IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 国立大学法人大阪大学の特許一覧 ▶ 株式会社J−オイルミルズの特許一覧

<>
  • 特許-食感評価システム及び食感評価方法 図1
  • 特許-食感評価システム及び食感評価方法 図2
  • 特許-食感評価システム及び食感評価方法 図3
  • 特許-食感評価システム及び食感評価方法 図4
  • 特許-食感評価システム及び食感評価方法 図5
  • 特許-食感評価システム及び食感評価方法 図6
  • 特許-食感評価システム及び食感評価方法 図7
  • 特許-食感評価システム及び食感評価方法 図8
  • 特許-食感評価システム及び食感評価方法 図9
  • 特許-食感評価システム及び食感評価方法 図10
  • 特許-食感評価システム及び食感評価方法 図11
  • 特許-食感評価システム及び食感評価方法 図12
  • 特許-食感評価システム及び食感評価方法 図13
  • 特許-食感評価システム及び食感評価方法 図14
  • 特許-食感評価システム及び食感評価方法 図15
  • 特許-食感評価システム及び食感評価方法 図16
  • 特許-食感評価システム及び食感評価方法 図17
  • 特許-食感評価システム及び食感評価方法 図18
  • 特許-食感評価システム及び食感評価方法 図19
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-01-22
(45)【発行日】2024-01-30
(54)【発明の名称】食感評価システム及び食感評価方法
(51)【国際特許分類】
   G01N 3/34 20060101AFI20240123BHJP
   G01N 33/02 20060101ALN20240123BHJP
【FI】
G01N3/34 M
G01N33/02
【請求項の数】 9
(21)【出願番号】P 2020021923
(22)【出願日】2020-02-12
(65)【公開番号】P2020134526
(43)【公開日】2020-08-31
【審査請求日】2023-01-06
(31)【優先権主張番号】P 2019022812
(32)【優先日】2019-02-12
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】504176911
【氏名又は名称】国立大学法人大阪大学
(73)【特許権者】
【識別番号】302042678
【氏名又は名称】株式会社J-オイルミルズ
(74)【代理人】
【識別番号】110000800
【氏名又は名称】デロイトトーマツ弁理士法人
(72)【発明者】
【氏名】東森 充
(72)【発明者】
【氏名】柴田 曉秀
(72)【発明者】
【氏名】高橋 龍馬
(72)【発明者】
【氏名】長畑 雄也
(72)【発明者】
【氏名】木村 功
(72)【発明者】
【氏名】清水 里奈
(72)【発明者】
【氏名】堀田 真理子
(72)【発明者】
【氏名】井上 賀美
【審査官】鴨志田 健太
(56)【参考文献】
【文献】特開2014-167470(JP,A)
【文献】特開2014-038025(JP,A)
【文献】特開2000-283975(JP,A)
【文献】米国特許出願公開第2016/0327537(US,A1)
【文献】中国特許出願公開第107063904(CN,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 3/34
G01N 33/02
(57)【特許請求の範囲】
【請求項1】
圧力分布の経時的変化を計測する圧力分布センサと、
前記圧力分布センサ上に配置され、押圧力を前記圧力分布センサに伝えることが可能な第1人工歯と、
前記第1人工歯の先端部に対向配置され、前記第1人工歯に対して近接離反可能に配置された第2人工歯と、
前記圧力分布センサに対向配置され、該圧力分布センサに近接離反可能に配置された人工舌と、
前記第1人工歯と前記第2人工歯との間で、駆動手段を介して被測定試料を複数回押圧したときに、前記第1人工歯にかかる押圧力の経時的変化を、前記圧力分布センサによって測定して得られる咬合力データ、及び、前記人工舌と前記圧力分布センサとの間で前記被測定試料を複数回押圧したときに、前記人工舌にかかる押圧力の経時的変化を、前記圧力分布センサによって測定して得られる舌圧データに基づいて、食感を評価する食感評価手段と、を備えていることを特徴とする食感評価システム。
【請求項2】
前記食感評価手段は、食感の評価がなされたモデル試料の食感官能評価値、及び、前記モデル試料の前記咬合力データ及び前記舌圧データから導出された食感推定式に基づいて、前記被測定試料の前記咬合力データ及び前記舌圧データを用いて、前記被測定試料の食感を評価する、請求項1に記載の食感評価システム。
【請求項3】
前記食感評価手段は、前記第1人工歯及び前記第2人工歯による1回目の押圧時にかかる押圧力の最大値をfB1、u回目の押圧時にかかる押圧力の最大値をfBuとして咬合力の特徴量を算出し、
前記人工舌の1回目の押圧時にかかる押圧力の最大値をfT1、u回目の押圧時にかかる押圧力の最大値をfTuとして舌圧の特徴量を算出し、
前記人工舌の1回目の押圧時に押圧力の最大値を検出した時点の、前記圧力分布センサのセル面積をA1、u回目の押圧時に押圧力の最大値を検出した時点の、前記圧力分布センサのセル面積をAuとして、舌圧分布の第1特徴量を算出し、
前記人工舌の1回目の押圧時に前記圧力分布センサが押圧力の最大値を検出した時点の圧力の標準偏差をS1、u回目の押圧時に前記圧力分布センサが押圧力の最大値を検出した時点の圧力の標準偏差をS2として、舌圧分布の第2特徴量を算出し、
前記咬合力の特徴量と、前記舌圧の特徴量と、前記舌圧分布の第1特徴量と、前記舌圧分布の第2特徴量とに基づいて食感の評価を行う、請求項1又は2に記載の食感評価システム。
【請求項4】
前記第1人工歯及び前記第2人工歯による押圧と、前記人工舌による押圧とを、同時に行う駆動手段を有している、請求項1乃至3のいずれか1項に記載の食感評価システム。
【請求項5】
前記第1人工歯は、その基部を、弾性部材を介して保持されており、該弾性部材を介して、前記圧力分布センサに圧力を伝えるように構成されている、請求項1乃至4のいずれか1項に記載の食感評価システム。
【請求項6】
前記第1人工歯は、前記圧力分布センサに載置された支持部により、その基部が支持されており、前記第1人工歯にかかる圧力が、前記基部を介して前記圧力分布センサに伝達されるように構成されている、請求項1乃至4のいずれか1項に記載の食感評価システム。
【請求項7】
前記第1人工歯及び前記第2人工歯は、それぞれ複数個のものが円弧状に配列されて対向配置されており、前記人工舌は、前記第2人工歯の前記円弧状の配列の内側に配置されている、請求項1乃至6のいずれか1項に記載の食感評価システム。
【請求項8】
請求項1乃至7のいずれか1項に記載の食感評価システムを用い、
未破砕の被測定試料及び破砕処理した被測定試料を用意し、
それぞれの試料を前記食感評価システムによって測定して、それぞれの試料の前記咬合力データ及び前記舌圧データを得て、
それぞれの試料の前記咬合力データ及び前記舌圧データに基づいて食感評価を行うことを特徴とする食感評価方法。
【請求項9】
前記破砕処理した被測定試料が、所定の咀嚼回数に対応した1種又は2種以上である、請求項8に記載の食感評価方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、例えば、食品のサクサク感、ホロホロ感、ねっとり感、口どけ等の食感を評価するための、食感評価システムに関する。
【背景技術】
【0002】
