(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-02-27
(45)【発行日】2023-03-07
(54)【発明の名称】崩壊性単細胞性紅藻の製造方法、及び崩壊性単細胞性紅藻用培地
(51)【国際特許分類】
C12N 1/12 20060101AFI20230228BHJP
【FI】
C12N1/12 A
C12N1/12 B
(21)【出願番号】P 2022527679
(86)(22)【出願日】2021-08-24
(86)【国際出願番号】 JP2021030931
(87)【国際公開番号】W WO2022045109
(87)【国際公開日】2022-03-03
【審査請求日】2022-05-12
(31)【優先権主張番号】P 2020141202
(32)【優先日】2020-08-24
(33)【優先権主張国・地域又は機関】JP
【早期審査対象出願】
(73)【特許権者】
【識別番号】000002886
【氏名又は名称】DIC株式会社
(73)【特許権者】
【識別番号】504202472
【氏名又は名称】大学共同利用機関法人情報・システム研究機構
(74)【代理人】
【識別番号】100161207
【氏名又は名称】西澤 和純
(74)【代理人】
【識別番号】100215935
【氏名又は名称】阿部 茂輝
(74)【代理人】
【識別番号】100189337
【氏名又は名称】宮本 龍
(74)【代理人】
【識別番号】100188673
【氏名又は名称】成田 友紀
(72)【発明者】
【氏名】國分 夢
(72)【発明者】
【氏名】江原 岳
(72)【発明者】
【氏名】宮城島 進也
(72)【発明者】
【氏名】廣岡 俊亮
(72)【発明者】
【氏名】藤原 崇之
【審査官】小倉 梢
(56)【参考文献】
【文献】国際公開第2020/071444(WO,A1)
【文献】特表2018-529343(JP,A)
【文献】国際公開第2019/107385(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C12N 1/00 - 1/38
JSTPlus/JMEDPlus/JST7580(JDreamIII)
CAplus/MEDLINE/EMBASE/BIOSIS(STN)
(57)【特許請求の範囲】
【請求項1】
単細胞性紅藻細胞を、浸透圧調整剤を80mM以上含有する培地中で培養することと、
前記培養後、崩壊性の細胞を採取することと、を含み、
前記浸透圧調整剤が、
単糖(グルコースを除く)、二糖(スクロースを除く)、糖アルコール
(グリセロールを除く)、アミノ酸、及び金属塩
(ナトリウム塩を除く)からなる群より選択される少なくとも一種であ
り、
前記単細胞性紅藻が、ガルデリア属藻類であり、
前記浸透圧調整剤が単糖(グルコースを除く)又は二糖(スクロースを除く)である場合、前記培地中の浸透圧調整剤の濃度は、1.4M以下であり、
前記浸透圧調整剤が糖アルコール(グリセロールを除く)である場合、前記培地中の浸透圧調整剤の濃度は、1M以下であり、
前記浸透圧調整剤がアミノ酸である場合、前記培地中の浸透圧調整剤の濃度は、2M以下であり、
前記浸透圧調整剤が金属塩(ナトリウム塩を除く)である場合、前記培地中の浸透圧調整剤の濃度は、2M以下である、
崩壊性単細胞性紅藻の製造方法。
【請求項2】
単細胞性紅藻細胞を、浸透圧が150
~2610mOsm/kg以上である培地中で培養することと、
前記培養後、崩壊性の細胞を採取することと、を含み、
前記培地が、
単糖(グルコースを除く)、二糖(スクロースを除く)、糖アルコール
(グリセロールを除く)、アミノ酸、及び金属塩
(ナトリウム塩を除く)からなる群より選択される少なくとも一種の浸透圧調整剤を含
み、
前記単細胞性紅藻が、ガルデリア属藻類である、
崩壊性単細胞性紅藻の製造方法。
【請求項3】
前記浸透圧調整剤が、
単糖(グルコースを除く)、二糖(スクロースを除く)、糖アルコール
(グリセロールを除く)、及びアミノ酸からなる群より選択される少なくとも一種である、請求項1又は2に記載の崩壊性単細胞性紅藻の製造方法。
【請求項4】
前記単細胞性紅藻細胞が、非崩壊性細胞である、請求項1~3のいずれか一項に記載の崩壊性単細胞性紅藻の製造方法。
【請求項5】
前記非崩壊性細胞が、倍数体の細胞である、請求項4に記載の崩壊性単細胞性紅藻の製造方法。
【請求項6】
前記単細胞性紅藻細胞が、崩壊性細胞である、請求項1~3のいずれか一項に記載の崩壊性単細胞性紅藻の製造方法。
【請求項7】
崩壊性単細胞性紅藻細胞を、崩壊性細胞のまま維持する方法である、請求項6に記載の崩壊性単細胞性紅藻の製造方法。
【請求項8】
崩壊性単細胞性紅藻細胞を、増殖させる方法である、請求項6に記載の崩壊性単細胞性紅藻の製造方法。
【請求項9】
浸透圧調整剤を80mM以上含有し、
前記浸透圧調整剤が、
単糖(グルコースを除く)、二糖(スクロースを除く)、糖アルコール
(グリセロールを除く)、アミノ酸、及び金属塩
(ナトリウム塩を除く)からなる群より選択される少なくとも一種である、崩壊性単細胞性紅藻用培地
であって、
前記単細胞性紅藻が、ガルデリア属藻類であり、
前記浸透圧調整剤が単糖(グルコースを除く)又は二糖(スクロースを除く)である場合、前記培地中の浸透圧調整剤の濃度は、1.4M以下であり、
前記浸透圧調整剤が糖アルコール(グリセロールを除く)である場合、前記培地中の浸透圧調整剤の濃度は、1M以下であり、
前記浸透圧調整剤がアミノ酸である場合、前記培地中の浸透圧調整剤の濃度は、2M以下であり、
前記浸透圧調整剤が金属塩(ナトリウム塩を除く)である場合、前記培地中の浸透圧調整剤の濃度は、2M以下である、
崩壊性単細胞性紅藻用培地。
【請求項10】
浸透圧が150
~2610mOsm/kg以上であり、
