば、アルカリ金属原子がCs原子である場合、光源110の面発光レーザ素子の搬送波の波長の例は、894.6nm又はその近傍である。搬送波の波長は、面発光レーザ素子の温度又は出力を変化させてチューニングすることが可能である。2つの基底準位間のエネルギーの差に対応する周波数は、Cs原子の固有振動数9.2GHzに一致する。
【0092】
図13は、変調時におけるレーザ素子の出力周波数の一例を示す図である。図13に示すように、レーザ変調周波数fで変調をかけることで搬送波の両側に2つの1次サイドバンドが発生する。図13において、横軸は周波数を示し、縦軸は振幅の絶対値を示す。搬送波の周波数fに対して、2つの1次サイドバンドそれぞれの周波数は、f-f及びf+fである。そして、レーザ変調周波数fは、2つの1次サイドバンドの周波数差がアルカリ金属原子の固有振動数に一致するように決定される。例えば、アルカリ金属原子がCs原子である場合、1次サイドバンドの周波数差がCs原子の固有振動数である9.2GHzに一致するように、レーザ変調周波数fは4.6GHzに決定される。
【0093】
図14は、変調周波数とガスセル140の透過光量との相関の一例を示す図である。図14に示すように、励起されたアルカリ金属原子ガスを透過するレーザ光の光量は、1次サイドバンドの周波数差がアルカリ金属原子の固有周波数に一致する場合に最大となる。具体的には、アルカリ金属原子がCs原子である場合、サイドバンドの周波数差がCs原子の固有振動数9.2GHzに一致する場合、つまり、変調周波数が4.6GHzである場合、レーザ光の透過光量が最大になる。このように、図13に示すように決定されたレーザ変調周波数fは、レーザ光の透過光量を最大化する。
【0094】
このため、制御部300は、受光素子150の受光信号が最大値を保持するように、変調器200の制御において受光素子150の受光信号をフィードバックし、光源110における面発光レーザ素子の変調周波数を調整する。アルカリ金属原子の固有振動数が極めて安定しているため、変調周波数は安定した値となる。このような情報が、制御部300から変調器200への変調制御信号のアウトプットとして取り出される。
【0095】
<バイアス電流の設定処理>
図1を参照しつつ、本実施の形態に係る原子発振器1におけるバイアス電流の設定処理を説明する。以下のように処理することによって、ライトシフトの変化を抑えつつ、光源110のレーザ素子の発光波長の経時変化に対応したバイアス電流を設定することができる。以下において、ガスセル140のアルカリ金属原子がCs原子であるとして説明するが、他の原子の場合も同様である。さらに、原子発振器1の光源110の面発光レーザ素子は、セシウムD1線に相当する894.6nm近傍の波長のレーザ光を出力するとする。
【0096】
原子発振器1における光強度変化のライトシフトは、下記の式6のように表すことができ、変調度変化のライトシフトは、下記の式7のように表すことができる。
【0097】
【数4】
【0098】
式中のδは、経時変化分を意味する記号として用いられている。Iはバイアス電流を示し、δIはバイアス電流の経時変化を示す。Pはガスセル140に入射するレーザ光の光強度を示す。αはライトシフト係数であり、mは変調指数である。dm/dIはバイアス電流の変化に対する変調指数の変化の傾きを示す。dα/dmは変調指数の変化に対するライトシフト係数の変化の傾きを示す。
【0099】
式6のδfintの値と式7のδfmodの値とが相殺するようにバイアス電流Iを設定することで、ライトシフトの経時変化を抑制することができる。
【0100】
図15は、実施の形態1に係る原子発振器1におけるバイアス電流の設定処理の一例を示すフローチャートである。以下において、図15に示すステップS1~S4の処理の少なくとも一部が、原子発振器1とは別のコンピュータ装置等を用いて、自動で又は設計者等の操作者によって手動で行われ、その処理結果が原子発振器1に設定されてもよい。
【0101】
まず、ステップS1において、原子発振器1における変調指数とライトシフト係数との関係が取得される。具体的には、原子発振器1のバイアス電流を設定する事前準備として、変調指数とライトシフト係数との関係を、別のコンピュータ装置等を用いた数値計算により予め求めておく。例えば、この関係は、原子発振器1の設計時等の製造前に算出されてもよい。
【0102】
例えば、図16は、実施の形態1に係る原子発振器1における変調指数とライトシフト係数との関係の一例を示す図である。図16の実線の曲線R1で示されるような関係が、予め算出される。そして、変調指数として、理想的なFM変調の場合に1次サイドバンドの周波数成分の振幅が最大となる変調指数である最大化変調指数が算出される。