食品のおいしさは、風味、香り、食感の3つから主に構成されていると言われている。これらの中でも、食感は、極めて繊細かつ複合的な情報から構成されている。このような食感、例えば、ねっとり感や口どけ等の複合的な要因によって決まるものについては、数値化が難しい。そのため、このような食感については、複数の評価者(パネリスト)による官能評価が一般的になされている。
【0003】
ただし、上記のパネリストによる官能評価は、バラツキが大きく、食感の客観的な評価が難しい。また、訓練したパネリストを多数養成する必要があり、手間とコストがかかる。
【0004】
そのため、食感について、なるべく客観的な評価ができるシステムが望まれている。このようなものとして、下記特許文献1には、試料を押圧する押圧装置と、前記試料の押圧時に前記試料から受ける圧力分布の経時的変化を計測する計測装置と、前記試料の破断前および破断後の圧力分布から得られた特徴量に基づいて前記試料の食感を評価する食感評価手段とを備えた、食感評価システムが開示されている。上記押圧装置は、上下一対のプレートを有しており、下側のプレート上に、計測装置をなす圧力分布センサが配置されている。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2014-167470号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
ところで、上記特許文献1の食感評価システムにおいては、一種類の押圧装置による、圧力分布の経時的変化から得られる特徴量に基づいてのみ、食感を評価する構成となっているので、ねっとり感や口どけ等の複合的な要因によって評価結果が決まる食感を評価する場合に、その精度に問題があることがあった。
【0007】
したがって、本発明の目的は、より実際の食感に近い評価を行うことができる、食感評価システム及び食感評価方法を提供することにある。
【課題を解決するための手段】
【0008】
上記目的を達成するため、本発明の食感評価システムは、圧力分布の経時的変化を計測する圧力分布センサと、前記圧力分布センサ上に配置され、押圧力を前記圧力分布センサに伝えることが可能な第1人工歯と、前記第1人工歯の先端部に対向配置され、前記第1人工歯に対して近接離反可能に配置された第2人工歯と、前記圧力分布センサに対向配置され、該圧力分布センサに近接離反可能に配置された人工舌と、前記第1人工歯と前記第2人工歯との間で、駆動手段を介して被測定試料を複数回押圧したときに、前記第1人工歯にかかる押圧力の経時的変化を、前記圧力分布センサによって測定して得られる咬合力データ、及び、前記人工舌と前記圧力分布センサとの間で前記被測定試料を複数回押圧したときに、前記人工舌にかかる押圧力の経時的変化を、前記圧力分布センサによって測定して得られる舌圧データに基づいて、食感を評価する食感評価手段と、を備えていることを特徴とする。
【0009】
本発明の食感評価システムにおいては、上記構成の食感評価手段を有しているので、咬合力データと舌圧データとの両方に基づいて、食感を評価することができ、より実際の食感に近い評価を行うことができる。
【0010】
本発明の食感評価システムにおいては、前記食感評価手段は、食感の評価がなされたモデル試料の食感官能評価値、及び、前記モデル試料の前記咬合力データ及び前記舌圧データから導出された食感推定式に基づいて、前記被測定試料の前記咬合力データ及び前記舌圧データを用いて、前記被測定試料の食感を評価することが好ましい。この態様によれば、実際の食感をより反映した食感評価を行うことができる。
【0011】
本発明の食感評価システムにおいては、前記食感評価手段は、前記第1人工歯及び前記第2人工歯による1回目の押圧時にかかる押圧力の最大値をfB1、u回目の押圧時にかかる押圧力の最大値をfBuとして咬合力の特徴量を算出し、前記人工舌の1回目の押圧時にかかる押圧力の最大値をfT1、u回目の押圧時にかかる押圧力の最大値をfTuとして舌圧の特徴量を算出し、前記人工舌の1回目の押圧時に押圧力の最大値を検出した時点の、前記圧力分布センサのセル面積をA1、u回目の押圧時に押圧力の最大値を検出した時点の、前記圧力分布センサのセル面積をAuとして、舌圧分布の第1特徴量を算出し、前記人工舌の1回目の押圧時に前記圧力分布センサが押圧力の最大値を検出した時点の圧力の標準偏差をS1、u回目の押圧時に前記圧力分布センサが押圧力の最大値を検出した時点の圧力の標準偏差をS2として、舌圧分布の第2特徴量を算出し、前記咬合力の特徴量と、前記舌圧の特徴量と、前記舌圧分布の第1特徴量と、前記舌圧分布の第2特徴量とに基づいて食感の評価を行うことが好ましい。この態様によれば、被測定試料を複数回押圧して得られる前記咬合力データ及び前記舌圧データを、食感評価しやすい複数の特徴量に変換して、これらの特徴量に基づいて食感評価することができ、より一層実際の食感に近い評価を行うことができる。
【0012】
本発明の食感評価システムにおいては、前記第1人工歯及び前記第2人工歯による押圧と、前記人工舌による押圧とを、同時に行う駆動手段を有していることが好ましい。この態様によれば、第1人工歯及び第2人工歯による押圧と、人工舌による押圧とを同時に行うことによって、実際の口腔内における咀嚼動作に近い測定データを得ることができる。
【0013】
本発明の食感評価システムにおいては、前記第1人工歯は、その基部を、弾性部材を介して保持されており、該弾性部材を介して、前記圧力分布センサに圧力を伝えるように構成されていることが好ましい。この態様によれば、実際の歯茎にかかる押圧力に近い値として、押圧力を測定できる。
【0014】
本発明の食感評価システムにおいては、前記第1人工歯は、前記圧力センサに載置された支持部により、その基部が支持されており、前記第1人工歯にかかる圧力が、前記基部を介して前記圧力分布センサに伝達されるように構成されていることが好ましい。この態様によれば、第1人工歯にかかる圧力が、基部を介して圧力分布センサに伝達されるので、圧力分布センサへ伝達される圧力の損失を少なくすることができる。
【0015】
本発明の食感評価システムにおいては、前記第1人工歯及び前記第2人工歯は、それぞれ複数個のものが円弧状に配列されて対向配置されており、前記人工舌は、前記第2人工歯の前記円弧状の配列の内側に配置されていることが好ましい。この態様によれば、口腔内の歯の配列及び舌の配置により近づけることにより、実際の食感に近い押圧データを得ることができる。
【0016】
一方、本発明の食感評価方法は、上記いずれかの食感評価システムを用い、未破砕の被測定試料及び破砕処理した被測定試料を用意し、それぞれの試料を前記食感評価システムによって測定して、それぞれの試料の前記咬合力データ及び前記舌圧データを得て、それぞれの試料の前記咬合力データ及び前記舌圧データに基づいて食感評価を行うことを特徴とする。
【0017】
本発明の食感評価方法においては、未破砕の被測定試料、及び、破砕処理した被測定試料のそれぞれについて、咬合力データと舌圧データとを得ることができるので、咀嚼によって変化する食品の状態を反映することができ、より実際に近い食感評価を行うことができる。
【0018】
本発明の食感評価方法においては、前記破砕処理した被測定試料が、所定の咀嚼回数に対応した1種又は2種以上であることが好ましい。この態様によれば、咀嚼によって変化する食品の状態をより適切に反映して、食感評価を行うことができる。
【発明の効果】
【0019】
本発明によれば、咬合力データと舌圧データとの両方に基づいて、食感を評価することができ、より実際の食感に近い評価を行うことができる。
【図面の簡単な説明】
【0020】
図1】本発明に係る食感評価システムの一実施形態を示しており、その概略構成の斜視図である。
図2】同食感評価システムを構成する第1人工歯近傍の要部拡大説明図である。
図3】同食感評価システムの要部拡大説明図である。