単糖(グルコースを除く)、二糖(スクロースを除く)、糖アルコール
(グリセロールを除く)、アミノ酸、及び金属塩
(ナトリウム塩を除く)からなる群より選択される少なくとも一種の浸透圧調整剤を含
み、
前記単細胞性紅藻が、ガルデリア属藻類である、
崩壊性単細胞性紅藻用培地。
【請求項11】
浸透圧調整剤が、
単糖(グルコースを除く)、二糖(スクロースを除く)、糖アルコール
(グリセロールを除く)、及びアミノ酸からなる群より選択される少なくとも一種である、請求項9又は10に記載の崩壊性単細胞性紅藻用培地。
【請求項12】
非崩壊性単細胞性紅藻細胞から崩壊性単細胞性紅藻細胞を作出するために用いられる、請求項9~11のいずれか一項に記載の崩壊性単細胞性紅藻用培地。
【請求項13】
前記非崩壊性単細胞性紅藻細胞が、倍数体の単細胞性紅藻細胞である、請求項12に記載の崩壊性単細胞性紅藻用培地。
【請求項14】
崩壊性単細胞性紅藻細胞を、崩壊性細胞のまま維持するために用いられる、請求項9~11のいずれか一項に記載の崩壊性単細胞性紅藻用培地。
【請求項15】
崩壊性単細胞性紅藻細胞を、増殖させるために用いられる、請求項9~11のいずれか一項に記載の崩壊性単細胞性紅藻用培地。
【発明の詳細な説明】
【技術分野】
【0001】
発明は、崩壊性単細胞性紅藻の製造方法、及び崩壊性単細胞性紅藻用培地に関する。
本願は、2020年8月24日に、日本に出願された特願2020-141202号に基づき優先権を主張し、その内容をここに援用する。
【背景技術】
【0002】
微細藻類は、陸上植物と比較して、高い二酸化炭素固定能力を有すること、及び農産物と生育場所が競合しないことから、いくつかの種は、大量培養されて、飼料、機能性食品、化粧品材料等として産業的に利用されている。
微細藻類を産業利用する場合には、コスト面等から、屋外で大量培養可能な微細藻類であることが望ましい。しかしながら、屋外で大量培養可能な微細藻類であるためには、環境変動(光、温度等)に耐性を有すること、他の生物が生存できないような条件で培養できること、高密度まで増殖可能であること、等の条件が求められる。
【0003】
単細胞性紅藻の中には、硫酸酸性温泉において優先増殖するものがある。そのような単細胞性紅藻は、高塩濃度、高温、低pH等の他の生物が生育困難な環境で培養可能である点に特徴を有する。そのため、そのような単細胞性紅藻は、産業利用に適していると考えられる。
【0004】
一般的に、細胞壁を有する微細藻類の場合、細胞内成分の抽出に際して細胞壁を破壊する必要がある。細胞壁を破壊する方法としては、物理的処理、化学的処理、又は酵素的処理等があるが、手間がかかり、必要な細胞内成分が分解される恐れもある。そのため、細胞壁がほとんどない細胞を作出することができれば、細胞内成分の抽出が容易になると考えられる。例えば、特許文献1には、単細胞性紅藻であるイデユコゴメ綱の藻類において、強固な細胞壁を有する非崩壊性細胞から、強固な細胞壁を有さない崩壊性細胞を作出できたことが記載されている。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
特許文献1に記載の方法では、非崩壊性細胞から作出された崩壊性細胞を長期に安定して維持することが難しい。そのため、崩壊性細胞を長期に安定して維持できる技術が求められる。
【0007】
そこで、本発明は、崩壊性細胞を安定して維持可能な、崩壊性単細胞性紅藻の製造方法、及び崩壊性単細胞性紅藻用培地を提供することを課題とする。
【課題を解決するための手段】
【0008】
本発明は、以下の態様を含む。
[1]単細胞性紅藻細胞を、浸透圧調整剤を80mM以上含有する培地中で培養することを含む、崩壊性単細胞性紅藻の製造方法。
[2]単細胞性紅藻細胞を、浸透圧が150mOsm/kg以上である培地中で培養することを含む、崩壊性単細胞性紅藻の製造方法。
[3]浸透圧調整剤が、糖、糖アルコール、及びアミノ酸からなる群より選択される少なくとも一種である、[1]又は[2]に記載の崩壊性単細胞性紅藻の製造方法。
[4]前記単細胞性紅藻細胞が、非崩壊性細胞である、[1]~[3]のいずれか1つに記載の崩壊性単細胞性紅藻の製造方法。
[5]前記単細胞性紅藻細胞が、倍数体の細胞である、[4]に記載の崩壊性単細胞性紅藻の製造方法。
[6]前記単細胞性紅藻細胞が、崩壊性細胞である、[1]~[3]のいずれか1つに記載の崩壊性単細胞性紅藻の製造方法。
[7]崩壊性単細胞性紅藻細胞を、崩壊性細胞のまま維持する方法である、[6]に記載の崩壊性単細胞性紅藻の製造方法。
[8]崩壊性単細胞性紅藻細胞を、増殖させる方法である、[6]に記載の崩壊性単細胞性紅藻の製造方法。
[9]浸透圧調整剤を80mM以上含有する、崩壊性単細胞性紅藻用培地。
[10]浸透圧が150mOsm/kg以上である、崩壊性単細胞性紅藻用培地。
[11]浸透圧調整剤が、糖、糖アルコール、及びアミノ酸からなる群より選択される少なくとも一種である、[9]又は[10]に記載の崩壊性単細胞性紅藻用培地。
[12]非崩壊性単細胞性紅藻細胞から崩壊性単細胞性紅藻細胞を作出するために用いられる、[9]~[11]のいずれか1つに記載の崩壊性単細胞性紅藻用培地。
[13]前記非崩壊性単細胞性紅藻細胞が、倍数体の単細胞性紅藻細胞である、[12]に記載の崩壊性単細胞性紅藻用培地。
[14]崩壊性の単細胞性紅藻細胞を、崩壊性細胞のまま維持するために用いられる、[9]~[11]のいずれか1つに記載の崩壊性単細胞性紅藻用培地。
[15]崩壊性単細胞性紅藻細胞を、増殖させるために用いられる、[9]~[11]のいずれか1つに記載の崩壊性単細胞性紅藻用培地。
【発明の効果】
【0009】
本発明によれば、崩壊性細胞を安定して維持可能な、崩壊性単細胞性紅藻の製造方法、及び崩壊性単細胞性紅藻用培地が提供される。