【0103】
図16の例では、最大化変調指数として、変調指数「1.8」が算出される。さらに、曲線R1において、変調指数「1.8」の近傍でのライトシフト係数αは、約+1×10-11(μW/cm-1である。また、曲線R1において、変調指数の変化に対するライトシフト係数の変化の傾きdα/dmは、変調指数の増加「1」あたり約-2×10-11(μW/cm-1である。この傾きは、曲線R1を変調指数「1.8」の点において微分することによって算出され得る。
【0104】
そして、変調指数とライトシフト係数との関係の情報として、変調指数とライトシフト係数との関係、最大化変調指数、当該最大化変調指数でのライトシフト係数の値、及び、当該最大化変調指数でのdα/dmの値等が、取得される。
【0105】
次いで、ステップS2において、バイアス電流と、緩和振動周波数及び減衰係数との相関データが取得される。具体的には、事前準備として、使用される面発光レーザ素子におけるバイアス電流と緩和振動周波数及び減衰係数との相関データを、ネットワークアナライザ等の計測機器を使用した計測により予め取得する。例えば、この相関データは、原子発振器1の設計時等の製造前に計測されてもよい。そして、当該相関データを用いて、緩和振動周波数がレーザ変調周波数に一致するバイアス電流が算出される。
【0106】
例えば、図17は、実施の形態1に係る原子発振器1におけるバイアス電流と緩和振動周波数との相関データの一例を示す図である。図17の破線の曲線R2で示されるような相関データが、計測等により予め算出される。緩和振動周波数fは、(バイアス電流I-発振閾値電流Ith)の1/2乗に比例する関係となる。曲線R2において、緩和振動周波数fがレーザ変調周波数fである4.6GHzに一致するのは、電流差(I-Ith)が約1mAの場合である。なお、図17の例では、発振閾値電流Ithは、約0.5mAである。このため、緩和振動周波数fがレーザ変調周波数fに一致するバイアス電流は約1.5mAである。
【0107】
また、図18は、実施の形態1に係る原子発振器1における緩和振動周波数fと減衰係数γとの相関データの一例を示す図である。図18の破線の直線R3で示されるような相関データが、計測等により予め算出される。減衰係数γと緩和振動周波数fとの関係は、下記の式8に示す関係式で表現される。ここで、直線R3の比例係数は一般的にKファクターと表現され、y切片はγと表現される。K及びγは、バイアス電流に依存しない値であり、レーザ素子の変調応答を特徴付けるパラメータとして用いられる。
【0108】
【数5】
【0109】
図17の関係より、f と(I-Ith)とは、下記の式9に示すように比例関係にあることから、減衰係数γとバイアス電流との関係は、下記の式10のように表現できる。ここで、Aは、f と(I-Ith)との間の比例係数である。
【0110】
【数6】
【0111】
そして、算出されたバイアス電流及び相関データ等が、相関データに関する情報として取得される。
【0112】
次いで、ステップS3において、バイアス電流と変調指数との相関データが取得される。具体的には、ステップS2で取得された相関データにおける緩和振動周波数f及び減衰係数γの各値を用いて、バイアス電流とFM応答特性との関係が算出される。さらに、上記関係に基づき、面発光レーザ素子の変調周波数における変調指数の値が算出される。これにより、バイアス電流と変調指数との相関データが算出される。
【0113】
例えば、図19は、実施の形態1に係る原子発振器1におけるバイアス電流と変調指数との相関データの一例を示す図である。図19上において複数のドットで示されるような相関データが、以下のように算出される。具体的には、図17に示すようなバイアス電流と緩和振動周波数との相関データと図18に示すような緩和振動周波数と減衰係数との相関データとに基づき、各電流差(I-Ith)に対応するFM応答特性が算出される。なお、式3で表現されるFM応答特性に含まれる実効光子寿命γppは、減衰係数γを用いてγ/2と仮定して導出してもよい。さらに、電流差(I-Ith)とFM応答特性との関係に基づき、各電流差(I-Ith)に対応する変調周波数における変調指数が算出される。図19に示すように、電流差(I-Ith)が約1mAの場合に変調指数が最大となり、このとき、緩和振動周波数fがレーザ変調周波数fに一致する。そして、図19に示すような相関データ、及び変調指数の最大値の近傍での傾きdm/dIの線形を表す数式等は、相関データに関する情報として、取得される。
【0114】