図4】同食感評価システムの概略構成を示すブロック図である。
図5】本発明に係る食感評価方法のフローチャートである。
図6】同食感評価システムにて測定される被測定試料の状態を示す写真である。
図7】(a)は、第1人工歯及び人工舌の近接離反時の、歯間距離と時間との関係を示すグラフ、(b)は、咀嚼過程の咬合力及び舌力と時間との関係を示すグラフ、及び、舌圧分布の変化を示す図である。
図8】種類の異なる被測定試料における、咬合力と時間との関係、及び、舌力と時間との関係を示すグラフである。
図9】DA法による食感推定値と食感官能評価値との関係を示しており、(a)はサクサク感の結果のグラフ、(b)はホロホロ感の結果のグラフ、(c)はねっとり感の結果のグラフ、(d)は口どけの結果のグラフである。
図10】TDS法による食感推定値と食感官能評価値との関係を示しており、(a)は食塊状態Iにおけるサクサク感の結果のグラフ、(b)は食塊状態Iにおけるホロホロ感の結果のグラフ、(c)は食塊状態IIにおけるねっとり感の結果のグラフ、(d)は食塊状態IIIにおけるねっとり感の結果のグラフである。
図11】TI法による食感推定値と食感官能評価値との関係を示しており、(a)は食塊状態Iにおけるサクサク感の結果のグラフ、(b)は食塊状態IIにおけるサクサク感の結果のグラフ、(c)は食塊状態IIにおけるねっとり感の結果のグラフ、(d)は食塊状態IIIにおけるねっとり感の結果のグラフである。
図12】(a)は、実施例及び比較例1,2の、DA法における決定係数を比較した棒グラフ、(b)は、実施例及び比較例1,2の、TDS法における決定係数を比較した棒グラフ、(c)は、実施例及び比較例1,2の、TI法における決定係数を比較した棒グラフである。
図13】DA法による食感推定値を、LOOCVにより検証した結果を示しており、(a)はサクサク感の結果を示すグラフ、(b)はホロホロ感の結果のグラフ、(c)はねっとり感の結果のグラフ、(d)は口どけの結果のグラフである。
図14】実施例及び比較例1,2の、DA法における決定係数をLOOCVにより検証した結果を示す棒グラフである。
図15】本発明に係る食感評価システムの他の実施形態を示しており、その概略構成の斜視図である。
図16】同食感評価システムを構成する第1人工歯近傍の要部拡大説明図である。
図17】同食感評価システムの要部拡大説明図である。
図18】同食感評価システムによる2種類のドーナツのうち、1種の咬合力及び舌力の計測結果を示しており、(a)は咬合力と時間との関係を示すグラフ、(b)は舌力と時間との関係を示すグラフである。
図19】同食感評価システムによる2種類のドーナツのうち、もう1種の咬合力及び舌力の計測結果を示しており、(a)は咬合力と時間との関係を示すグラフ、(b)は舌力と時間との関係を示すグラフである。
【発明を実施するための形態】
【0021】
以下、図面を参照して、本発明に係る食感評価システム、及び、食感評価方法の、一実施形態について説明する。
【0022】
(食感評価システムの構成)
図1には、本発明に係る食感評価システムの概略構成を示す斜視図が示されている。また、図2には、同食感評価システムを構成する第1人工歯近傍の要部拡大説明図、図3には、同食感評価システムの要部拡大説明図、図4には、同食感評価システムの概略構成を示すブロック図、図5には、本発明に係る食感評価方法のフローチャートが示されている。
【0023】
この実施形態における食感評価システム10(以下、「システム10」ともいう)は、センサ支持部11を有しており、このセンサ支持部11上に、圧力分布の経時的変化を計測する圧力分布センサ13(以下、単に「圧力センサ13」ともいう)が配置されている。また、図1に示すように、この圧力センサ13は、所定面積Ac(mm2)のセル13aが複数配列されて構成されている。なお、この実施形態におけるセル13aの面積Acは1mm2となっている。また、圧力センサ13は、例えば、ニッタ株式会社製のI-SCAN40(測定範囲44×44mm、空間分解能1mm、時間分解能10ms、圧力分解能50Pa)を用いることができる。
【0024】
上記圧力センサ13上には、略円環状をなした環状支持部15が配置されている。この環状支持部15には、例えば、ABS樹脂等からなる複数の第1人工歯17,18,19が、円弧状をなすように配列されている。図2を併せて参照すると、環状支持部15には、周方向に沿って複数の貫通孔21が形成されており、これらの貫通孔21の内部に、弾性部材23を介して、各第1人工歯17,18,19の基部17a,18a,19aがそれぞれ挿入されて保持されている。
【0025】
なお、ヒトの歯は、エナメル質及び歯槽骨といった硬組織と、それらの間の薄く柔らかい歯根膜とから構成されるものであり、本実施形態における第1人工歯17,18,19の保持構造は、それを模した構成となっている(第1人工歯17,18,19がエナメル質に相当し、環状支持部15が歯槽骨に相当し、弾性部材23が歯根膜に相当する)。
【0026】
また、図2に示すように、貫通孔21内に配置された弾性部材23は、圧力センサ13に当接している。そのため、各第1人工歯17,18,19に押圧力が作用すると、その押圧力が、弾性部材23を介して圧力センサ13により検出されるようになっている。なお、この実施形態における弾性部材23は、厚さ1mmのゴムシートとなっている。
【0027】
更に、前記環状支持部15に対向する位置には、略円盤状をなした押圧部25が配置されている。この押圧部25と前記圧力センサ13との間には、処理装置40が接続されている(図1参照)。また、押圧部25の外周縁部であって、複数の第1人工歯17,18,19に対応する位置には、例えば、ABS樹脂等からなる複数の第2人工歯27,28,29が、円弧状をなすように配列されている。更に、押圧部25の、圧力分布センサ13との対向面側であって、複数の第2人工歯27,28,29の配列の内側には、例えば、シリコーン樹脂等からなる弾性材料から形成された、人工舌33が設けられている。
【0028】
更に、前記押圧部25の上面側中央にはロッド25aが連結されており、処理装置40からの駆動信号に基づいて動作する駆動手段31(モータや、アクチュエータ、エアシリンダー等からなる)を介して、前記押圧部25が環状支持部15に近接離反するように駆動する(図4参照)。その結果、複数の第2人工歯27,28,29が、複数の第1人工歯17,18,19の先端部17b,18b,19bに対して近接離反すると共に、人工舌33が圧力センサ13に対して近接離反する。
【0029】
すると、図3に示すように、両人工歯の間に配置された被測定試料又は食感の評価がなされたモデル試料が、第2人工歯27,28,29によって押され、被測定試料又はモデル試料を介して第1人工歯17,18,19に押圧力が作用し、更にこの押圧力が弾性部材23を介して、圧力センサ13に伝達されて、同圧力センサ13によって測定される。これと同時に、人工舌33と圧力センサ13との間に配置された被測定試料又はモデル試料が、人工舌33によって押されて、その押圧力が圧力センサ13により測定される。すなわち、この実施形態における駆動手段31は、第1人工歯及び第2人工歯による押圧と、人工舌による押圧とを、同時に行うように構成されている。なお、圧力センサ13により測定される第1人工歯からの押圧力を、以下の説明において「咬合力」ともいい、圧力センサ13により測定される人工舌からの押圧力を、以下の説明において「舌圧」ともいい、その圧力分布を「舌圧分布」ともいう。
【0030】
また、この実施形態の圧力センサ13は、センサ支持部11上に配置された1個のものからなり、人工歯による咬合力、及び、人工舌33による舌圧データの両方を、測定可能となっているが、圧力センサを複数設けて、人工歯による咬合力や、人工舌による舌圧データを、それぞれ測定する構成としてもよい。更に、第1人工歯及び第2人工歯は、それぞれ3個からなるが、1個や2個であってもよく、4個以上であってもよい。