【図面の簡単な説明】
【0010】
【
図1】非崩壊性単細胞性紅藻細胞から生じた崩壊性細胞コロニーの例を示す。
【
図2】CCCryo127-00株の崩壊性細胞を、18%ソルビトール+Gross 1.5%寒天培地に植え継ぎ培養した寒天プレートの写真を示す。
【
図3】18%ソルビトール+Gross 1.5%寒天培地で、CCCryo127-00株の崩壊性細胞を1カ月間培養したプレートの写真を示す。
【
図4】1%ソルビトール+Gross 1.5%寒天培地で、CCCryo127-00株の崩壊性細胞を2週間培養したプレートの写真を示す。非崩壊性細胞への復帰が確認された。
【
図5】18%ソルビトール+Gross 1.5%寒天培地で、CCCryo127-00株の崩壊性細胞が増殖した例を示す。左の写真は培養開始時のプレートであり、右の写真は培養3週間後のプレートである。
【
図6】18%ソルビトール+Gross 1.5%寒天培地で、非崩壊性のCCCryo127-00株から崩壊性細胞を作出した例を示す。崩壊性細胞は、植え継いだ寒天培地上でも維持された。
【
図7】18%ソルビトール+Gross液体培地で、CCCryo127-00株の崩壊性細胞を増殖させた例を示す。
【発明を実施するための形態】
【0011】
本明細書に記載される細胞は、単離されたものであり得る。「単離された」とは、天然状態から分離された状態を意味する。
【0012】
<崩壊性単細胞性紅藻の製造方法>
本発明の第1の態様は、単細胞性紅藻細胞を、浸透圧調整剤を80mM以上含有する培地中で培養することを含む、崩壊性単細胞性紅藻の製造方法である。
本明細書において、「崩壊性細胞」とは、強固な細胞壁を有さないなどの理由により、温和な処理によっても容易に破壊しうる細胞を意味する。「非崩壊性細胞」とは、強固な細胞壁を有するなどの理由により、温和な処理によって容易には破壊しえない細胞を意味する。ここで言う温和な処理としては、例えば、中和処理、低張処理、凍結融解処理、界面活性剤処理などが挙げられる。
本発明は、崩壊性細胞を安定して維持可能な崩壊性単細胞性紅藻の製造方法を提供することを目的とする。本発明では、2週間を超えて崩壊性細胞を維持できた場合に「崩壊性細胞を安定して維持可能」と判断し得る。
【0013】
(単細胞性紅藻)
「単細胞性紅藻」とは、紅色植物門(Rhodophyta)に属する藻類であって、単細胞性である藻類を指す。単細胞性紅藻としては、イデユコゴメ綱(Cyanidiophyceae)、ベニミドロ綱(Stylonematophyceae)、チノリモ綱(Porphyridiophyceae)、及びロデラ綱(Rhodellophyceae)が挙げられる。これらの中でも、崩壊性細胞を安定に維持しやすいことから、イデユコゴメ綱(Cyanidiophyceae)が好ましい。イデユコゴメ綱には、シアニディオシゾン(Cyanidioschyzon)属、シアニジウム(Cyanidium)属、及びガルデリア(Galdieria)属が知られている。シアニジウム属、及びガルデリア属は、自然界で非崩壊性細胞として存在する。そのため、イデユコゴメ綱の中でも、シアニジウム属、及びガルデリア属が好ましく、ガルデリア属がより好ましい。
ガルデリア属としては、例えば、G.sulphuraria、G.partita、G.daedala、G.maxima等が挙げられるが、これらに限定されない。ガルデリア属としては、G.sulphurariaが特に好ましい。
シアニジウム属としては、例えば、C.caldarium、C.sp.Monte Rotaro等が挙げられるが、これらに限定されない。
イデユコゴメ綱の藻類株としては、例えば、国際公開第2019/107385号の
図10に記載されるもの等が挙げられる。
【0014】
本態様の方法において、培養開始時に用いる単細胞性紅藻細胞は、非崩壊性細胞であってもよく、崩壊性細胞であってもよい。非崩壊性細胞は、倍数体(例えば、2倍体)の細胞であってもよい。
本態様の方法により、単細胞性紅藻細胞として非崩壊性細胞を培養した場合、培養中に、崩壊性細胞を生じることがある。本態様の方法による培養を継続することにより、崩壊性細胞が非崩壊性細胞に回帰することなく、崩壊性細胞のまま維持することができる。したがって、本態様の方法は、非崩壊性単細胞性紅藻細胞から、崩壊性単細胞性紅藻を作出する方法を包含する。
本態様の方法により、単細胞性紅藻細胞として崩壊性細胞を培養した場合、培養中に、非崩壊性細胞に回帰することなく、崩壊性細胞のまま維持される。したがって、本態様の方法は、崩壊性単細胞性紅藻細胞を維持する方法を包含する。
本態様の方法により、崩壊性単細胞性紅藻細胞は、培養中に崩壊性細胞のまま増殖する。したがって、本態様の方法は、崩壊性単細胞性紅藻を増殖させる方法を包含する。
【0015】
(培地)
本態様の方法で用いる培地は、浸透圧調整剤を80mM以上含有する培地である。
「浸透圧調整剤」とは、浸透圧を調整可能な化学物質を指す。浸透圧調整剤は、培地に添加することにより浸透圧を調整可能な化学物質であれば、特に限定されない。浸透圧調整剤としては、例えば、糖、糖アルコール、アミノ酸、金属塩、尿素、タンパク質、ベタイン、イノシトール、多糖等が挙げられる。これらの中でも、糖、糖アルコール、アミノ酸、及び金属塩が好ましい。
【0016】