次いで、ステップS4において、制御部300は、ライトシフトの経時変化の相殺条件が設定される。具体的には、ステップS1~S3において取得されたデータを用いて、ライトシフトの経時変化を相殺するバイアス電流が算出され設定される。式6及び式7を用いて、ライトシフト(δfint+δmod)とバイアス電流との関係が導出され、ライトシフトが小さくなるバイアス電流の条件が導出される。
【0115】
式6及び式7について、バイアス電流の経時変化の傾きδIと光強度Pとはいずれも、両方の式に含まれており、相殺される。このため、ライトシフトを相殺する条件は、バイアス電流I、ライトシフト係数α、傾きdm/dI、及び傾きdα/dmの関係によって、導出される。そして、式6及び式7に基づくライトシフトを相殺する条件を満たすバイアス電流が算出される。
【0116】
図20は、実施の形態1に係る原子発振器1における緩和振動周波数及びレーザ変調周波数の比f/fと、ライトシフトδfint、δfmod及び(δfint+δfmod)との相関データの一例を示す図である。緩和振動周波数がレーザ変調周波数に一致する条件(f/f=1)では、δfint及びδfmodがいずれも正の値であるため、ライトシフトの経時変化(δfint+δfmod)も正の値となる。これに対して、条件(f/f=0.9近傍)では、δfintが正の値であるがδmodが負の値となり、これらが互いに打ち消すことでライトシフトの経時変化が小さくなる。
【0117】
本発明者らが評価したいくつかの面発光レーザ素子の構造における代表的なK及びγの値を用いて、図20と同様に相関データを導出した結果の例を図21に示す。なお、図21において、縦軸は、緩和振動周波数がレーザ変調周波数に一致する条件(f/f=1)でのライトシフト経時変化を1として規格化して表現されている。ライトシフト経時変化が最小となるf/fの値は、構造Aではf/f=約0.9であり、構造Bではf/f=約0.85であり、構造Cではf/f=約0.97である。構造A、B及びCにおけるK及びγはそれぞれ、図21に示すとおりである。このように、いくつかの面発光レーザ素子の構造に対して本発明者らが評価した結果、ライトシフトが最小となる条件は、f/fが1よりも小さく且つ0.85以上となる範囲にあることが分かった。
【0118】
また図17及び式9に示す緩和振動周波数とバイアス電流との関係から、図21の横軸を電流差(I-Ith)でプロットしたグラフを図22に示す。この例では、図17に示す関係により、電流差(I-Ith)が1.0mAの場合にf=fとなる。さらに、同様に図19に示す関係より、電流差(I-Ith)が1.0mAの場合に変調指数が最大となる。式9の関係から、ライトシフトの経時変化が最小となる電流差(I-Ith)の条件は、fの2乗に相当する。つまり、構造Aでは、電流差(I-Ith)=0.9=0.81の近傍にてライトシフトの経時変化が最小となる。構造Bでは、電流差(I-Ith)=0.85=0.72の近傍にてライトシフトの経時変化が最小となる。構造Cでは、電流差(I-Ith)=0.97=0.94の近傍にてライトシフトの経時変化が最小となる。
【0119】
上述のように導出されたライトシフトの経時変化が相殺される緩和振動周波数となるようにバイアス電流を設定することで、周波数が長期的に安定した原子発振器1を実現することができる。好適な条件は、面発光レーザ素子の構造設計により幅があるが、f/fmが0.85以上であることが特に有効である。また、上記条件を、バイアス電流と発振閾値電流との差(I-Ith)で表現すると、電流差(I-Ith)は、変調指数が最大となる電流差の0.72倍以上であることが特に有効である。
【0120】
なお、ステップS1~S4の処理の少なくとも1つが、原子発振器1の制御部300によって行われてもよい。この場合、事前準備されるデータ及びその他の必要な情報は、記憶部400に予め記憶され、制御部300は、記憶部400の情報を用いて処理を行ってもよい。例えば、記憶部400には、変調指数とライトシフト係数との関係の情報と、バイアス電流と緩和振動周波数との関係の情報とが記憶されていてもよい。そして、制御部300は、記憶部400に記憶される情報に基づき、最大の変調指数が得られるバイアス電流を取得してもよい。
【0121】
上述より、制御部300は、光源110の緩和振動周波数fがレーザ変調周波数fよりも小さくようにバイアス電流を制御する。さらに、制御部300は、緩和振動周波数fがレーザ変調周波数fの0.85倍以上となるようにバイアス電流を制御する。また、制御部300は、光源110へ与えるバイアス電流を、最大の変調指数が得られるバイアス電流よりも小さくなるように制御してもよい。さらに、制御部300は、光源110へ与えるバイアス電流と発振閾値電流との電流差を、最大の変調指数が得られる上記電流差の0.72倍以上とするように制御してもよい。
【0122】
<効果>