【0031】
また、上記処理装置40は、上述したように、駆動手段31に所定タイミングで駆動信号を送ると共に、食感評価手段50を有している。この食感評価手段50は、第1人工歯17,18,19と第2人工歯27,28,29との間で、駆動手段31を介して被測定試料又はモデル試料を複数回押圧したときに、第1人工歯17,18,19にかかる押圧力の経時的変化を、圧力センサ13によって測定して得られる咬合力データ、及び、人工舌33と圧力センサ13との間で被測定試又はモデル試料を複数回押圧したときに、人工舌33にかかる押圧力の経時的変化を、圧力センサ13によって測定して得られる舌圧データに基づいて、食感を評価するものである。
【0032】
図4に示すように、この実施形態における食感評価手段50は、圧力センサ13によって測定された咬合力データ及び舌圧データを記憶する、データ記憶部51と、該データ記憶部51に記憶された咬合力データ及び舌圧データに基づいて、被測定試料の特徴量を算出する特徴量算出部53と、該特徴量算出部53で算出された特徴量に基づいて、被測定試料の食感推定式を導出する食感推定式導出部55とを有している。この食感評価手段50は、ハードウェア的に実現してもよいし、ソフトウェア的に実現してもよい。
【0033】
また、この実施形態における食感評価手段50には、モデル試料を用いて行った食感官能評価値と、圧力センサ13によって測定された咬合力データ及び舌圧データと、に基づいて導出された食感推定式があらかじめ設定されており、更に、本発明の食感評価方法は、被測定試料を用いて測定された咬合力データ及び舌圧データを、前記食感推定式に導入することで、被測定試料の食感を推定することができるようになっている。
【0034】
次に、この実施形態における食感推定式の導出方法について、図5のフローチャートを参照して、より詳しく説明する。
【0035】
今回、図6に示すような、6種類のドーナツ(A,B,C,D,E,F)を用意し、「サクサク感」、「ホロホロ感」、「ねっとり感」、「口どけ」の4つの食感について、食感推定式を導出し、得られた食感推定式を用いて前記4つの食感を推定した。
【0036】
6種類の各ドーナツのそれぞれについて、後述する「(2)咬合力データ及び舌圧データ測定工程」の手順で、食塊状態I、食塊状態II、食塊状態IIIの、モデル試料を作製する。なお、図6に、作製された各モデル試料を示す。
【0037】
図5の食感評価方法において、まず、モデル試料についてヒトによる官能評価を行って、食感官能評価値を取得する(ステップS1)。その後、各評価方法(後述のDA法、TDS法、TI法等)による、各食感官能項目(サクサク感、ホロホロ感、ねっとり感、口どけ等)について、それぞれ標準偏差を算出し、この標準偏差が所定値以上となったか否かを判定する(ステップS2)。なお、所定値以上となった項目を、システム10の食感推定式導出部55に入力する。
【0038】
上述のステップと並列して、準備として所定の食塊状態I~IIIのモデル試料を作製して、システム10の対応する第1人工歯と第2人工歯との間、及び、人工舌33と圧力センサ13との間にモデル試料をセットする。そして、駆動手段31を介して押圧部25を駆動させ、第1人工歯17,18,19及び人工舌33を圧力センサ13に対して近接離反させて、モデル試料を所定回数押圧し(ステップS3)、咬合力データ及び舌圧データを測定する(ステップS4)。その後、前記ステップS2で得られた官能評価値に基づいて、食感推定式を作成すべき測定データを選択し、同測定データに基づいて特徴量を抽出し、この特徴量に基づいて食感推定式を導出する(ステップS5)。
【0039】
また、この実施形態の食感評価手段50(図4参照)においては、(1)モデル試料についてヒトによる官能評価を行って、食感官能評価値を取得する工程(以下、「食感官能評価値取得工程」という)と、(2)モデル試料を押圧して、モデル試料の咬合力データ及び舌力データを測定する、咬合力データ及び舌圧データ測定工程と、(3)咬合力データ及び舌力データに基づいて食感推定式を導出する、食感推定式導出工程とがなされるようになっている。各工程について、以下に詳しく説明する。
【0040】
(1)食感官能評価値取得工程
素材や製造方法の異なる食品(ここではドーナツ)について、食感官能評価値を取得する。具体的には、各食品(以下、「官能値測定試料」ともいう)について、ヒトが実際に喫食する官能評価試験により、官能評価値を取得する。官能評価値は、食感評価項目i(例えば、サクサク感(i=1)、ホロホロ感(i=2)、ねっとり感(i=3)、口どけ(i=4)等)ごとに設定する。
【0041】
上記の「サクサク感」とは、食品が歯にあたる感じを意味し、「ホロホロ感」とは、食品が口の中で崩れる感じを意味し、「ねっとり感」とは、食品が口にまとわりつく感じや、食品が口の中でまとまっていく感じを意味し、「口どけ」とは、食品が唾液となじんで、口の中から速やかになくなっていく感じを意味する。なお、評価する食感としては、上記以外のものであってもよい。
【0042】
そして、各食感評価項目について、所定の食感評価手段で評価する。この実施形態では、周知の評価手段である、DA(Descriptive Analysis)法、TDS(Temporal Dominance Sensation)法、TI(Time Intensity)法によって、食感官能評価値を取得する。また、この実施形態では、試験員(パネリスト)は5名とし、食感評価項目の定義および強度について認識を合わせ、全員が同一軸で評価できるように訓練されたものとする。
【0043】
上記のDA法では、官能値測定試料を1口分試食する際に、食感評価項目(i=1~4)のうち、1つの食感評価項目のみに注目して、対象食感の度合いを評価する。なお、上記食感評価項目iのうち、口どけ(i=4)は、このDA法のみで取得する。
【0044】
上記のTDS法では、官能値測定試料を試食する過程において、最も印象的である食感評価項目(i=1~3)の時間的変化を評価する。具体的には、試験開始5秒後に、1Hzのメトロノームに合わせて、官能値測定試料1口分の咀嚼を開始し、各時刻で最も印象が強い食感評価項目を選択することで、その時間的変化を時系列データとして記録する。試験員は、それぞれ自由に嚥下して試験を終了する。
【0045】
上記のTI法では、官能値測定試料を試食する際に、1つの食感評価項目のみに注目し、その食感の時間的変化を評価する。具体的には、TDS法と同様の方法で官能値測定試料を咀嚼していき、対象食感の強度を評価して時系列データとして記録する。
【0046】
なお、ヒトの咀嚼においては、咀嚼が進行する(噛み砕く回数や押しつぶす回数が増加する)に連れて、食品の状態は時々刻々と変化する。このことを考慮して、咀嚼過程を準備期(0≦t≦5[s])、咀嚼期I(5≦t≦20[s])、咀嚼期II(20≦t≦35[s])、咀嚼期III(35≦t≦50[s])の4区間に分割する(咀嚼回数は、咀嚼期I<咀嚼期II<咀嚼期III)。後述するが、この実施形態では、上記のような咀嚼期I~IIIの食塊状態を再現した、食塊状態I~IIIのモデル試料を作製して、これらを本システム10による測定及び食感評価の対象とする。これに応じて、上記のTDS法及びTI法の官能評価値については、咀嚼期I~IIIについて、それぞれ開始10秒間の平均値を、教師データとして用いる、食感官能評価値ni jとするものとする。
【0047】
また、各評価方法による、各食感官能項目iについて、それぞれ標準偏差を算出し、この標準偏差が所定値以上となった項目について、(3)食感推定式算出工程において食感推定式を導出するものとする。
【0048】
(2)咬合力データ及び舌圧データ測定工程