糖としては、例えば、ジヒドロキシアセトン、グリセルアルデヒド、エリトルロース、エリトロース、トレオース、リブロース、キシルロース、リボース、アラビノース、キシロース、リキソース、デオキシリボース、プシコース、フルクトース、ソルボース、タガトース、アロース、アルトロース、グルコース、マンノース、グロース、イドース、ガラクトース、タロース、フコース、フクロース、ラムノース、セドヘプツロース等の単糖(D体及びL体のいずれであてもよく、D体及びL体の混合物であってもよい);スクロース、ラクツロース、ラクトース、マルトース、トレハロース、セロビオース、コージビオース、ニゲロース、イソマルトース、β,β―トレハロース、α,β―トレハロース、ソホロース、ラミナリビオース、ゲンチオビオース、ツラノース、マルツロース、パラチノース、ゲンチオビウロース、マンノビオース、メリビオース、メリビウロース、ネオラクトース、ガラクトスクロース、シラビオース、ネオヘスペリドース、ルチノース、ルチヌロース、ビシアノース、キシロビオース、プリメベロース、トレハロサミン、マルチトール、セロビオン酸、ラクトサミン、ラクトースジアミン、ラクトビオン酸、ラクチトール、ヒアロビウロン酸、スクラロース糖の二糖;ニゲロトリオース、マルトトリオース、メレジトース、マルトトリウロース、ラフィノース、ケストース等の三糖;ニストース、ニゲロテトラオース、スタキオース等の四糖;及び乳糖果糖オリゴ糖、ラクトスクロース、マルトオリゴ糖、イソマルトオリゴ糖、ゲンチオオリゴ糖、ニゲロオリゴ糖、フラクトオリゴ糖、ガラクトオリゴ糖、マンナンオリゴ糖、キシロオリゴ糖、大豆オリゴ糖等のオリゴ糖等が挙げられるが、これらに限定されない。糖としては、単糖又は二糖が好ましい。
単糖としては、ジヒドロキシアセトン、グリセルアルデヒド、エリトルロース、エリトロース、トレオース、リブロース、キシルロース、リボース、アラビノース、キシロース、リキソース、デオキシリボース、プシコース、フルクトース、ソルボース、タガトース、アロース、アルトロース、グルコース、マンノース、グロース、イドース、ガラクトース、タロース、フコース、フクロース、ラムノース、セドヘプツロースが好ましく、ジヒドロキシアセトン、グリセルアルデヒド、エリトルロース、エリトロース、リブロース、リボース、アラビノース、キシロース、デオキシリボース、フルクトース、グルコース、マンノース、ガラクトース、又はセドヘプツロースがより好ましく、グルコースがさらに好ましい。
二糖としては、スクロース、ラクツロース、ラクトース、マルトース、トレハロース、セロビオース、コージビオース、ニゲロース、イソマルトース、β,β―トレハロース、α,β―トレハロース、ソホロース、ラミナリビオース、ゲンチオビオース、ツラノース、マルツロース、パラチノース、ゲンチオビウロース、マンノビオース、メリビオース、メリビウロース、ネオラクトース、ガラクトスクロース、シラビオース、ネオヘスペリドース、ルチノース、ルチヌロース、ビシアノース、キシロビオース、プリメベロース、トレハロサミン、マルチトール、セロビオン酸、ラクトサミン、ラクトースジアミン、ラクトビオン酸、ラクチトール、ヒアロビウロン酸、又はスクラロースが好ましく、スクロース、ラクツロース、ラクトース、マルトース、トレハロース、又はセロビオースがより好ましく、スクロースがさらに好ましい。
【0017】
糖アルコールとしては、例えば、グリセロール等の3価の糖アルコール;エリトリトール、D-トレイトール、L-トレイトール等の4価の糖アルコール;D-アラビニトール、L-アラビニトール、キシリトール、リビトール、アドニトール等の5価の糖アルコール;D-イジトール、ガラクチトール、ダルシトール、D-グルシトール、ソルビトール、マンニトール等の6価の糖アルコール;、ボレミトール、ペルセイトール等の7価の糖アルコール;D-エリトロ-D-ガラクト-オクチトール等の8価の糖アルコール;イソマルト、ラクチトール、マルチトール等の9価の糖アルコール;及びHSH、還元水飴糖等の糖アルコールの混合物等が挙げられるが、これらに限定されない。糖アルコールとしては、3価の糖アルコール、4価の糖アルコール、5価の糖アルコール、6価の糖アルコール、9価の糖アルコール、又は糖アルコールの混合物が好ましく、3価の糖アルコール又は6価の糖アルコールがより好ましく、6価の糖アルコールがさらに好ましい。
糖アルコールとしては、グリセロール、エリトリトール、キシリトール、ソルビトール、マンニトール、イソマルト、ラクチトール、マルチトール、HSH、又は還元水飴が好ましく、マンニトール、又はソルビトールがより好ましい。
【0018】
アミノ酸は、D体及びL体のいずれであってもよく、D体及びL体の混合物であってもよい。アミノ酸は、α-アミノ酸、β-アミノ酸、γ-アミノ酸、及びδ-アミノ酸のいずれであってもよい。アミノ酸としては、例えば、アラニン、アスパラギン酸、アスパラギン、システイン、グルタミン酸、グルタミン、フェニルアラニン、グリシン、ヒスチジン、イソロイシン、リシン、ロイシン、メチオニン、プロリン、アルギニン、セリン、トレオニン、セレノシステイン、バリン、トリプトファン、チロシン、2-アミノアジピン酸、3-アミノアジピン酸、2-アミノブタン酸、2,4-ジアミノブタン酸、2-アミノヘキサン酸、6-アミノヘキサン酸、β-アラニン、2-アミノペンタン酸、2,3-ジアミノプロパン酸、2-アミノピメリン酸、2,6-ジアミノピメリン酸、シトルリン、システイン酸、4-カルボキシグルタミン酸、5-オキソプロリン、ピログルタミン酸、ホモシステイン、ホモセリン、ホモセリンラクトン、5-ヒドロキシリシン、アロヒドロキシリシン、3-ヒドロキシプロリン、4-ヒドロキシプロリン、アロイソロイシン、ノルロイシン、ノルバリン、オルニチン、サルコシン、アロトレオニン、チロキシン等が挙げられる。アミノ酸としては、アラニン、アスパラギン酸、アスパラギン、システイン、グルタミン酸、グルタミン、フェニルアラニン、グリシン、ヒスチジン、イソロイシン、リシン、ロイシン、メチオニン、プロリン、アルギニン、セリン、トレオニン、セレノシステイン、バリン、トリプトファン、又はチロシンが好ましく、グリシン、プロリン、又はアルギニンがより好ましい。
【0019】