上述のような実施の形態1に係る原子発振器1は、アルカリ金属原子が封入されているガスセル140と、バイアス電流を受けてアルカリ金属原子を共鳴させる光を出射する光源110と、アルカリ金属原子の基底準位の周波数差の2分の1に相当する変調周波数としてのレーザ変調周波数fで光源110を変調する変調器200と、光源110に与えるバイアス電流を制御する制御部300とを備える。制御部300は、光源110の緩和振動周波数fがレーザ変調周波数fよりも小さく且つレーザ変調周波数fの0.85倍以上となるようにバイアス電流を制御する。
【0123】
上記構成によると、レーザ変調周波数fで変調された光源110の出射光をアルカリ金属原子に照射することによって、アルカリ金属原子における光の吸収率が低下する透明化現象が生じる。よって、原子発振器の発振特性を向上させることが可能である。
【0124】
さらに、緩和振動周波数fがレーザ変調周波数fよりも小さいため、光源110の経時的な変化に応じて、バイアス電流に対して増加及び減少のいずれの経時的な変化をさせた場合でも、変調指数の変化によるライトシフトと光強度の変化によるライトシフトとを相殺することができる。また、緩和振動周波数fがレーザ変調周波数fよりも小さく且つレーザ変調周波数fの0.85倍以上である場合、原子発振器1の発振周波数の変動を低く抑えることができる。よって、原子発振器1は長期的な周波数安定性を向上することが可能である。
【0125】
また、実施の形態1に係る原子発振器1において、制御部300は、光源110へ与えるバイアス電流を、最大の変調指数が得られるバイアス電流よりも小さくしてもよい。例えば、変調指数は、光源110における周波数の変調の応答特性を示す指数であってもよい。上記構成によると、原子発振器1の発振周波数の長期的な経時変動を低く抑えることができる。
【0126】
また、実施の形態1に係る原子発振器1において、制御部300は、光源110へ与えるバイアス電流と発振閾値電流との電流差を、最大の変調指数が得られる上記電流差の0.72倍以上としてもよい。例えば、変調指数は、光源110における周波数の変調の応答特性を示す指数であってもよい。上記構成によると、原子発振器1の発振周波数の長期的な経時変動を低く抑えることができる。
【0127】
また、実施の形態1に係る原子発振器1は、変調指数とライトシフト係数との関係の情報と、バイアス電流と緩和振動周波数との関係の情報とを記憶する記憶部400を備えてもよい。そして、制御部300は、記憶部400に記憶される情報に基づき、最大の変調指数が得られるバイアス電流を取得してもよい。例えば、ライトシフト係数は、光源110の出射光の単位光強度あたりの変調周波数のシフト量を示してもよい。上記構成によると、制御部300は、原子発振器1の状態に応じた、最大の変調指数が得られるバイアス電流を取得し、光源110のバイアス電流を制御することができる。よって、原子発振器1は周波数安定性を向上することができる。
【0128】
(実施の形態2)
実施の形態1に係る原子発振器1は、アルカリ金属原子としてセシウム原子を用いたが、実施の形態2に係る原子発振器は、アルカリ金属原子として、セシウム原子以外の原子であるルビジウム原子を用いる。以下、実施の形態2について、実施の形態1と異なる点を中心に説明し、実施の形態1と同様の点の説明を適宜省略する。
【0129】
実施の形態2に係る原子発振器の構成及び動作は、実施の形態1に係る原子発振器1と同様であるため、その説明を省略する。以下において、実施の形態1及び2の間におけるアルカリ金属原子として使用される原子の差異について説明する。
【0130】
図23は、セシウムとルビジウムとの特性を比較して示す図である。図23に示すように、ルビジウム(Rb)は、「87Rb」及び「85Rb」の2種類の安定同位体を有する。87Rbの基底準位周波数差は、6.8GHzであり、85Rbの基底準位周波数差は、3.0GHzである。よって、87Rbのレーザ変調周波数fは、3.4GHzであり、85Rbのレーザ変調周波数fは、1.5GHzである。
【0131】
そして、87Rbにおいて、1次のサイドバンドの周波数成分の振幅が最大となる変調指数に対応するライトシフト係数αは、約+1.7×10-11(μW/cm-1であり、このときのライトシフト係数の変化の傾きdα/dmは、変調指数の増加「1」あたり約-3.6×10-11(μW/cm-1である。
【0132】
また、85Rbにおいて、1次のサイドバンドの周波数成分の振幅が最大となる変調指数に対応するライトシフト係数αは、約+8.0×10-11(μW/cm-1であり、このときのライトシフト係数の変化の傾きdα/dmは、変調指数の増加「1」あたり約-1.2×10-11(μW/cm-1である。
【0133】