まず、素材や製造方法の異なる食品(ここではドーナツ)について、上記官能評価における咀嚼期Iに対応した、未破砕のモデル試料(食塊状態Iのモデル試料)と、同咀嚼期II,IIIに対応した、破砕処理したモデル試料(食塊状態II,IIIのモデル試料)とを準備する。未破砕のモデル試料は、所定食品を所定の大きさに切り出して作製する。また、破砕処理したモデル試料は、所定食品を所定の大きさに切り出して、所定量の水を加え、ミキサー(例えば、岩谷産業株式会社製のクラッシュミルサー等)で所定時間破砕処理をした後、まとめて作製する。
【0049】
具体的には、咀嚼期Iに対応した食塊状態Iのモデル試料は、食品を一口大の8g切り出して、未破砕のモデル試料を作製する(図6の食塊状態I参照)。咀嚼期IIに対応した食塊状態IIのモデル試料は、食品8gを切り出し、シリンジで水1.2mlを加え、ミキサーで0.5秒間破砕したものをまとめることで作製する(図6の食塊状態II参照)。咀嚼期IIIに対応した食塊状態IIIのモデル試料は、咀嚼期IIのモデル試料に、更に水1.2mlを加え、ミキサーで0.5秒間破砕したものをまとめることで作製する(図6の食塊状態III参照)。なお、上記の水分量および破砕時間は、ヒトが実際に食品を咀嚼した際の、唾液分泌量および食塊の触感を基に実験的に決定したものである。
【0050】
そして、図3に示すように、作製したモデル試料を二等分し、それぞれのモデル試料の中心が、第1人工歯17,18,19の中心、及び、人工舌33の中心と一致するように配置する。この状態で、上述したように、駆動手段31を介して押圧部25を駆動させることにより、第1人工歯17,18,19及び人工舌33が、圧力センサ13に対して近接離反させて、モデル試料を所定回数押圧することで、咬合力データ及び舌圧データを測定する。この実施形態におけるモデル試料は6種類の食品(図6に示したA,B,C,D,E,Fのドーナツ)であり、各種の食品について、食塊状態I、食塊状
態II、食塊状態IIIの3状態、すなわち、6種類×3状態=18種類の各モデル試料について、15回ずつの測定試験を実施する(総データ数Nは270)。
【0051】
また、上記の押圧部25の動作は、ヒトの咀嚼動作に基づき、下記の数式1に示すような正弦波状の軌道となるように設定する。
【数1】
【0052】
なお、上記数式1において、hは第1人工歯及び第2人工歯の歯間距離、fは周波数、h0はオフセットである。この実施形態では、周波数fは1Hz、振幅αは、0≦t≦1/(2f)では15mm、1/(2f)≦t≦Tsでは5mmであり、オフセットh0は0.3mmである。また、咀嚼時間Tsは10s(1往復1sで、10往復する)である。
【0053】
咬合力データは、第1人工歯と第2人工歯との間で、モデル試料を複数回押圧したときに第1人工歯にかかる押圧力(咬合力)の経時的変化を、圧力センサ13によって測定して得られる。この実施形態の場合、第1人工歯17,18,19(以下、第1人工歯17をk=1、第1人工歯18をk=2、第1人工歯19をk=3として説明する)にかかる押圧力を、下記の数式2により、積分して算出する。
【数2】
【0054】
上記数式2におけるAcは、圧力センサ13の一つのセル13aの面積1mm2であり、Pkm(m=1,...,Mk)は、各第1人工歯17,18,19の基部17a,18a,19aの底面と接触する、セル13aの圧力値である(Mkは、各歯に接触するセル数)。上記数式2のfk0を、仮咬合力とする。すなわち、図2に示すように、各第1人工歯17,18,19は、その外周面が、弾性部材23を介して、貫通孔21の内周に支持されているため、咬合力の一部は分散し、実際の咬合力よりも小さくなる。そのため、下記の数式3のキャリブレーション式で、咬合力fkを導出する。
【数3】
【0055】
なお、上記数式3における、bk2、bk1は、各第1人工歯17,18,19に対する係数パラメータであり、実験的に獲得されたものである。これらを下記表1に示す。
【表1】
【0056】
一方、舌圧データは、人工舌33と圧力センサ13との間でモデル試料を複数回押圧したときに人工舌33にかかる押圧力(舌圧)の経時的変化を測定して得られる。この実施形態の場合、圧力センサ13の中でも、略円環状をなした環状支持部15の内側部分において測定されて得られたものであり、その分布を舌圧分布P(x,y)とする。
【0057】
そして、上記の処理によって得られた咬合力fk(t)(k=1,2,3)、及び、舌圧分布P(x,y,t)を、食感評価手段50を構成するデータ記憶部51(図4参照)に記憶する。
【0058】
測定された咬合力fk(t)に対して、3本の第1人工歯17,18,19の総咬合力fB(t)を、下記の数式4のように算出する。なお、以下の説明では、総咬合力を単に咬合力とする。
【数4】
【0059】
また、舌圧分布データについては,舌圧分布P(x,y,t)に加え,下記の数式5に示す舌力fT(t)を算出する。
【数5】
【0060】
また、図7(a)には、第1人工歯及び人工舌の近接離反時の、歯間距離と時間との関係が示されている。同図7(a)に示すように、歯間距離付近では、実際の軌道が目標軌道に追従できていないが、図7(b)に示すように、咀嚼過程の咬合力、舌力、及び舌圧分布の変化を測定可能となっている。また、図8(a),(b)には、種類の異なるモデル試料について、咬合力と時間との関係、及び、舌力と時間との関係が示されている。
【0061】
(3)食感推定式導出工程
(特徴量の算出)
上記の咬合力データ及び舌圧データ測定工程により算出した、咬合力、舌力、舌圧分布から、食感推定式を導出するための、特徴量を抽出する。図8(a),(b)に示すように、咬合力及び舌力において、1ストローク中の最大値の時間的変化が、モデル試料の種類によって異なっており、舌圧分布の模様にも違いが見られる。この観点から、これらの違いを表す特徴量を設定する。
【0062】
すなわち、第1人工歯及び第2人工歯による1回目の押圧時にかかる押圧力の最大値(最大咬合力)をfB1、u回目の押圧時にかかる押圧力の最大値をfBu(uストローク目の最大咬合力)として咬合力の特徴量を算出し、以下の数式6,7,8に示す3つの特徴量x1,x2,x3を設定する。
【数6】
【数7】
【数8】
【0063】
同様に、人工舌の1回目の押圧時にかかる押圧力の最大値(最大舌力)をfT1、u回目の押圧時にかかる押圧力の最大値をfTu(uストローク目の最大舌力)として舌圧の特徴量を算出し、以下の数式9,10,11に示す3つの特徴量x4,x5,x6を設定する。
【数9】
【数10】
【数11】
【0064】
また、人工舌の1回目の押圧時に、押圧力の最大値を検出した時点の、圧力センサ13のセル面積をA1、u回目の押圧時に、押圧力の最大値を検出した時点の、圧力センサ13のセル面積をAuとして、以下の数式12,13に示す舌圧分布の第1特徴量x7,x8を設定する。
【数12】
【数13】
【0065】
更に、人工舌の1回目の押圧時に、圧力センサ13が押圧力の最大値を検出した時点の、圧力の標準偏差をS1、u回目の押圧時に、圧力センサ13が押圧力の最大値を検出した時点の、圧力の標準偏差をS2として、以下の数式14,15に示す舌圧分布の第2特徴量x9,x10を設定する。
【数14】
【数15】
【0066】
以上の特徴量x1~x10は、各モデル試料について、各状態(食塊状態I~III)ごとにそれぞれ設定する。すなわち、食塊状態Iにおける各モデル試料の咬合力、舌力、舌圧分布のデータから、10個の特徴量x1 I~x10 Iを算出し、食塊状態IIにお
ける各モデル試料の咬合力、舌力、舌圧分布のデータから、10個の特徴量x1 II~x10 IIを算出し、食塊状態IIIにおける、各モデル試料の咬合力、舌力、舌圧分布のデータから、10個の特徴量x1 III~x10 IIIを算出する。
【0067】
(食感推定式の導出)