金属塩としては、例えば、アルカリ金属(ナトリウム、カリウムなど)又はアルカリ土類金属(マグネシウム、カルシウムなど)と、無機酸(塩酸、硫酸、炭酸、亜硫酸、硝酸等)又は有機酸(乳酸、コハク酸、酢酸等)との塩等が挙げられる。金属塩としては、アルカリ金属又はアルカリ土類金属と、無機酸との塩が好ましく、塩化カリウム、又は硫酸ナトリウム等がより好ましく、塩化カリウムがさらに好ましい。
【0020】
これらの中でも、培地に添加して浸透圧を調整しやすいことから、浸透圧調整剤は、糖、糖アルコール、及びアミノ酸からなる群より選択される少なくとも1種であることが好ましい。好適な糖としては、グルコース、スクロースが挙げられる。好適な糖アルコールとしては、6価の糖アルコール(例えば、マンニトール、ソルビトール)が挙げられる。好適なアミノ酸としては、グリシン、プロリン、アルギニンが挙げられる。
浸透圧調整剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いでもよい。
【0021】
培地は、浸透圧調整剤を80mM以上含有する培地であれば、特に限定されない。培地は、例えば、単細胞性藻類用の培地として公知な培地に、浸透圧調整剤を80mM以上となるように添加して調製することができる。単細胞性藻類用の培地としては、特に限定されないが、窒素源、リン源、及び微量元素(亜鉛、ホウ素、コバルト、銅、マンガン、モリブデン、鉄など)等を含む無機塩培地が例示される。例えば、窒素源としては、アンモニウム塩、硝酸塩、亜硝酸塩等が挙げられ、リン源としては、リン酸塩等が挙げられる。そのような培地としては、例えば、Gross培地、2×Allen培地(Allen MB. Arch. Microbiol. 1959 32: 270-277.)、M-Allen培地(Minoda A et al. Plant Cell Physiol. 2004 45: 667-71.)、MA2培地(Ohnuma M et al. Plant Cell Physiol. 2008 Jan;49(1):117-20.)、改変M-Allen培地等が挙げられるが、これらに限定されない。
【0022】
単細胞性紅藻は、光照射下で、独立栄養的に培養してもよく、暗所で、従属栄養的に培養してもよい。従属栄養的に培養する場合には、上記のような無機塩培地に、炭素源(グルコース等)を添加してもよい。
【0023】
培地中の浸透圧調整剤の濃度は、80mM以上であれば、特に限定されない。浸透圧調整剤の濃度を80mM以上とすることにより、浸透圧調整剤の種類によらず、崩壊性細胞を安定に維持することができる。浸透圧調整剤の濃度は、100mM以上、110mM以上、120mM以上、130mM以上、140mM以上、150mM以上、160mM以上、170mM以上、180mM以上、190mM以上、200mM以上、210mM以上、220mM以上、230mM以上、240mM以上、250mM以上、260mM以上、270mM以上、280mM以上、290mM以上、300mM以上、310mM以上、320mM以上、330mM以上、340mM以上、350mM以上、360mM以上、370mM以上、380mM以上、390mM以上、又は400mM以上であってもよい。浸透圧調整剤の上限濃度は、特に限定されず、培地に溶解可能な限界値であってもよい。細胞の増殖速度の観点からは、浸透圧調整剤の上限濃度は、例えば、2M以下、1.5M以下、1.4M以下、1.3M以下、1.2M以下、1.1M以下、又は1M以下とすることができる。前記下限値及び上限値は、任意に組合せ可能である。培地中の浸透圧調整剤の濃度範囲としては、例えば、80mM~2Mが挙げられる。浸透圧調整剤の濃度範囲としては、例えば、100mM~1.5Mが好ましく、200mM~1.4Mがより好ましく、300mM~1.3Mがさらに好ましく、400mM~1.3Mが特に好ましい。
培地中の浸透圧調整剤の濃度は、特記しない限り、培養開始前の濃度である。また、浸透圧調整剤を2種以上組み合わせて用いる場合は、前記2種以上の浸透圧調整剤の合計含有量が80mM以上になればよい。上記浸透圧調整剤の濃度として例示した範囲についても同様である。
【0024】
例えば、浸透圧調整剤がグルコースである場合、培地中のグルコース濃度としては、例えば、200mM~2Mが挙げられ、250mM~1.7Mが好ましく、270mM~1.5Mがより好ましい。あるいは、培地中のグルコース濃度は、培地の全質量(100質量%)に対して、4~40質量%が好ましく、5~30質量%がより好ましい。
例えば、浸透圧調整剤がスクロースである場合、培地中のスクロース濃度としては、例えば、80mM~1.1Mが挙げられ、80mM~800mMが好ましく、80mM~600Mがより好ましい。あるいは、培地中のスクロースの濃度は、培地の全質量(100質量%)に対して、2~40質量%が好ましく、3~30質量%がより好ましく、3~20質量%がさらに好ましい。
例えば、浸透圧調整剤がグリセロールである場合、培地中のグリセロール濃度としては、例えば、200mM~800mMが挙げられ、300mM~600mMが好ましい。あるいは、培地中のグリセロール濃度は、培地の全質量(100質量%)に対して、3~6質量%が好ましい。
例えば、浸透圧調整剤がマンニトールである場合、培地中のマンニトール濃度としては、例えば、180mM~1.5Mが挙げられ、200mM~1.2Mが好ましく、250mM~1Mがより好ましい。あるいは、4~20質量%が好ましく、5~18質量%がより好ましい。
例えば、浸透圧調整剤がソルビトールである場合、培地中のソルビトール濃度としては、例えば、200mM~2Mが挙げられ、400mM~1.5Mが好ましく、430mM~1.5Mがより好ましい。あるいは、培地中のソルビトール濃度は、培地の全質量(100質量%)に対して、5~40質量%が好ましく、8~27質量%がより好ましい。