上記のライトシフト係数及び傾きdα/dmは、図16に関して上述した算出方法と同様の方法を用いて算出することができる。
【0134】
また、ライトシフト係数をAとし且つ傾きをBとするときの比率A/Bについて、Csでは「-2.0」であり、87Rbでは「-2.1」であり、85Rbでは「-1.5」である。
【0135】
ライトシフト係数αは式6に含まれる。傾きdα/dmは式7に含まれる。よって、Csの比率と87Rbの比率とが同等であれば、Csの場合と同様のバイアス電流を設定することで、87Rbの場合でも2種類のライトシフトを相殺する作用がはたらく。同様に、Csの比率と85Rbの比率とが同等であれば、Csの場合と同様のバイアス電流を設定することで、85Rbの場合でも2種類のライトシフトを相殺する作用がはたらく。Cs、87Rb及び85Rbのいずれにおいても、比率A/Bは、略「2」であり、同等と見なすことができる。従って、ルビジウム原子を用いた場合であっても、セシウム原子と同様の条件を適用することでライトシフトの変動を抑制することができる。セシウム及びルビジウム以外のアルカリ金属原子についても、同様である。
【0136】
(その他の実施の形態)
以上、本発明の実施の形態の例について説明したが、本発明は、上記実施の形態に限定されない。すなわち、本発明の範囲内で種々の変形及び改良が可能である。例えば、各種変形を実施の形態に施したもの、及び、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。
【0137】
例えば、本発明は原子発振方法であってもよい。例えば、本発明に係る原子発振方法は、光源にバイアス電流を与え、金属原子を共鳴させる光を前記金属原子へ出射させるステップと、前記金属原子の基底準位の周波数差の2分の1に相当する変調周波数で前記光源を変調するステップと、前記光源の緩和振動周波数が前記変調周波数よりも小さく且つ前記変調周波数の0.85倍以上となるように前記バイアス電流を制御するステップとを含む。この原子発振方法によれば、上記実施の形態に係る原子発振器と同様の効果が得られる。このような原子発振方法は、CPU、LSIなどの回路、ICカード又は単体のモジュール等によって、実現されてもよい。
【0138】
また、上記で用いた序数、数量等の数字は、全て本発明の技術を具体的に説明するために例示するものであり、本発明は例示された数字に制限されない。また、構成要素間の接続関係は、本発明の技術を具体的に説明するために例示するものであり、本発明の機能を実現する接続関係はこれに限定されない。
【0139】
また、機能ブロック図におけるブロックの分割は一例であり、複数のブロックを一つのブロックとして実現する、一つのブロックを複数に分割する、及び/又は、一部の機能を他のブロックに移してもよい。また、類似する機能を有する複数のブロックの機能を単一のハードウェア又はソフトウェアが並列又は時分割に処理してもよい。
【符号の説明】
【0140】
1 原子発振器
100 量子部
110 光源
140 ガスセル(セル)
150 受光素子
200 変調器(変調部)
300 制御部
400 記憶部
【先行技術文献】
【特許文献】
【0141】
【文献】特開2016-92146号公報
【非特許文献】
【0142】
【文献】Vladislav Gerginov他著、「Long-term frequency instability of atomic frequency references based on coherent population trapping and microfabricated vapor cells」、Journal of the Optical Society of America B、OSA(The Optical Society)、2006年4月、Vol.23 Issue 4、p.593-597
【文献】Christopher M Long, Kent D. Choquette著、「Optical characterization of a vertical cavity surface emitting laser for a coherent population trapping frequency reference」、Journal of Applied Physics、AIP(The American Institute of Physics)、2008年2月、Vol.103 Issue 3 10.1063/1.2838175
図1
図2
図3
図4
図5A
図5B
図5C
図6
図7
図8A
図8B
図9A
図9B
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23