所定の食感評価手段により算出された特徴量に基づいて、所定の食感評価項目iについて、食感推定式を導出する。上記のDA法による官能評価値については、食感評価項目i(i=「1」のサクサク感、i=「2」のホロホロ感、i=「3」のねっとり感、i=「4」の口どけ)ごとに食感推定式を作成する。すなわち、食感官能評価値niを目的変数、各食塊状態I~IIIについてそれぞれ10個の特徴量、合計で30個の特徴量x1 I~x10 II、x1 II~x10 II、x1 III~x10 IIIを説明変数に設定し、重回
帰分析を行って、以下の数式16に示すような食感推定式を作成する。なお、下記の数式16において、a0は定数項、a1 I~a10 IIIは偏回帰係数である。
【数16】
【0068】
一方、上記のTDS法及びTI法による官能評価値については、食塊状態j(j=I~III)ごとに、また、食感評価項目i(i=「1」のサクサク感、i=「2」のホロホロ感、i=「3」のねっとり感)ごとに、食感推定式を作成する。すなわち、食感官能評価値ni jを目的変数、各食塊状態I~IIIにおける10個の特徴量x1 j~x10 jを説明変数に設定し、重回帰分析を行って、以下の数式17に示すような食感推定式を作成する。なお、下記数式17において、a0は定数項、a1 j~a10 jは偏回帰係数である。
【数17】
【0069】
また、上記の数式16,17の食感推定式を作成後、偏回帰係数al j=0(j=I~III、l=1~10)の帰無仮説について検定を行い、危険率5%以上の特徴量が存在する場合、その中で最大の特徴量を除去して、再度重回帰分析を行う。この処理を、すべての特徴量の危険率が5%未満になるまで繰り返し、最終的な食感官能評価値の推定式を導出する。
【0070】
なお、この実施形態におけるモデル試料は、ドーナツとなっているが、例えば、固形状の食品であれば特に限定するものではなく、ベーカリー食品、畜肉加工品、米菓、揚げ物などが挙げられる。
【0071】
そして、この実施形態における食感評価手段50を用いた本発明の食感評価方法においては、被測定試料についても、上述したモデル試料と同様に、(2)咬合力データ及び舌圧データ測定工程、及び、(3)食感推定式導出工程で、被測定試料の咬合力データ及び舌圧データを測定するとともに、その特徴量を算出し、あらかじめ設定されているモデル試料の食感推定式に基づいて、被測定試料の特徴量を用いて、被測定試料の食感を推定するようになっている。
【0072】
次に、上記構成からなる食感評価システム10及び食感評価方法の作用効果について説明する。
【0073】
すなわち、このシステム10においては、(1)食感の評価がなされたモデル試料の食感官能評価値を得ると共に、このモデル試料について、(2)第1人工歯17,18,19と第2人工歯27,28,29の間でモデル試料を複数回押圧したときに、第1人工歯にかかる押圧力の経時的変化を、圧力センサ13によって測定して得られる咬合力データ、及び、人工舌33と圧力センサ13との間でモデル試料を複数回押圧したときに、人工舌33にかかる押圧力の経時的変化を、圧力センサ13によって測定して得られる舌圧データに基づいた食感推定式を導出し、このモデル試料の咬合力データ及び舌圧データから導出された食感推定式に基づいて、被測定試料の咬合力データと舌圧データを用いて、食感を推定することができる。そのため、例えば、ねっとり感や口どけ等の、従来食感推定が難しいとされた食感であっても、より実際の食感に近い評価を行うことができる。
【0074】
そして、上記食感評価方法においては、未破砕の被測定試料、及び、破砕処理した被測定試料のそれぞれについて、咬合力データと舌圧データとを得ることができるので、咀嚼によって変化する食品の状態を反映することができ、より実際に近い食感評価を行うことができる。
【0075】
また、この食感評価方法においては、破砕処理した被測定試料が、所定の咀嚼回数に対応した1種又は2種以上であることが好ましい。この実施形態では、所定の咀嚼回数の咀嚼期IIにおける、官能評価値測定試料に対応して、食塊状態IIIの被測定試料が作製され、咀嚼期IIよりも咀嚼回数が多い咀嚼期IIIにおける、官能評価値測定試料に対応して、食塊状態IIIの被測定試料が作製されている。そのため、咀嚼によって変化する食品の状態をより適切に反映して、食感評価を行うことができる。
【0076】
更にこの実施形態における食感評価手段50は、第1人工歯17,18,19及び第2人工歯27,28,29による1回目の押圧時にかかる押圧力の最大値をfB1、u回目の押圧時にかかる押圧力の最大値をfBuとして咬合力の特徴量を算出し、人工舌33の1回目の押圧時にかかる押圧力の最大値をfT1、u回目の押圧時にかかる押圧力の最大値をfTuとして舌圧の特徴量を算出し、人工舌33の1回目の押圧時に押圧力の最大値を検出した時点の圧力センサ13のセル面積をA1、u回目の押圧時に押圧力の最大値を検出した時点の圧力センサ13のセル面積をAuとして、舌圧分布の第1特徴量を算出し、人工舌33の1回目の押圧時に圧力センサ13が押圧力の最大値を検出した時点の圧力の標準偏差をS1、u回目の押圧時に圧力センサ13が押圧力の最大値を検出した時点の圧力の標準偏差をS2として、舌圧分布の第2特徴量を算出し、咬合力の特徴量と、舌圧の特徴量と、舌圧分布の第1特徴量と、舌圧分布の第2特徴量とに基づいて食感の評価を行うように構成されている。そのため、被測定試料を複数回押圧して得られる咬合力データ及び舌圧データを、食感評価しやすい複数の特徴量に変換して、これらの特徴量に基づいて食感を推定することができ、より一層実際の食感に近い評価を行うことができる。
【0077】
また、この実施形態のシステム10は、第1人工歯17,18,19及び第2人工歯27,28,29による押圧と、人工舌33による押圧とを、同時に行う駆動手段31を有している。そのため、第1人工歯17,18,19及び第2人工歯27,28,29による押圧と、人工舌33による押圧とを同時に行うことによって、実際の口腔内における咀嚼動作に近い測定データを得ることができる。
【0078】
更にこの実施形態においてシステム10においては、図2に示すように、第1人工歯17,18,19は、その基部17a,18a,19aを、弾性部材23を介して保持されており、この弾性部材23を介して、圧力センサ13に圧力を伝えるように構成されている。そのため、実際の歯茎にかかる押圧力に近い値として、押圧力を測定することができる。
【0079】
また、この実施形態のシステム10においては、複数の第1人工歯17,18,19及び第2人工歯27,28,29が、円弧状に配列されて対向配置されており、人工舌33は、複数の第2人工歯27,28,29の円弧状の配列の内側に配置されている。そのため、第1人工歯17,18,19や、第2人工歯27,28,29、人工舌33を、口腔内の歯の配列及び舌の配置により近づけることにより、実際の食感に近い押圧データを得ることができる。
【0080】
(食感評価方法)
次に、本発明に係る食感評価方法について説明する。この実施形態における食感評価方法は、未破砕の被測定試料及び破砕処理した被測定試料を用意し、それぞれの試料を食感評価システム10によって測定して、それぞれの試料の咬合力データ及び舌圧データを得て、それぞれの試料の咬合力データ及び舌圧データに基づいて食感評価を行うものとなっている。また、この実施形態においては、破砕処理した被測定試料が、所定の咀嚼回数に対応した1種又は2種以上となっている。
【0081】
(官能評価及び推定すべき試料の選択)
モデル試料としての6種類の各ドーナツについて、上述した「(1)食感官能評価値取得工程」で説明した手順で、食感官能評価値を取得する。その結果を下記表2~4に示す。表2がDA法による結果であり、表3がTDS法による結果であり、表4がTI法による結果である。