例えば、浸透圧調整剤がグリシンである場合、培地中のグリシン濃度としては、例えば、100mM~2Mが挙げられ、120mM~1.5Mが好ましく、130mM~1Mがより好ましい。あるいは、培地中のグリシン濃度は、培地の全質量(100質量%)に対して、0.5~10質量%が好ましく、1~8質量%がより好ましい。
例えば、浸透圧調整剤がプロリンである場合、培地中のプロリン濃度としては、例えば、80mM~2Mが挙げられ、500mM~1.5Mが好ましく、600mM~1.5Mがより好ましい。あるいは、培地中のプロリン濃度は、培地の全質量(100質量%)に対して、1~20質量%が好ましく、7~10質量%がより好ましい。
例えば、浸透圧調整剤がアルギニンである場合、培地中のアルギニン濃度としては、例えば、20mM~2Mが挙げられ、30mM~1.5Mが好ましく、50mM~1Mがより好ましい。あるいは、培地中のアルギニン濃度は、培地の全質量(100質量%)に対して、0.5~30質量%が好ましく、1~20質量%がより好ましい。
例えば、浸透圧調整剤が塩化カリウムである場合、培地中の塩化カリウム濃度としては、例えば、50mM~1.5Mが挙げられ、100mM~1Mが好ましく、130mM~500mMがより好ましい。あるいは、培地中の塩化カリウム濃度は、培地の全質量(100質量%)に対して、0.5~10質量%が好ましく、1~5質量%がより好ましい。
【0025】
培地は、浸透圧が、150mOsm/kg以上であることが好ましい。培地の浸透圧を150mOsm/kg以上とすることにより、浸透圧調整剤の種類によらず、崩壊性細胞を安定に維持することができる。浸透圧は、200mOsm/kg以上、210mOsm/kg以上、220mOsm/kg以上、230mOsm/kg以上、240mOsm/kg以上、250mOsm/kg以上、260mOsm/kg以上、270mOsm/kg以上、280mOsm/kg以上、290mOsm/kg以上、300mOsm/kg以上、310mOsm/kg以上、320mOsm/kg以上、330mOsm/kg以上、340mOsm/kg以上、350mOsm/kg以上、360mOsm/kg以上、370mOsm/kg以上、380mOsm/kg以上、390mOsm/kg以上、又は400mOsm/kg以上であってもよい。浸透圧の上限値は、特に限定されず、浸透圧調整剤を培地中に溶解可能な限界値であってもよい。細胞の増殖速度の観点からは、浸透圧の上限値は、例えば、2000mOsm/kg以下、1500mOsm/kg以下、1400mOsm/kg以下とすることができる。前記下限値及び上限値は、任意に組合せ可能である。培地の浸透圧の範囲としては、例えば、150~2000mOsm/kgが挙げられる。浸透圧の範囲としては、例えば、200~1500mOsm/kgが好ましく、250~1400mOsm/kgがより好ましく、300~1400mOsm/kgがさらに好ましく、400~1400mOsm/kgが特に好ましい。
培地の浸透圧は、特記しない限り、培養開始前の値である。培地の浸透圧は浸透圧計を用いて測定することができる。
【0026】
培地は、液体培地であってもよく、固体培地であってもよい。固体培地としては、例えば、寒天培地を用いることができる。固体培地である場合、上記の浸透圧調整剤の濃度及び浸透圧は、固化剤(例えば、寒天)を添加する前の液体培地におけるものであってもよい。
【0027】
非崩壊性細胞から崩壊性細胞を作出する場合、崩壊性細胞を維持する場合、及び崩壊性細胞を増殖させる場合のいずれも上記の例示した培地を用いることができる。
非崩壊性細胞から崩壊性細胞を作出する場合には、例えば、浸透圧調整剤の濃度を50mM~2Mとすることが好ましく、100mM~1.5Mとすることがより好ましい。また、培地の浸透圧を150~2610mOsm/kgとすることが好ましく、300~1700mOsm/kgとすることがより好ましい。培地は、液体培地であってもよく、固体培地であってもよいが、崩壊性細胞が生じたことが判別しやすいことから、固体培地を用いることが好ましい。
崩壊性細胞を維持する場合には、例えば、浸透圧調整剤の濃度を50mM~2Mとすることが好ましく、100mM~1.5Mとすることがより好ましい。また、培地の浸透圧を150~2610mOsm/kgとすることが好ましく、300~1700mOsm/kgとすることがより好ましい。培地は、液体培地であってもよく、固体培地であってもよいが、長期間安定に維持しやすいことから、固体培地を用いることが好ましい。
崩壊性細胞を増殖させる場合には、例えば、浸透圧調整剤の濃度を50mM~2Mとすることが好ましく、100mM~1.5Mとすることがより好ましい。また、培地の浸透圧を150~2610mOsm/kgとすることが好ましく、300~1700mOsm/kgとすることがより好ましい。培地は、液体培地であってもよく、固体培地であってもよいが、細胞が増殖しやすいことから、液体培地を用いることが好ましい。
【0028】
(培養条件)
本態様の方法は、単細胞性紅藻細胞を、浸透圧調整剤を80mM以上含有する培地で培養する工程を含む。前記培養における培養条件は、特に限定されず、単細胞性紅藻の培養条件として通常用いられる条件を使用することができる。培養条件としては、例えば、pH1~8、温度10~50℃、及びCO2濃度0.3~3%等が挙げられる。光条件は、従属栄養的に培養する場合、暗所であってもよい。独立栄養的に培養する場合、光条件は、例えば、5~2000μmol/m2sが挙げられる。