【表2】
【表3】
【表4】
【0082】
上記の表2~4の結果のうち、食感官能評価値の標準偏差が極端に小さい場合、測定データに基づく食感推定式を作成する意義はない。すなわち、食感官能評価値の標準偏差が所定値以上の、食感評価項目についてのみ、食感推定式を導出する。ここでDA法においては、食感官能評価値の分布の標準偏差が0.1以上の評価項目を推定対象とし、全ての評価項目(サクサク、ホロホロ感、ねっとり感、口どけ)について推定する。また、TDS法においては、食感官能評価値の分布の標準偏差が10以上の評価項目を推定対象とし、食塊状態Iの「サクサク感」と「ホロホロ感」、食塊状態IIの「ねっとり感」、食塊状態IIIの「ねっとり感」について推定する。更にTI法においては、食感官能評価値の分布の標準偏差が0.1以上の評価項目を推定対象とし、食塊状態Iの「サクサク感」、食塊状態IIの「サクサク感」と「ねっとり感」、食塊状態IIIの「ねっとり感」について推定する。
【0083】
(特徴量の算出及び食感推定式の導出)
まず、各モデル試料について、上述した「(2)咬合力データ及び舌圧データ測定工程」で説明した手順で、咬合力データ及び舌圧データを測定する。その後、上述した「(3)食感推定式導出工程」で説明した手順で、上記数式6~15に基づいて特徴量を算出したうえで、上記数式16,17に示す食感推定式を導出する。その結果を下記表5~7に示す。表5がDA法による結果であり、表6がTDS法による結果であり、表7がTI法による結果である。なお、各表5~7には、食感推定式における定数項及び偏回帰係数が記載されている。また、空欄は、al j=0を示している。なお、被測定試料についても、モデル試料と同様の手順で、咬合力データ及び舌圧データを測定した後、特徴量を算出する。
【表5】
【表6】
【表7】
【0084】
上記の表5~7の結果及び上記の数式16,17に基づいて、各評価方法における各食感評価項目の、食感推定式を導出する。例えば、DA法による「サクサク感」の食感推定式は、下記の数式18のようになる。
【数18】
【0085】
(食感推定式を用いた食感の推定)
各モデル試料について算出した特徴量を、上記の数式18のように導出した、各評価方法における各食感評価項目の食感推定式に入力して、各モデル試料の食感推定値を算出した。そして、各食感推定値について、食感官能評価値と比較した。その結果が、図9~11に示されている。図9には、DA法による結果が示されており、図10には、TDS法による結果が示されており、図11には、TI法による結果が示されている。また、図9~11の各グラフにおいて、横軸は食感官能評価値、縦軸は食感推定値である。なお、各グラフには、推定精度を比較するための、決定係数R2の結果が併記されている。一般的に決定係数R2の値は0.49よりも大きければ食感推定値の食感官能評価値に対するあてはまりが良いとされる。そして、食感を推定したい被測定試料については、モデル試料について導出した食感推定式に、被測定試料の咬合力データ及び舌圧データから得られる特徴量を導入することによって、その食感を推定することができる。
【0086】
(比較例による食感の推定)
本発明による、咬合力データ及び舌圧データの両者による食感推定の精度を比較するために、各モデル試料について、咬合力データのみで食感推定を行うと共に(比較例1)、舌圧データのみで食感推定を行った(比較例2)。すなわち、比較例1は、咬合力に関する特徴量(下付添え字1~3)のみを使用して食感推定式を作成し、比較例2は、舌圧に関する特徴量(下付添え字4~10)のみを使用して食感推定式を作成して、それぞれ食感推定を行っている。その結果が、図12に示されている。図12(a)には、DA法における決定係数を棒グラフにしたもの、図12(b)には、TDS法における決定係数を棒グラフにしたもの、図12(c)には、DA法における決定係数を棒グラフにしたものが示されており、各グラフには、咬合力データ及び舌圧データの両者による決定係数も併せて示されている。
【0087】
(食感推定値の精度)
各モデル試料の各食感推定値の精度について検討した。この推定精度は、官能評価値と推定値との間の決定係数R2で評価する。
【0088】
図9(a)~(d)に示すDA法による4つの食感評価項目については、R2≧0.75の精度で推定できており、食感推定式による食感推定値の食感官能評価値に対するあてはまりが良いことが分かる。また、表5に示すように、DA法における各食感評価項目のすべての食感推定式について、咬合力データおよび舌圧データに基づく特徴量(それぞれ下付添え字1~3及び4~10)が含まれている。この結果は、歯と舌の両機能が活用されていることを意味する。また、図12(a)に示すように、全4種の食感評価項目について、両特徴量を用いた場合の決定係数が最も高い値となっており、人工歯及び人工舌の両者を有する本発明の有効性が確認できる。更に、表5に示すように、全4種の食感評価項目の推定式において,食塊状態I,II,IIIにおける特徴量(それぞれ上付添え字がI,II,III)が含まれており、前記食塊状態I,II,IIIが活用されていることを意味する。
【0089】
一方、TDS法やTI法においては、図10(a),(b)及び図11(a)に示すように、食塊状態Iにおける食感推定はR2≧0.70の精度で推定できている。その反面、図10(c)や図11(b),(c)に示すように、食塊状態II,IIIにおける食感推定はR2<0.60の精度にとどまっている。したがって、水分を含む半固形の食塊状態II,IIIの特性を評価するための、適切な特徴量が設定されていなかったためと考えられる。これは、表6,7に示すように、推定式に含まれている特徴量、すなわち有効な特徴量が、2~4個と少ないことからもわかる。ただし、図12(b),(c)に示すように、TDS法及びTI法による食感の推定結果においては、すべての食感評価項目について、咬合力データと舌圧データの両特徴量を用いた場合の決定係数が最も高い値となっている。すなわち、人工歯及び人工舌の両者を有する本発明の有効性が確認できる。
【0090】
(LOOCVによる推定精度の検証)
食感推定式の作製手法の妥当性を確認するために、周知のLeave-one-out交差検証(LOOCV)を用いた食感推定も実施した。推定値の計算手順は以下の通りである。すなわち、全データ(測定データと食感官能評価値のセット)をN個とすると、1個のデータを未知食塊データとして取り除く。残りのN-1個データを用いて、推定式を作成し、取り除いた1個のデータに対して食感官能評価値の推定値を算出する。この作業を全N個のデータそれぞれについて繰り返す。食感官能評価値は、DA法によって得た。
【0091】
また、図14には、各モデル試料について、咬合力データ及び舌圧データの両者で食感推定を行ったもの(実施例)、咬合力データのみで食感推定を行ったもの(比較例1)、舌圧データのみで食感推定を行ったもの(比較例2)の、決定係数について比較した棒グラフが示されている。なお、図14は、DA法における決定係数を棒グラフにしたものである。図14に示すように、咬合力データ及び舌圧データの両者で食感推定を行った実施例における決定係数が、咬合力データのみで食感推定を行った比較例1や、舌圧データのみで食感推定を行った比較例2よりも大きく、本発明における食感推定式の妥当性が確認できた。
【0092】
(食感推定式に寄与する特徴量についての考察)
表5に示す、DA法における「口どけ」の食感推定式に寄与する特徴量について考察する。食塊状態Iにおいて、a7 I<0は、初回の舌圧面積が小さいほど「口どけ」が大きくなることに対応する。また、a10 I<0は、咀嚼が進むに連れ、舌圧分布の標準偏差が小さくなるほど「口どけ」が大きくなることに対応する。更に食塊状態IIにおいて、a1 II>0は、初回の咬合力の値が大きいほど「口どけ」が大きくなることに対応する。また、a6 II<0は、咀嚼が進むに連れて舌力が減少していくほど「口どけ」が大きくなることに対応する。食塊状態IIIにおいて、a3 III<0及びa8 III<0は、咀嚼が進むに連れて咬合力および舌圧面積が減少していくほど「口どけ」が大きくなることに対応する。以上の性質は、「咀嚼初期では壊れにくく歯応えがあるほど、咀嚼後期では歯応え・舌触りが無くなるほど、「口どけ」の推定値が大きくなる」と整理することができる。これは、ヒトが「口どけ」を評価する要因と直感的に一致している。このように本発明による食感推定、対象とする食感評価項目において口腔内でどのような現象が起き、何をヒトが感知しているか、物理的に解明するツールとなる可能性がある。
【0093】
図15~19には、本発明に係る食品評価システム及び食感評価方法の、他の実施形態が示されている。なお、前記実施形態と実質的に同一部分には同符号を付してその説明を省略する。
【0094】
図15に示すように、この実施形態の食品評価システム10A(以下、単に「システム10A」ともいう)は、環状支持部15A(本発明における「支持部」をなす)が略四角環状をなしている。すなわち、この環状支持部15Aは、互いに平行に配置された一対の側壁35,35と、これらの一対の側壁35,35の端部どうしを連結する一対の連結壁36,37とからなり、これらの壁によって、略長方形状の長孔16が形成されている。なお、一方の連結壁36は、他方の連結壁37よりも幅広に形成されている。
【0095】
上記の幅広の連結壁36に、複数の第1人工歯17,18,19が、直線状をなすように配列されている。図16に示すように、連結壁36には、その長手方向に沿って所定間隔で複数の貫通孔21が形成されており、各貫通孔21の底部には、平板状をなした硬質部材38が、圧力センサ13の上面に当接した状態でそれぞれ載置されている。また、硬質部材38は、各第1人工歯17,18,19の基部17a,18a,19aの底面に固着されて、一体化している。更に、硬質部材38は、各第1人工歯17,18,19の基部17a,18a,19aの外径よりも一回り大きく形成されており、各貫通孔21の底部において抜け止め保持されるようになっている(図16参照)。
【0096】
また、硬質部材38は、第1人工歯17,18,19と同程度、或いは、それよりも硬い材料からなる。更に、各貫通孔21には、上記硬質部材38を介して、各第1人工歯17,18,19の基部17a,18a,19aがそれぞれ挿入されて保持されている。すなわち、この実施形態では、各第1人工歯17,18,19と、圧力センサ13との間に、硬質部材38が介在している。そのため、各第1人工歯17,18,19に押圧力が作用すると、その押圧力が、硬質部材38を介して圧力センサ13により検出されるようになっている。
【0097】
また、圧力センサ13に対向配置される人工舌33Aは、環状支持部15Aに形成した長孔16に適合する略長方形状をなしており、長孔16に挿脱可能となっている。なお、環状支持部15Aに対向配置された押圧部25には、複数の第2人工歯27,28,29が、環状支持部15A側の第1人工歯17,18,19と整合する位置に設けられていると共に、上記の人工舌33Aが配置されている。また、このシステム10Aにおいても、前記システム10と同様に、複数の第2人工歯27,28,29が、複数の第1人工歯17,18,19の先端部17b,18b,19bに対して近接離反すると共に、人工舌33Aが圧力センサ13に対して近接離反するようになっている。
【0098】
そして、この実施形態の食感評価システムにおいても、前記実施形態の食感評価システムと同様に、例えば、ねっとり感や口どけ等の、従来食感推定が難しいとされた食感であっても、より実際の食感に近い評価を行うことができる。
【0099】
また、この実施形態のシステム10Aでは、第1人工歯17,18,19は、圧力センサ13に載置された支持部(ここでは環状支持部15A)により、その基部17a,18a,19aが支持されており(図16参照)、第1人工歯17,18,19にかかる圧力が、基部17a,18a,19aを介して圧力センサ13に伝達されるように構成されている。そのため、第1人工歯17a,18a,19aにかかる圧力が、基部17a,18a,19aを介して圧力センサ13に伝達されるので、圧力センサ13へ伝達される圧力の損失を少なくすることができる。
【0100】
更にこの実施形態では、第1人工歯17,18,19は、その基部17a,18a,19aを、硬質部材38を介してそれぞれ保持されており、各硬質部材38を介して、圧力センサ13に圧力を伝えるように構成されている。そのため、第1人工歯17a,18a,19aにかかる押圧力が、硬い硬質部材38を介して圧力センサ13に伝達されるので、第1人工歯17a,18a,19aからの圧力を、その損失をより少なくして、圧力センサ13へ効率良く伝達することができる。
【0101】
図18には、上記実施形態の食感評価システム10Aによって、2種類のドーナツG,Hを計測した際の、咬合力と舌力の計測結果が示されている。ドーナツG,Hは、それぞれ8gに切り出したものを、咀嚼0回目相当のドーナツとした。また、咀嚼が進行した状態の食塊を再現するため、ドーナツGは32gに切り出した後、4分割し、4.8mLの水を加えて馴染ませ、Trio Science社製の7段変速型ブレンダーを用いて、1速で2.4秒間破砕処理を行い、8gずつまとめて咀嚼が進行した状態の食塊を作成した。この食塊は、評価者3名により、ヒトが咀嚼したドーナツGの15回咀嚼後の状態と同質であることを確認した。
【0102】
一方、ドーナツHは32gに切り出した後、5mm幅に輪切りし、さらに輪に向かって垂直方向から半分に分割した。更に、4.8mLの水を加えて馴染ませ、Trio Science社製の7段変速型ブレンダーを用いて、1速で1.8秒間破砕処理を行い、8gずつまとめて咀嚼が進行した状態の食塊を作成した。この食塊は、評価者3名により、ヒトが咀嚼したドーナツHの15回咀嚼後の状態と同質であることを確認した。
【0103】
図18(a),(b)は、ドーナツGにおける、咀嚼0回目相当、及び、15回目目相当の食塊を、上記食感計測システム10Aを用いて計測した際のデータであり、(a)は咬合力と時間との関係を示すグラフであり、(b)は舌力と時間との関係を示すグラフである。
【0104】
図19(a),(b)は、ドーナツHにおける、咀嚼0回目相当、及び、15回目目相当の食塊を、上記食感計測システム10Aを用いて計測した際のデータであり、(a)は咬合力と時間との関係を示すグラフであり、(b)は舌力と時間との関係を示すグラフである。
【0105】
これらのデータを比較すると、ドーナツの種類(G,H)によって検知される咬合力、及び、舌力が異なっており、食塊の状態による差異が、計測データからも客観的に評価することができた。
【0106】
なお、本発明は、上述した実施形態に限定されるものではなく、本発明の要旨の範囲内で、各種の変形実施形態が可能であり、そのような実施形態も本発明の範囲に含まれる。
【符号の説明】
【0107】
10,10A 食感評価システム(システム)
11 センサ支持部
13 圧力分布センサ(圧力センサ)
13a セル
15,15A 環状支持部
16 長孔
17,18,19 第1人工歯
17a,18a,19a 基部
17b,18b,19b 先端部
21 貫通孔
23 弾性部材
25 押圧部
25a ロッド
27,28,29 第2人工歯
31 駆動手段
33,33A 人工舌
35 側壁
36,37 連結壁
38 硬質部材
40 処理装置
50 食感評価手段
51 データ記憶部
53 特徴量算出部
55 食感推定式導出部
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19