培養条件は、上記例示したものに限定されず、単細胞性紅藻の種類に応じて適宜選択可能である。例えば、単細胞性紅藻がイデユコゴメ綱である場合、pH条件としては、pH1.0~6.0が挙げられ、pH1.0~5.0が好ましく、pH1.0~3.0がより好ましい。温度条件としては、15~50℃が挙げられ、30~50℃が好ましく、35~50℃がより好ましい。光強度としては、5~2000μmol/m2sが挙げられ、5~1500μmol/m2sが好ましい。連続光で培養してもよく、明暗周期(10L:14Dなど)を設けてもよい。また、従属栄養的に培養する場合には、暗所で培養することもできる。
【0029】
培養期間は、特に限定されない。培養開始時に用いる単細胞性紅藻細胞が非崩壊性細胞である場合、少なくとも崩壊性細胞が生じるまで培養する。本態様の方法では、浸透圧調整剤を80mM以上含有する培地を用いることにより、崩壊性細胞を短期間で生じさせることができる。非崩壊性細胞から崩壊性細胞を作出する場合、培養期間としては、例えば、5日以上が好ましく、10日以上がより好ましく、14日又は15日以上がさらに好ましい。本態様の方法では、培養中に生じた崩壊性細胞は、崩壊性細胞のまま安定して維持される。そのため、培養期間の上限は特に限定されない。
培養開始時に用いる単細胞性紅藻細胞が崩壊性細胞である場合、培養期間は特に限定されない。本態様の方法では、崩壊性細胞が安定して維持されるため、崩壊性細胞を維持する必要がある期間、培養を継続すればよい。
【0030】
培養期間中、単細胞性紅藻細胞は、適宜継代してもよい。本態様の方法では、同じ培地で2週間以上安定して崩壊性細胞を維持できる。そのため、継代の間隔は、2週間以上とすることができる。例えば、1カ月~3カ月に1回の間隔で崩壊性単細胞性紅藻細胞を継代することにより、より安定に崩壊性細胞を維持することができる。継代の間隔は、1カ月~1.5カ月が好ましい。崩壊性細胞を増殖させる場合には、増殖効率を上げるために、より短い間隔で継代を行ってもよい。例えば、増殖のための継代の間隔としては、14日~60日が好ましく、14日~42日がより好ましい。
【0031】
(崩壊性細胞の確認方法)
本態様の方法では、非崩壊性単細胞性紅藻細胞から崩壊性細胞を作出することができ、さらに、崩壊性細胞を2週間以上安定に維持することができる。単細胞性紅藻細胞が崩壊性細胞であることの確認方法は、特に限定されないが、例えば、下記に挙げる方法を用いることができる。
【0032】
非崩壊性細胞は強固な細胞壁を有するが、崩壊性細胞は強固な細胞壁を有さない。そのため、細胞の形態を観察することにより、崩壊性細胞を見分けることができる。例えば、崩壊性細胞は、光学顕微鏡による観察(例えば、倍率600倍)において、通常、細胞壁が観察されない。そのため、光学顕微鏡により細胞壁が観察されない場合、崩壊性細胞であると判定することができる。
また、崩壊性細胞は、比較的温和な処理(中和処理、低張処理、凍結融解処理、界面活性剤処理など)により、細胞を破壊することができる。例えば、2質量%の界面活性剤を含む培地に細胞を懸濁し、界面活性剤の添加後すぐ~5分経過後に細胞が崩壊した場合には、崩壊性細胞であると判定することができる。前記界面活性剤としては、ドデシル硫酸ナトリウムが挙げられる。より具体的には、単細胞性紅藻細胞の培養培地に、2質量%となるようにドデシル硫酸ナトリウムを添加し、添加後5分以内に細胞が崩壊した場合には、崩壊性細胞であると判定することができる。細胞が崩壊したか否かは、光学顕微鏡で細胞を観察することにより確認することができる。
また、固体培地で培養している場合、コロニーの形状により崩壊性細胞であるかを判定することもできる。崩壊性細胞は、通常、強固な細胞壁を有さないため、非崩壊性細胞のコロニーと比較して、扁平で、固体培地の表面に広がる形状となる。固体培地上で、このような形状のコロニーが出現した場合には、崩壊性細胞のコロニーであると判定することができる。
【0033】
本態様の方法によれば、非崩壊性単細胞性紅藻から崩壊性単細胞性紅藻を作出できるとともに、崩壊性単細胞性紅藻を安定して維持することができる。また、崩壊性細胞のまま、崩壊性単細胞性紅藻を増殖させることができる。
崩壊性単細胞性紅藻を通常の培地で培養した場合、非崩壊性細胞に回帰する細胞が出現し、非崩壊性細胞が増殖してくる。そのため、5日程度の間隔で崩壊性細胞を選択して継代を繰り返す必要がある。一方、本態様の方法によれば、非崩壊性細胞に回帰する細胞の出現を抑制して、継代を行わなくても、崩壊性細胞を、2週間を超えて(好ましくは1カ月以上)維持することができる。
【0034】
本態様の方法で作出、維持又は増殖された崩壊性単細胞性紅藻は、マイルドな条件で容易に細胞を破壊することができる。そのため、容易に細胞成分を抽出することができる。また、本態様の方法で作出、維持又は増殖された崩壊性単細胞紅藻は、細胞壁破壊処理等を行わずそのまま食品、又は機能性食品等に配合しても、細胞内成分が効率よく消化吸収される。
【0035】
<崩壊性単細胞性紅藻用培地>
本発明の第2の態様は、浸透圧調整剤を80mM以上含有する、崩壊性単細胞性紅藻用培地である。
【0036】
本態様の培地は、上記「<崩壊性単細胞性紅藻の製造方法>」で説明したものと同様である。本態様の培地は、非崩壊性単細胞性紅藻細胞から崩壊性単細胞性紅藻細胞を作出するために用いることができる。また、崩壊性単細胞性紅藻細胞を、崩壊性細胞のまま維持するために用いることができる。また、崩壊性単細胞性紅藻細胞を、増殖させるために用いることができる。
【実施例】
【0037】
以下、実施例により本発明を説明するが、本発明は以下の実施例に限定されるものではない。
【0038】
<単細胞性紅藻>
単細胞性紅藻として、Galdieria sulphuraria CCCryo127-00株(以下、「CCCryo127-00株」ともいう)を用いた。
【0039】
<培地>
基礎培地として、Gross培地を用いた。Gross培地の組成を表1に示す。また、Gross培地に用いるFe-EDTA Solution及びTrace Elementsの組成を、表2及び表3にそれぞれ示す。
【0040】
【0041】
【0042】
【0043】
<崩壊性細胞の確認方法>
2質量%の界面活性剤(ドデシル硫酸ナトリウム(SDS))を含むGross培地に細胞を懸濁し、崩壊する細胞を崩壊性細胞と判断した。細胞の崩壊は、光学顕微鏡を用いた観察により確認した。光学顕微鏡による観察は、SDSの添加後すぐに行った。また、崩壊性細胞が多数を占めるコロニーは、非崩壊性細胞から形成されるコロニーと比較して、扁平で、寒天培地の表面に広がる形状となる(
図1参照:矢印が崩壊性細胞のコロニー。その中心部分には非崩壊性細胞が一部残っている)。そこで、寒天培地上のコロニーの形態も、崩壊性細胞であるかの判断に用いた。
【0044】
(1)崩壊性単細胞性紅藻細胞の培養
崩壊性細胞の安定的な維持に、浸透圧が影響する可能性を検討するために、浸透圧調整剤としてソルビトールを用いて、培地の浸透圧を調整した。CCCryo127-00株の崩壊性細胞のコロニーから崩壊性細胞を採取し、18%ソルビトール+Gross 1.5%寒天培地に植え継いだ。その後、40℃、暗所、大気雰囲気下で1~2カ月培養した。培養期間中、崩壊性細胞のコロニーは維持されていた(
図2)。この結果から、培地中の浸透圧を高くすることにより、崩壊性細胞を2週間超安定して維持できることが確認された。
【0045】
(2)崩壊性細胞を維持できる培地の検討
表4に示す浸透圧調整剤を1~50質量%となるようにGross培地又は1%グルコース+Gross培地に添加した。さらに、前記各培地に1.5質量%の寒天を添加して、1.5%寒天培地をそれぞれ作製した。これらの寒天培地に、CCCryo127-00株の崩壊性細胞を播種し、40℃、暗所、大気雰囲気下で1カ月間以上培養した。培養期間中、寒天培地上のコロニーの形態を観察し、崩壊性細胞のコロニーが維持されているかを確認した。また、コロニーの大きさに基づいて、崩壊性細胞の増殖を評価した。その結果を、以下の評価基準に基づいて、表4に示した。
【0046】
<評価基準>
A:崩壊性細胞の維持期間が1カ月以上
B:崩壊性細胞の維持期間が2週間超1カ月未満
C:崩壊性細胞の維持期間が2週間以内
N:増殖しない
D:培養できない(死滅)
-:未実施
【0047】
崩壊性細胞のコロニーが維持されている例を
図3に示す。
図3は、18%ソルビトール+Gross 1.5%寒天培地で、1カ月間培養したプレートである。
非崩壊性細胞のコロニーに回帰した例を
図4に示す。
図4は、1%ソルビトール+Gross 1.5%寒天培地で、2週間培養したプレートである。
崩壊性細胞のコロニーが増殖した例を
図5に示す。
図5は、18%ソルビトール+Gross 1.5%寒天培地で培養したプレートである。左の写真は培養開始時のプレートであり、右の写真は培養3週間後のプレートである。
【0048】
【0049】
表4中、「Gross」はGross培地を示し、「1%Glc+Gross」は1%グルコースGross培地を示す。()内の数値は浸透圧調整剤のモル濃度を表す。
【0050】
表4に示す各培地について、寒天添加前の培地の浸透圧を測定した結果を表5に示す。培地の浸透圧は、浸透圧計(製品名:自動浸透圧分析装置オズモステーションOM-6060、メーカー:アークレイ株式会社)で測定した。表5中、[]内の数値は浸透圧(mOsm/kg)を示す。
【0051】
【0052】
表4の結果より、浸透圧調整剤を約80mM以上添加した培地では、2週間超で崩壊性細胞を維持できることが確認された。浸透圧調整剤の濃度が高くなると、増殖が遅くなる傾向があるが、浸透圧調整剤を溶解度の上限まで添加した場合でも、概ね、2週間を超えて崩壊性細胞を維持できた。増殖速度を考慮すると、浸透圧調整剤の濃度の上限値は、1.5M程度が適切であると考えられた。
【0053】
表5の結果より、浸透圧が約150mOsm/kg以上である培地では、2週間を超えて崩壊性細胞を維持できることが確認された。浸透圧が高くなると、増殖が遅くなる傾向があったが、浸透圧が高い場合でも、概ね、1カ月以上崩壊性細胞を維持できた。増殖速度を考慮すると、培地の浸透圧の上限値は、1500Osm/kg程度が適切であると考えられた。
【0054】
(3)(2)で検討した培地による崩壊性単細胞性紅藻細胞の作出
CCCryo127-00株の非崩壊性細胞を、18%ソルビトール+Gross 1.5%寒天培地に播種した。その後、40℃、暗所、大気雰囲気下で培養した。培養期間中、崩壊性細胞のコロニーが出現するかを確認した。
その結果、2週間程度で、崩壊性細胞のコロニーが出現した(
図6、矢印が崩壊性細胞のコロニー)。崩壊性細胞のコロニーから細胞を採取し、18%ソルビトール+Gross 1.5%寒天培地に植え継いだ。植え継いだ培地でも、1カ月以上崩壊性細胞のコロニーが維持できることが確認された(
図6)。
【0055】
この結果から、(2)で検討した培地を用いることにより、非崩壊性細胞から崩壊性細胞を効率よく作出できることが示された。
【0056】
(4)(2)で検討した培地による液体培養
CCCryo127-00株の崩壊性細胞を、18%ソルビトール+Gross液体培地に播種した。その後、40℃、暗所、大気雰囲気下で培養した。その結果、崩壊性細胞を維持したまま良好に増殖することが確認された(
図7)。
【0057】
以上、本発明の好ましい実施形態を説明および図示してきたが、これらは本発明を例示するものであり、限定的なものとみなされるべきではないことを理解すべきである。本発明の精神または範囲から逸脱することなく、追加、省略、置換、およびその他の変更を行うことができる。したがって、本発明は、前述の説明によって限定されるものとはみなされず、添付の請求項の範囲によってのみ限定される。